

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	· · · · · · · · · · · · · · · · · · ·
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f321r6ta

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Block	Register label	Register name	Reset status	Remarks
0040h			Reserved Area (1 byte)		•
0041h 0042h 0043h 0045h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh	TIMER B	TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1LR TBOC1LR TBCLR TBCLR TBACLR TBACLR TBIC2HR TBIC2LR TBIC2LR TBOC2LR	Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter High Register Timer B Alternate Counter High Register Timer B Alternate Counter High Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 Low Register	00h 00h xxxx x0xx b xxh 80h 00h FFh FCh FCh FCh xxh xxh 80h 00h	R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only R
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h	SCI	SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR SCIETPR	SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register	C0h xxh 00h x000 0000b 00h 00h 00h	Read Only R/W R/W R/W R/W R/W
0058h 006Fh		I	Reserved Area (24 Bytes)	L	I
0070h 0071h 0072h	ADC	ADCCSR ADCDRH ADCDRL	Control/Status Register Data High Register Data Low Register	00h 00h 00h	R/W Read Only Read Only
0073h 0074h 0075h 0076h 0077h 0078h 0079h 007Ah 007Bh 007Ch 007Dh	PWM ART	PWMDCR3 PWMDCR2 PWMDCR1 PWMDCR0 PWMCR ARTCSR ARTCAR ARTCAR ARTARR ARTICCSR ARTICR1 ARTICR2	PWM AR Timer Duty Cycle Register 3 PWM AR Timer Duty Cycle Register 2 PWM AR Timer Duty Cycle Register 1 PWM AR Timer Duty Cycle Register 0 PWM AR Timer Control Register Auto-Reload Timer Control/Status Register Auto-Reload Timer Counter Access Register Auto-Reload Timer Auto-Reload Register AR Timer Input Capture Control/Status Reg. AR Timer Input Capture Register 1 AR Timer Input Capture Register 1	00h 00h 00h 00h 00h 00h 00h 00h 00h 00h	R/W R/W R/W R/W R/W R/W R/W R/W Read Only Read Only
007Eh 007Fh			Reserved Area (2 bytes)	1	

Table 4.	Hardware register map	(continued))

1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

2. The bits associated with unavailable pins must always keep their reset value.

Note: Legend: *x* = undefined, *R/W* = read/write

4 Flash program memory

4.1 Introduction

The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a byte-by-byte basis using an external V_{PP} supply.

The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (in-circuit programming) or IAP (in-application programming).

The array matrix organization allows each sector to be erased and reprogrammed without affecting other sectors.

4.2 Main features

- 3 Flash programming modes:
 - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.
 - ICP (in-circuit programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.
 - IAP (in-application programming). In this mode, all sectors except Sector 0 can be programmed or erased without removing the device from the application board and while the application is running.
- ICT (in-circuit testing) for downloading and executing user application test patterns in RAM
- Readout protection
- Register Access Security System (RASS) to prevent accidental programming or erasing

4.3 Structure

The Flash memory is organized in sectors and can be used for both code and data storage.

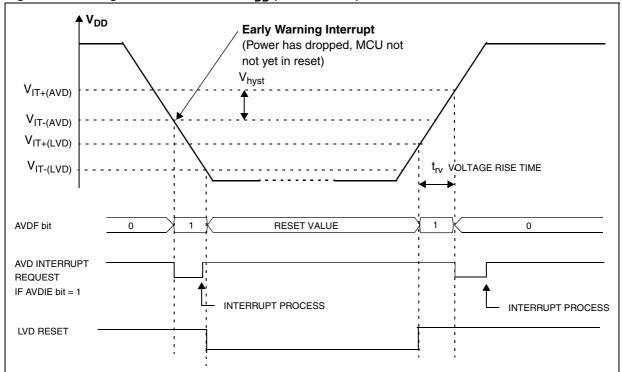

Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see *Table 5*). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

Table 5. Sectors available in	n Flash devices
-------------------------------	-----------------

Flash size (bytes)	Available sectors
4K	Sector 0
8К	Sectors 0, 1
> 8K	Sectors 0, 1, 2

The first two sectors have a fixed size of 4 Kbytes (see *Figure 5*). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

Figure 15. Using the AVD to monitor V_{DD} (AVDS bit = 0)

Monitoring a voltage on the EVD pin

This mode is selected by setting the AVDS bit in the SICSR register.

