
STMicroelectronics - ST72F321R9TA Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 48

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f321r9ta

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f321r9ta-4431041
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Central processing unit (CPU) ST72321xx-Auto

36/243 Doc ID 13829 Rev 1

The stack pointer is a 16-bit register which is always pointing to the next free location in the
stack. It is then decremented after data has been pushed onto the stack and incremented
before data is popped from the stack (see Figure 8).

Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware.
Following an MCU Reset, or after a reset stack pointer instruction (RSP), the stack pointer
contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address.

The least significant byte of the stack pointer (called S) can be directly accessed by an LD
instruction.

Note: When the lower limit is exceeded, the stack pointer wraps around to the stack upper limit,
without indicating the stack overflow. The previously stored information is then overwritten
and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context
during an interrupt. The user may also directly manipulate the stack by means of the PUSH
and POP instructions. In the case of an interrupt, the PCL is stored at the first location
pointed to by the SP. The other registers are then stored in the next locations as shown in
Figure 8.

● When an interrupt is received, the SP is decremented and the context is pushed on the
stack.

● On return from interrupt, the SP is incremented and the context is popped from the
stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

Figure 8. Stack manipulation example

PCH

PCL

SP

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

SP

Y

CALL
Subroutine

Interrupt
Event

PUSH Y POP Y IRET RET
or RSP

@ 01FFh

@ 0100h

Stack Higher Address = 01FFh
Stack Lower Address = 0100h

ST72321xx-Auto Power saving modes

Doc ID 13829 Rev 1 65/243

8.4 Active Halt and Halt modes
Active Halt and Halt modes are the two lowest power consumption modes of the MCU. They
are both entered by executing the ‘HALT’ instruction. The decision to enter either in Active
Halt or Halt mode is given by the MCC/RTC interrupt enable flag (OIE bit in MCCSR
register) as shown in Table 27.

8.4.1 Active Halt mode

Active Halt mode is the lowest power consumption mode of the MCU with a real-time clock
available. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock
Controller Status register (MCCSR) is set (see Section 12.3: ART registers on page 93 for
more details on the MCCSR register).

The MCU can exit Active Halt mode on reception of an MCC/RTC interrupt or a RESET.
When exiting Active Halt mode by means of an interrupt, no 256 or 4096 CPU cycle delay
occurs. The CPU resumes operation by servicing the interrupt or by fetching the reset vector
which woke it up (see Figure 26).

When entering Active Halt mode, the I[1:0] bits in the CC register are forced to ‘10b’ to
enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

In Active Halt mode, only the main oscillator and its associated counter (MCC/RTC) are
running to keep a wake-up time base. All other peripherals are not clocked except those
which get their clock supply from another clock generator (such as external or auxiliary
oscillator).

The safeguard against staying locked in Active Halt mode is provided by the oscillator
interrupt.

Note: As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set),
entering Active Halt mode while the Watchdog is active does not generate a RESET.

This means that the device cannot spend more than a defined delay in this power saving
mode.

Caution: When exiting Active Halt mode following an MCC/RTC interrupt, OIE bit of MCCSR register
must not be cleared before tDELAY after the interrupt occurs (tDELAY = 256 or 4096 tCPU
delay depending on option byte). Otherwise, the ST7 enters Halt mode for the remaining
tDELAY period.

Table 27. MCC/RTC low power mode selection

MCCSR OIE bit Power saving mode entered when HALT instruction is executed

0 Halt

1 Active Halt

ST72321xx-Auto Power saving modes

Doc ID 13829 Rev 1 69/243

Halt mode recommendations

● Make sure that an external event is available to wake up the microcontroller from Halt
mode.

● When using an external interrupt to wake up the microcontroller, re-initialize the
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT
instruction. The main reason for this is that the I/O may be wrongly configured due to
external interference or by an unforeseen logical condition.

● For the same reason, reinitialize the level sensitiveness of each external interrupt as a
precautionary measure.