The AVD circuitry can generate an interrupt when the AVDIE bit of the SICSR register is set. This interrupt is generated on the rising and falling edges of the comparator output. This means it is generated when either one of these two events occur:

- V_{EVD} rises up to V_{IT+(EVD)}
- V_{EVD} falls down to V_{IT-(EVD)}

The EVD function is illustrated in Figure 16.

For more details, refer to Section 19: Electrical characteristics.

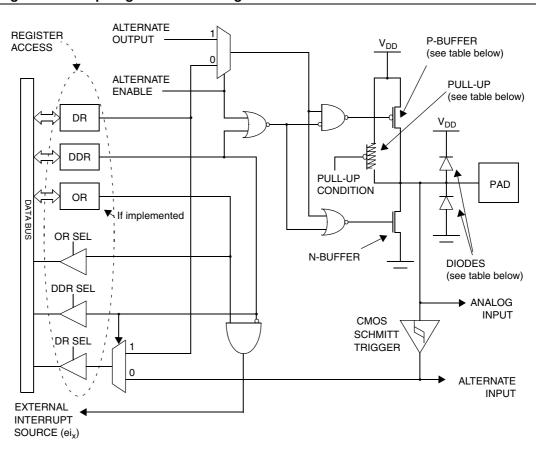


Figure 29. I/O port general block diagram

Table 29. I/O port mode options

Configuration mode		Pull-up	P-buffer	Diodes		
		Pull-up	P-buller	to V _{DD}	to V _{SS}	
Input	Floating with/without Interrupt	Off	Off			
Input	Pull-up with/without Interrupt	On		On	On	
	Push-pull	Off	On			
Output	Open-drain (logic level)	Oli	Off			
	True open-drain	NI	NI	NI ⁽¹⁾		

1. The diode to V_{DD} is not implemented in the true open-drain pads. A local protection between the pad and V_{SS} is implemented to protect the device against positive stress.

Legend:

- Off Implemented not activated
- On Implemented and activated
- NI Not implemented

		Juneari (Correct		Outra 14			
Port	Pin name	Input (L	0DR = 0)	Output (DDR = 1)		
1 on	T in name	OR = 0	OR = 1	OR = 0	OR = 1		
Port B	PB7, PB3	floating	floating interrupt	open-drain	push-pull		
FULD	PB6:5, PB4, PB2:0	floating	pull-up interrupt	open-drain	push-pull		
Port C	PC7:0	floating	pull-up	open-drain	push-pull		
Port D	PD7:0	floating	pull-up	open-drain	push-pull		
	PE7:3, PE1:0	floating	pull-up	open drain	push-pull		
Port E	PE2 (Flash devices)		pull-up ir	nput only			
	PE2 (ROM devices)	floa	ting	open drain	push-pull		
	PF7:3	floating	pull-up	open-drain	push-pull		
Port F	PF2	floating	floating interrupt	open-drain	push-pull		
	PF1:0	floating	pull-up interrupt	open-drain	push-pull		

 Table 31.
 I/O port configuration (continued)

9.4 Low power modes

Table 32. Effect of low power modes on I/O ports

Mode	Effect
Wait	No effect on I/O ports. External interrupts cause the device to exit from Wait mode.
Halt	No effect on I/O ports. External interrupts cause the device to exit from Halt mode.

9.5 Interrupts

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction).

Table 33. I/O port interrupt control/wake-up capability

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt	
External interrupt on selected external event	-	DDRx, ORx	Yes	Yes	

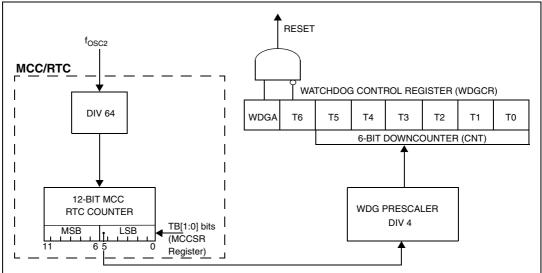
Table 34. I/O port register map and reset values

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
Reset value of all I/O port registers		0	0	0	0	0	0	0	0
0000h	PADR								
0001h	PADDR	MSB							LSB
0002h	PAOR								

Address (Hex.) Register label		7	6	5	4	3	2	1	0
Reset value of all I/O port registers		0	0	0	0	0	0	0	0
0003h	PBDR								
0004h	PBDDR	MSB							LSB
0005h	PBOR								
0006h	PCDR								
0007h	PCDDR	MSB							LSB
0008h	PCOR								
0009h	PDDR								
000Ah	PDDDR	MSB							LSB
000Bh	PDOR								
000Ch	PEDR								
000Dh	PEDDR	MSB							LSB
000Eh	PEOR								
000Fh	PFDR								
0010h	PFDDR	MSB							LSB
0011h	PFOR								

Table 34. I/O port register map and reset values (continued)

Related documentation


SPI Communication between ST7 and EEPROM (AN 970)

S/W implementation of I2C bus master (AN1045)

Software LCD driver (AN1048)

Figure 31. Watchdog block diagram

10.4 How to program the watchdog timeout

Figure 32 shows the linear relationship between the 6-bit value to be loaded in the Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If more precision is needed, use the formulae in *Figure 33*.

Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an immediate reset.

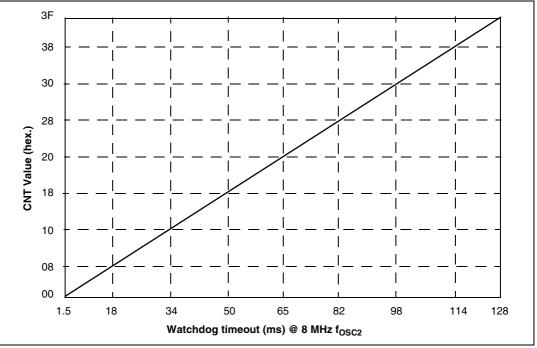


Figure 32. Approximate timeout duration

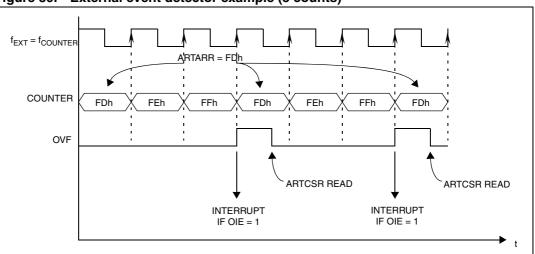


Figure 39. External event detector example (3 counts)

12.2.8 Input capture function

This mode allows the measurement of external signal pulse widths through ARTICRx registers.

Each input capture can generate an interrupt independently on a selected input signal transition. This event is flagged by a set of the corresponding CFx bits of the Input Capture Control/Status register (ARTICCSR).

These input capture interrupts are enabled through the CIEx bits of the ARTICCSR register.

The active transition (falling or rising edge) is software programmable through the CSx bits of the ARTICCSR register.

The read only input capture registers (ARTICRx) are used to latch the auto-reload counter value when a transition is detected on the ARTICx pin (CFx bit set in ARTICCSR register). After fetching the interrupt vector, the CFx flags can be read to identify the interrupt source.

Note: After a capture detection, data transfer in the ARTICRx register is inhibited until it is read (clearing the CFx bit).

The timer interrupt remains pending while the CFx flag is set when the interrupt is enabled (CIEx bit set). This means that the ARTICRx register has to be read at each capture event to clear the CFx flag.

The timing resolution is given by auto-reload counter cycle time (1/f_{COUNTER}).

Note: During Halt mode, if both the input capture and the external clock are enabled, the ARTICRx register value is not guaranteed if the input capture pin and the external clock change simultaneously.

12.3.7 Input capture registers (ARTICRx)

ARTICRx					Rese	t value: 0000	0000 (00h)
7	6	5	4	3	2	1	0
IC[7:0]							
PO							

RO

Table 54. ARTICRx register description

В	it	Name	Function
7	:0	IC[7:0]	Input Capture Data These read only bits are set and cleared by hardware. An ARTICRx register contains the 8-bit auto-reload counter value transferred by the input capture channel x event.