● The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction
due to a program counter failure, it is advised to clear all occurrences of the data value
0x8E from memory. For example, avoid defining a constant in ROM with the value
0x8E.

● As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,
the user may choose to clear all pending interrupt bits before executing the HALT
instruction. This avoids entering other peripheral interrupt routines after executing the
external interrupt routine corresponding to the wake-up event (reset or external
interrupt).

Related documentation

ST7 Keypad Decoding Techniques, Implementing Wake-Up on Keystroke (AN 980)

How to Minimize the ST7 Power Consumption (AN1014)

Using an active RC to wake up the ST7LITE0 from power saving mode (AN1605)

ST72321xx-Auto I/O ports

Doc ID 13829 Rev 1 71/243

Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout
description and interrupt section). If several input pins are selected simultaneously as
interrupt sources, these are first detected according to the sensitivity bits in the EICR
register and then logically ORed.

The external interrupts are hardware interrupts, which means that the request latch (not
accessible directly by the application) is automatically cleared when the corresponding
interrupt vector is fetched. To clear an unwanted pending interrupt by software, the
sensitivity bits in the EICR register must be modified.

9.2.2 Output modes

The output configuration is selected by setting the corresponding DDR register bit. In this
case, writing the DR register applies this digital value to the I/O pin through the latch. Then
reading the DR register returns the previously stored value.

Two different output modes can be selected by software through the OR register: Output
push-pull and open-drain. The DR register value and output pin status are shown in the
following Table 28.

9.2.3 Alternate functions

When an on-chip peripheral is configured to use a pin, the alternate function is automatically
selected. This alternate function takes priority over the standard I/O programming.

When the signal is coming from an on-chip peripheral, the I/O pin is automatically
configured in output mode (push-pull or open-drain according to the peripheral).

When the signal is going to an on-chip peripheral, the I/O pin must be configured in input
mode. In this case, the pin state is also digitally readable by addressing the DR register.

Note: Input pull-up configuration can cause unexpected value at the input of the alternate
peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to
be configured in input floating mode.

Table 28. I/O output mode selection

DR Push-pull Open-drain

0 VSS VSS

1 VDD Floating

ST72321xx-Auto I/O ports

Doc ID 13829 Rev 1 73/243

Table 30. I/O port configurations

Hardware configuration

In
p

u
t(1

)
O

p
en

-d
ra

in
 o

u
tp

u
t(2

)
P

u
sh

-p
u

ll
o

u
tp

u
t(2

)

1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR
register will read the alternate function output status.

2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate
function reads the pin status given by the DR register content.

CONDITION

PAD

VDD

RPU

EXTERNAL INTERRUPT

DATA BUS

PULL-UP

INTERRUPT

DR REGISTER ACCESS

W

R

SOURCE (eix)

DR
REGISTER

CONDITION

ALTERNATE INPUT

NOT IMPLEMENTED IN
TRUE OPEN DRAIN
I/O PORTS

ANALOG INPUT

PAD

RPU

DATA BUS
DR

DR REGISTER ACCESS

R/W

VDD

ALTERNATEALTERNATE
ENABLE OUTPUT

REGISTER

NOT IMPLEMENTED IN
TRUE OPEN DRAIN
I/O PORTS

PAD

RPU

DATA BUS
DR

DR REGISTER ACCESS

R/W

VDD

ALTERNATEALTERNATE
ENABLE OUTPUT

REGISTER

NOT IMPLEMENTED IN
TRUE OPEN DRAIN
I/O PORTS

ST72321xx-Auto PWM auto-reload timer (ART)

Doc ID 13829 Rev 1 89/243

Figure 36. Output compare control

12.2.5 Independent PWM signal generation

This mode allows up to four Pulse Width Modulated signals to be generated on the PWMx
output pins with minimum core processing overhead. This function is stopped during Halt
mode.

Each PWMx output signal can be selected independently using the corresponding OEx bit
in the PWM Control register (PWMCR). When this bit is set, the corresponding I/O pin is
configured as output push-pull alternate function.