Table 55. PWM auto-reload timer register map and reset values

Address (Hex.)	Register label	7	6	5	4	3	2	1	0
0073h	PWMDCR3	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset value	0	0	0	0	0	0	0	0
0074h	PWMDCR2	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset value	0	0	0	0	0	0	0	0
0075h	PWMDCR1	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset value	0	0	0	0	0	0	0	0
0076h	PWMDCR0	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
	Reset value	0	0	0	0	0	0	0	0
0077h	PWMCR	OE3	OE2	OE1	OE0	OP3	OP2	OP1	OP0
	Reset value	0	0	0	0	0	0	0	0
0078h	ARTCSR	EXCL	CC2	CC1	CC0	TCE	FCRL	RIE	OVF
	Reset value	0	0	0	0	0	0	0	0
0079h	ARTCAR	CA7	CA6	CA5	CA4	CA3	CA2	CA1	CA0
	Reset value	0	0	0	0	0	0	0	0
007Ah	ARTARR	AR7	AR6	AR5	AR4	AR3	AR2	AR1	AR0
	Reset value	0	0	0	0	0	0	0	0
007Bh	ARTICCSR Reset value	0	0	CS2 0	CS1 0	CIE2 0	CIE1 0	CF2 0	CF1 0
007Ch	ARTICR1	IC7	IC6	IC5	IC4	IC3	IC2	IC1	IC0
	Reset value	0	0	0	0	0	0	0	0
007Dh	ARTICR2	IC7	IC6	IC5	IC4	IC3	IC2	IC1	IC0
	Reset value	0	0	0	0	0	0	0	0

13.3 Functional description

13.3.1 Counter

The main block of the Programmable Timer is a 16-bit free running upcounter and its associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called high and low.

Counter Register (CR)

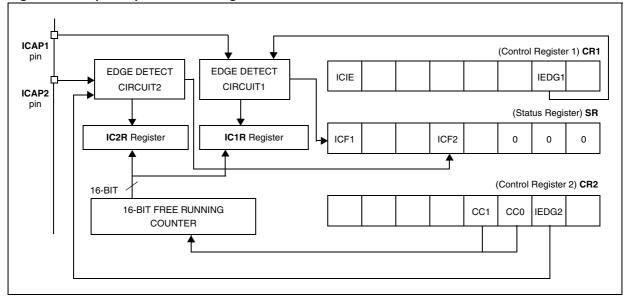
- Counter High Register (CHR) is the most significant byte (MS Byte)
- Counter Low Register (CLR) is the least significant byte (LS Byte)

Alternate Counter Register (ACR)

- Alternate Counter High Register (ACHR) is the most significant byte (MS Byte)
- Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte)

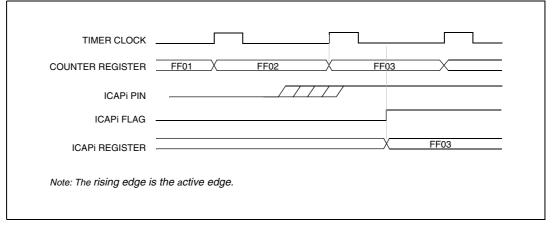
These two read-only 16-bit registers contain the same value but with the difference that reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the Status register (SR) (see note at the end of paragraph entitled *16-bit read sequence*).

Writing in the CLR register or ACLR register resets the free running counter to the FFFCh value.


Both counters have a reset value of FFFCh (this is the only value which is reloaded in the 16-bit timer). The reset value of both counters is also FFFCh in One Pulse mode and PWM mode.

The timer clock depends on the clock control bits of the CR2 register, as illustrated in *Table 61: Timer clock selection*. The value in the counter register repeats every 131072, 262144 or 524288 CPU clock cycles depending on the CC[1:0] bits.

The timer frequency can be $f_{CPU}/2$, $f_{CPU}/4$, $f_{CPU}/8$ or an external frequency.



- 5 The alternate inputs (ICAP1 and ICAP2) are always directly connected to the timer. So any transitions on these pins activates the input capture function.
- 6 Moreover if one of the ICAPi pins is configured as an input and the second one as an output, an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set.
- 7 This can be avoided if the input capture function i is disabled by reading the ICiHR (see note 1).
- 8 The TOF bit can be used with interrupt generation in order to measure events that go beyond the timer range (FFFh).

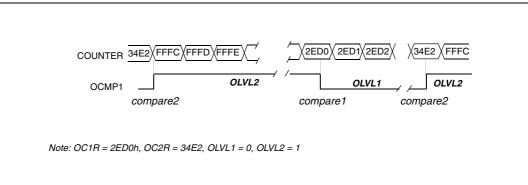

Figure 46. Input capture block diagram

Figure 53. Pulse width modulation mode timing example with 2 output compare functions

Note:

On timers with only one Output Compare register, a fixed frequency PWM signal can be generated using the output compare and the counter overflow to define the pulse length.

13.3.7 Pulse width modulation mode

Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency and pulse length determined by the value of the OC1R and OC2R registers.

Pulse Width Modulation mode uses the complete Output Compare 1 function plus the OC2R register, and so this functionality cannot be used when PWM mode is activated.

In PWM mode, double buffering is implemented on the output compare registers. Any new values written in the OC1R and OC2R registers are taken into account only at the end of the PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).

Procedure

To use pulse width modulation mode:

- 1. Load the OC2R register with the value corresponding to the period of the signal using the appropriate formula below according to the timer clock source used.
- Load the OC1R register with the value corresponding to the period of the pulse if OLVL1 = 0 and OLVL2 = 1 using the appropriate formula below according to the timer clock source used.
- 3. Select the following in the CR1 register:
 - Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC1R register.
 - Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC2R register.
- 4. Select the following in the CR2 register:
 - Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.
 - Set the PWM bit.
 - Select the timer clock (CC[1:0]) (see Table 61: Timer clock selection).

Bit	Name	Function					
5	OPM	 One Pulse Mode 0: One Pulse Mode is not active. 1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the generated pulse depends on the contents of the OC1R register. 					
4	PWM	 Pulse Width Modulation 0: PWM mode is not active. 1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the length of the pulse depends on the value of OC1R register; the period depends on the value of OC2R register. 					
3:2	CC[1:0]	<i>Clock Control</i> The timer clock mode depends on these bits (see <i>Table 61</i>).					
1	IEDG2	 Input Edge 2 This bit determines which type of level transition on the ICAP2 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture. 					
0	EXEDG	 External Clock Edge This bit determines which type of level transition on the external clock pin EXTCLK will trigger the counter register. 0: A falling edge triggers the counter register. 1: A rising edge triggers the counter register. 					

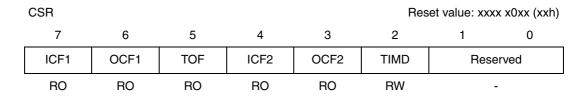
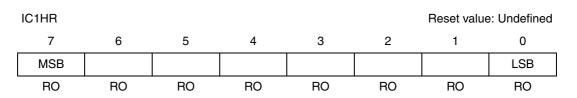

Table 60. CR2 register description (continued)

Table 61.Timer clock selection

Timer clock	CC1	CC0
f _{CPU} / 4	0	0
f _{CPU} / 2	0	1
f _{CPU} / 8	1	0
External clock (where available) ⁽¹⁾	1	1

1. If the external clock pin is not available, programming the external clock configuration stops the counter.

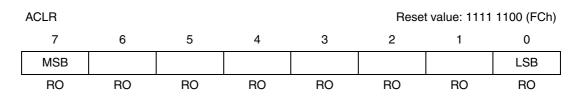
13.7.3 Control/status register (CSR)