The PWM signals all have the same frequency which is controlled by the counter period and
the ARTARR register value.

fPWM = fCOUNTER / (256 - ARTARR)

When a counter overflow occurs, the PWMx pin level is changed depending on the
corresponding OPx (output polarity) bit in the PWMCR register. When the counter reaches
the value contained in one of the output compare register (OCRx) the corresponding PWMx
pin level is restored.

It should be noted that the reload values will also affect the value and the resolution of the
duty cycle of the PWM output signal. To obtain a signal on a PWMx pin, the contents of the
OCRx register must be greater than the contents of the ARTARR register.

The maximum available resolution for the PWMx duty cycle is:

Resolution = 1 / (256 - ARTARR)

Note: To get the maximum resolution (1/256), the ARTARR register must be 0. With this maximum
resolution, 0% and 100% can be obtained by changing the polarity.

COUNTER FDh FEh FFh FDh FEh FFh FDh FEh

ARTARR = FDh

fCOUNTER

OCRx

PWMDCRx FDh FEh

FDh FEh

FFh

PWMx

16-bit timer ST72321xx-Auto

98/243 Doc ID 13829 Rev 1

13 16-bit timer

13.1 Introduction
The timer consists of a 16-bit free-running counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two
input signals (input capture) or generation of up to two output waveforms (output compare
and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the CPU clock prescaler.

Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and
do not share any resources. They are synchronized after an MCU reset as long as the timer
clock frequencies are not modified.

This description covers one or two 16-bit timers. In ST7 devices with two timers, register
names are prefixed with TA (Timer A) or TB (Timer B).

13.2 Main features
● Programmable prescaler: fCPU divided by 2, 4 or 8

● Overflow status flag and maskable interrupt

● External clock input (must be at least four times slower than the CPU clock speed) with
the choice of active edge

● 1 or 2 Output Compare functions each with:

– 2 dedicated 16-bit registers

– 2 dedicated programmable signals

– 2 dedicated status flags

– 1 dedicated maskable interrupt

● 1 or 2 Input Capture functions each with:

– 2 dedicated 16-bit registers

– 2 dedicated active edge selection signals

– 2 dedicated status flags

– 1 dedicated maskable interrupt

● Pulse Width Modulation mode (PWM)

● One Pulse mode

● Reduced Power mode

● 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)(a)

The block diagram is shown in Figure 41.

Note: When reading an input signal on a non-bonded pin, the value will always be ‘1’.

a. Some timer pins may not be available (not bonded) in some ST7 devices. Refer to the device pinout
description.

ST72321xx-Auto 16-bit timer

Doc ID 13829 Rev 1 113/243

13.7 16-bit timer registers
Each timer is associated with 3 control and status registers, and with 6 pairs of data
registers (16-bit values) relating to the 2 input captures, the 2 output compares, the counter
and the alternate counter.

13.7.1 Control register 1 (CR1)

One Pulse mode

No

Not
recommended(1)

No

Partially(2)

PWM mode
Not

recommended(3) No

1. See Note 4 in Section 13.3.6 One Pulse mode

2. See Note 5 in Section 13.3.6 One Pulse mode

3. See Note 4 in Section 13.3.7 Pulse width modulation mode

Table 58. Timer modes

Modes

Timer resources

Input
Capture 1

Input
Capture 2

Output
Compare 1

Output
Compare 2

CR1 Reset value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1

RW RW RW RW RW RW RW RW

Table 59. CR1 register description

Bit Name Function

7 ICIE

Input Capture Interrupt Enable

0: Interrupt is inhibited
1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is
set.

6 OCIE

Output Compare Interrupt Enable

0: Interrupt is inhibited
1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register
is set.

5 TOIE
Timer Overflow Interrupt Enable

0: Interrupt is inhibited
1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.