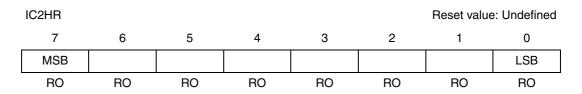


Bit	Name	Function
- Dit	Hame	
7	ICF1	 Input Capture Flag 1 0: No input capture (reset value) 1: An input capture has occurred on the ICAP1 pin or the counter has reached the OC2R value in PWM mode. To clear this bit, first read the SR register, then read or write the low byte of the IC1R (IC1LR) register.
6	OCF1	Output Compare Flag 1 0: No match (reset value) 1: The content of the free running counter has matched the content of the OC1R register. To clear this bit, first read the SR register, then read or write the low byte of the OC1R (OC1LR) register.
5	TOF	 Timer Overflow Flag 0: No timer overflow (reset value) 1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first read the SR register, then read or write the low byte of the CR (CLR) register. Note: Reading or writing the ACLR register does not clear TOF.
4	ICF2	 Input Capture Flag 2 0: No input capture (reset value). 1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the SR register, then read or write the low byte of the IC2R (IC2LR) register.
3	OCF2	Output Compare Flag 2 0: No match (reset value) 1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the low byte of the OC2R (OC2LR) register.
2	TIMD	 Timer disable This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed, or the counter reset, while it is disabled. 0: Timer enabled 1: Timer prescaler, counter and outputs disabled
1:0	-	Reserved, must be kept cleared

Table 62.	CSR register description
-----------	--------------------------

13.7.4 Input capture 1 high register (IC1HR)

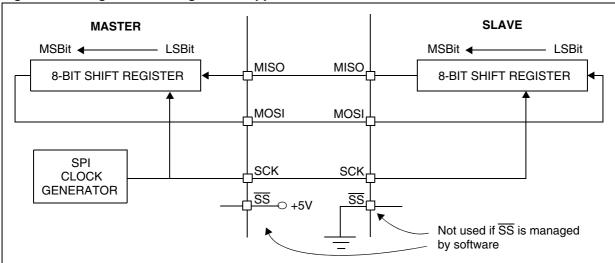

This is an 8-bit read only register that contains the high part of the counter value (transferred by the input capture 1 event).


13.7.13 Alternate counter low register (ACLR)

This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register.

13.7.14 Input capture 2 high register (IC2HR)

This is an 8-bit read only register that contains the high part of the counter value (transferred by the Input Capture 2 event).


13.7.15 Input capture 2 low register (IC2LR)

This is an 8-bit read only register that contains the low part of the counter value (transferred by the Input Capture 2 event).

Reset value: Undefined

7	6	5	4	3	2	1	0
MSB							LSB
RO	RO	RO	RO	RO	RO	RO	RO

Figure 56. Single master/single slave application

14.3.2 Slave select management

As an alternative to using the \overline{SS} pin to control the Slave Select signal, the application can choose to manage the Slave Select signal by software. This is configured by the SSM bit in the SPICSR register (see *Figure 58*)

In software management, the external \overline{SS} pin is free for other application uses and the internal \overline{SS} signal level is driven by writing to the SSI bit in the SPICSR register.

In Master mode

• SS internal must be held high continuously

In Slave mode

There are two cases depending on the data/clock timing relationship (see *Figure 57*):

If CPHA = 1 (data latched on 2nd clock edge):

SS internal must be held low during the entire transmission. This implies that in single slave applications the SS pin either can be tied to V_{SS}, or made free for standard I/O by managing the SS function by software (SSM = 1 and SSI = 0 in the in the SPICSR register)

If CPHA = 0 (data latched on 1st clock edge):

• SS internal must be held low during byte transmission and pulled high between each byte to allow the slave to write to the shift register. If SS is not pulled high, a Write Collision error will occur when the slave writes to the shift register (see *Write collision error (WCOL) on page 128*).

14.3.4 Master mode transmit sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first.

When data transfer is complete:

- The SPIF bit is set by hardware
- An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- 2. A read to the SPIDR register.

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

14.3.5 Slave mode operation

In slave mode, the serial clock is received on the SCK pin from the master device.

- To operate the SPI in slave mode:
- 1. Write to the SPICSR register to perform the following actions:
 - a) Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see *Figure 59*).
- Note: The slave must have the same CPOL and CPHA settings as the master.
 - b) Manage the \overline{SS} pin as described in *Slave select management on page 123* and *Figure 57*. If CPHA = 1, \overline{SS} must be held low continuously. If CPHA = 0, \overline{SS} must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register.
 - 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions.

14.3.6 Slave mode transmit sequence

When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first.

The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin.

When data transfer is complete:

- The SPIF bit is set by hardware.
- An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared.

Clearing the SPIF bit is performed by the following software sequence:

- 1. An access to the SPICSR register while the SPIF bit is set
- 2. A write or a read to the SPIDR register

Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read.