4 FOLV2

Forced Output Compare 2

This bit is set and cleared by software.
0: No effect on the OCMP2 pin
1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and
even if there is no successful comparison

16-bit timer ST72321xx-Auto

114/243 Doc ID 13829 Rev 1

13.7.2 Control register 2 (CR2)

3 FOLV1

Forced Output Compare 1

This bit is set and cleared by software.
0: No effect on the OCMP1 pin
1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if
there is no successful comparison

2 OLVL2

Output Level 2

This bit is copied to the OCMP2 pin whenever a successful comparison occurs with
the OC2R register and OCxE is set in the CR2 register. This value is copied to the
OCMP1 pin in One Pulse Mode and Pulse Width Modulation mode.

1 IEDG1

Input Edge 1

This bit determines which type of level transition on the ICAP1 pin will trigger the
capture.
0: A falling edge triggers the capture.
1: A rising edge triggers the capture.

0 OLVL1
Output Level 1

The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison
occurs with the OC1R register and the OC1E bit is set in the CR2 register.

Table 59. CR1 register description (continued)

Bit Name Function

CR2 Reset value: 0000 0000 (00h)

7 6 5 4 3 2 1 0

OC1E OC2E OPM PWM CC[1:0] IEDG2 EXEDG

RW RW RW RW RW RW RW

Table 60. CR2 register description

Bit Name Function

7 OC1E

Output Compare 1 Pin Enable
This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in
Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode).
Whatever the value of the OC1E bit, the Output Compare 1 function of the timer
remains active.
0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O)
1: OCMP1 pin alternate function enabled

6 OC2E

Output Compare 2 Pin Enable

This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in
Output Compare mode). Whatever the value of the OC2E bit, the Output Compare
2 function of the timer remains active.
0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O)
1: OCMP2 pin alternate function enabled

Serial peripheral interface (SPI) ST72321xx-Auto

126/243 Doc ID 13829 Rev 1

The SPIF bit can be cleared during a second transmission; however, it must be cleared
before the second SPIF bit in order to prevent an Overrun condition (see Overrun condition
(OVR) on page 128).

14.4 Clock phase and clock polarity
Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits (see Figure 59).

Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by
pulling up SCK if CPOL = 1 or pulling down SCK if CPOL = 0).

The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data
capture clock edge

Figure 59 shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the
MISO pin, the MOSI pin are directly connected between the master and the slave device.

Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by
resetting the SPE bit.

Serial peripheral interface (SPI) ST72321xx-Auto

130/243 Doc ID 13829 Rev 1

14.6 Low power modes

14.6.1 Using the SPI to wake up the MCU from Halt mode

In slave configuration, the SPI is able to wake up the ST7 device from Halt mode through a
SPIF interrupt. The data received is subsequently read from the SPIDR register when the
software is running (interrupt vector fetch). If multiple data transfers have been performed
before software clears the SPIF bit, then the OVR bit is set by hardware.

Note: When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to
perform an extra communications cycle to bring the SPI from Halt mode state to normal
state. If the SPI exits from Slave mode, it returns to normal state immediately.

Caution: The SPI can wake up the ST7 from Halt mode only if the Slave Select signal (external SS
pin or the SSI bit in the SPICSR register) is low when the ST7 enters Halt mode. So if Slave
selection is configured as external (see Slave select management on page 123), make sure
the master drives a low level on the SS pin when the slave enters Halt mode.

14.7 Interrupts

Note: The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter).
They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt
mask in the CC register is reset (RIM instruction).

Table 64. Effect of low power modes on SPI

Mode Effect

Wait
No effect on SPI.
SPI interrupt events cause the device to exit from Wait mode.

Halt

SPI registers are frozen.
In Halt mode, the SPI is inactive. SPI operation resumes when the MCU is woken up by
an interrupt with “exit from Halt mode” capability. The data received is subsequently
read from the SPIDR register when the software is running (interrupt vector fetching). If
several data are received before the wake-up event, then an overrun error is generated.
This error can be detected after the fetch of the interrupt routine that woke up the
device.

Table 65. SPI interrupt control/wake-up capability

Interrupt event Event flag
Enable

control bit
Exit from

Wait
Exit from

Halt

SPI End of Transfer event SPIF

SPIE Yes

Yes

Master Mode Fault event MODF
No

Overrun error OVR

ST72321xx-Auto Serial communications interface (SCI)

Doc ID 13829 Rev 1 137/243

Figure 62. SCI block diagram

WAKE
UP

UNIT
RECEIVER
CONTROL

SR

TRANSMIT
CONTROL

TDRE TC RDRF IDLE OR NF FE PE

SCI

CONTROL

INTERRUPT

CR1

R8 T8 SCID M WAKE PCE PS PIE

Received Data Register (RDR)

Received Shift Register

Read

Transmit Data Register (TDR)

Transmit Shift Register

Write

RDI

TDO

(DATA REGISTER) DR

TRANSMITTER

 CLOCK

RECEIVER
CLOCK

RECEIVER RATE

TRANSMITTER RATE

BRR

SCP1

fCPU

 CONTROL

CONTROL

SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0

/PR/16

CONVENTIONAL BAUD RATE GENERATOR

SBKRWURETEILIERIETCIETIE

CR2

Serial communications interface (SCI) ST72321xx-Auto

148/243 Doc ID 13829 Rev 1

4 IDLE

Idle line detect

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if
the ILIE = 1 in the SCICR2 register. It is cleared by a software sequence (an access
to the SCISR register followed by a read to the SCIDR register).
0: No Idle Line is detected
1: Idle Line is detected
Note: The IDLE bit is not set again until the RDRF bit has been set itself (that is, a
new idle line occurs).

3 OR

Overrun error

This bit is set by hardware when the word currently being received in the shift
register is ready to be transferred into the RDR register while RDRF = 1. An interrupt
is generated if RIE = 1 in the SCICR2 register. It is cleared by a software sequence
(an access to the SCISR register followed by a read to the SCIDR register).
0: No Overrun error
1: Overrun error is detected
Note: When this bit is set RDR register content is not lost but the shift register is
overwritten.

2 NF

Noise flag

This bit is set by hardware when noise is detected on a received frame. It is cleared
by a software sequence (an access to the SCISR register followed by a read to the
SCIDR register).
0: No noise is detected
1: Noise is detected
Note: This bit does not generate interrupt as it appears at the same time as the
RDRF bit which itself generates an interrupt.

1 FE

Framing error

This bit is set by hardware when a de-synchronization, excessive noise or a break
character is detected. It is cleared by a software sequence (an access to the SCISR
register followed by a read to the SCIDR register).
0: No Framing error is detected
1: Framing error or break character is detected
Note: This bit does not generate interrupt as it appears at the same time as the
RDRF bit which itself generates an interrupt. If the word currently being transferred
causes both frame error and overrun error, it will be transferred and only the OR bit
will be set.

0 PE

Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared
by a software sequence (a read to the status register followed by an access to the
SCIDR data register). An interrupt is generated if PIE = 1 in the SCICR1 register.
0: No parity error
1: Parity error

Table 73. SCISR register description (continued)

Bit Name Function

ST72321xx-Auto Instruction set

Doc ID 13829 Rev 1 177/243

18 Instruction set

18.1 CPU addressing modes
The CPU features 17 different addressing modes which can be classified in seven main
groups as listed in the following table:

The CPU instruction set is designed to minimize the number of bytes required per
instruction: To do so, most of the addressing modes may be divided in two submodes called
long and short:

● Long addressing mode is more powerful because it can use the full 64 Kbyte address
space; however, it uses more bytes and more CPU cycles.

● Short addressing mode is less powerful because it can generally only access page
zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP).

The ST7 Assembler optimizes the use of long and short addressing modes.