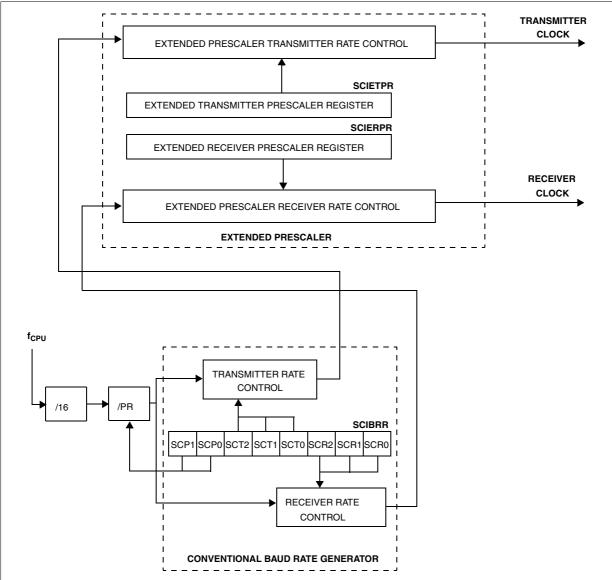
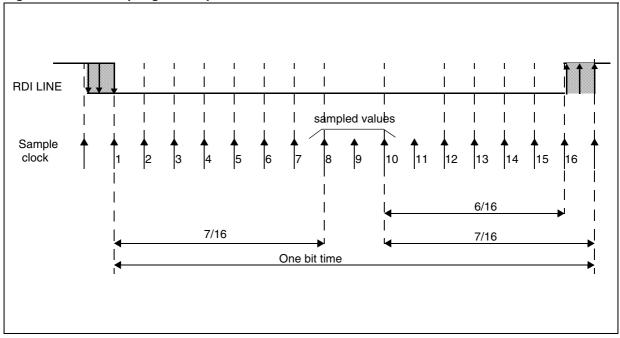


Figure 64. SCI baud rate and extended prescaler block diagram

Framing error

A framing error is detected when:

- The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise.
- A break is received.


When the framing error is detected:

- The FE bit is set by hardware.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation.

Doc ID 13829 Rev 1

Figure 65. Bit sampling in reception mode

15.5 Low power modes

Table 71. Effect of low power modes on SCI

Mode	Effect
Wait	No effect on SCI. SCI interrupts cause the device to exit from Wait mode.
Halt	SCI registers are frozen. In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited.

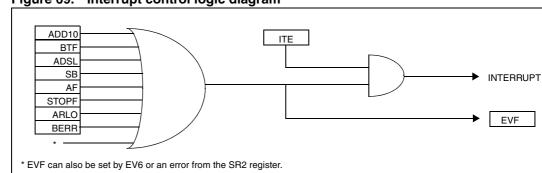
15.6 Interrupts

The SCI interrupt events are connected to the same interrupt vector.

These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

Table 72. SCI interrupt control/wake-up capability

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
Transmit Data Register Empty	TDRE	TIE	Yes	No
Transmission Complete	TC	TCIE	Yes	No
Received Data Ready to be Read	RDRF	RIE	Yes	No
Overrun Error Detected	OR		Yes	No



16.5 Low power modes

Table 81. Effect of low power modes on I²C

Mode	Effect
Wait	No effect on I^2C interface. I^2C interrupts cause the device to exit from Wait mode.
Halt	I^2C registers are frozen. In Halt mode, the I^2C interface is inactive and does not acknowledge data on the bus. The I^2C interface resumes operation when the MCU is woken up by an interrupt with "exit from Halt mode" capability.

16.6 Interrupts

Figure 69. Interrupt control logic diagram

Table 82. I²C interrupt control/wake-up capability

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
10-bit Address Sent Event (Master mode)	ADD10			
End of Byte Transfer Event	BTF			
Address Matched Event (Slave mode)	ADSEL			
Start Bit Generation Event (Master mode)	SB	ITE	Yes	No
Acknowledge Failure Event	AF		Tes	INO
Stop Detection Event (Slave mode)	STOPF			
Arbitration Lost Event (Multimaster configuration)	ARLO]		
Bus Error Event	BERR]		

Note:

The I²C interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control bit is set and the I-bit in the CC register is reset (RIM instruction).