Table 96. Addressing modes

Group Example

Inherent NOP

Immediate LD A,#$55

Direct LD A,$55

Indexed LD A,($55,X)

Indirect LD A,([$55],X)

Relative JRNE loop

Bit operation BSET byte,#5

Table 97. CPU addressing mode overview

Mode Syntax Destination
Pointer
address
(Hex.)

Pointer
size

(Hex.)

Length
(bytes)

Inherent nop + 0

Immediate ld A,#$55 + 1

Short Direct ld A,$10 00..FF + 1

Long Direct ld A,$1000 0000..FFFF + 2

No Offset Direct Indexed ld A,(X) 00..FF + 0

Short Direct Indexed ld A,($10,X) 00..1FE + 1

Long Direct Indexed ld A,($1000,X) 0000..FFFF + 2

Short Indirect ld A,[$10] 00..FF 00..FF byte + 2

Long Indirect ld A,[$10.w] 0000..FFFF 00..FF word + 2

Short Indirect Indexed ld A,([$10],X) 00..1FE 00..FF byte + 2

ST72321xx-Auto Instruction set

Doc ID 13829 Rev 1 183/243

Table 103. Instruction set overview

Mnemo Description Function/Example Dst Src I1 H I0 N Z C

ADC Add with Carry A = A + M + C A M H N Z C

ADD Addition A = A + M A M H N Z C

AND Logical And A = A . M A M N Z

BCP Bit compare A, Memory tst (A . M) A M N Z

BRES Bit Reset bres Byte, #3 M

BSET Bit Set bset Byte, #3 M

BTJF Jump if bit is false (0) btjf Byte, #3, Jmp1 M C

BTJT Jump if bit is true (1) btjt Byte, #3, Jmp1 M C

CALL Call subroutine

CALLR Call subroutine relative

CLR Clear reg, M 0 1

CP Arithmetic Compare tst(Reg - M) reg M N Z C

CPL One Complement A = FFH-A reg, M N Z 1

DEC Decrement dec Y reg, M N Z

HALT Halt 1 0

IRET Interrupt routine return Pop CC, A, X, PC I1 H I0 N Z C

INC Increment inc X reg, M N Z

JP Absolute Jump jp [TBL.w]

JRA Jump relative always

JRT Jump relative

JRF Never jump jrf *

JRIH Jump if ext. INT pin = 1 (ext. INT pin high)

JRIL Jump if ext. INT pin = 0 (ext. INT pin low)

JRH Jump if H = 1 H = 1 ?

JRNH Jump if H = 0 H = 0 ?

JRM Jump if I1:0 = 11 I1:0 = 11 ?

JRNM Jump if I1:0 <> 11 I1:0 <> 11 ?

JRMI Jump if N = 1 (minus) N = 1 ?

JRPL Jump if N = 0 (plus) N = 0 ?

JREQ Jump if Z = 1 (equal) Z = 1 ?

JRNE Jump if Z = 0 (not equal) Z = 0 ?

JRC Jump if C = 1 C = 1 ?

JRNC Jump if C = 0 C = 0 ?

JRULT Jump if C = 1 Unsigned <

JRUGE Jump if C = 0 Jmp if unsigned >=

Electrical characteristics ST72321xx-Auto

188/243 Doc ID 13829 Rev 1

19.3 Operating conditions

19.3.1 General operating conditions

Note: Some temperature ranges are only available with a specific package and memory size.
Refer to Section 21: Device configuration and ordering information on page 223.

Figure 73. fCPU max versus VDD

Table 107. General operating conditions

Symbol Parameter Conditions Min Max Unit

fCPU Internal clock frequency 0 8 MHz

VDD

Standard voltage range (except Flash
Write/Erase)

3.8 5.5
V

Operating voltage for Flash Write/Erase VPP = 11.4 to 12.6V 4.5 5.5

TA Ambient temperature range

A suffix version

-40

85

°CB suffix version 105

C suffix version 125

fCPU [MHz]

SUPPLY VOLTAGE [V]

8

4

2

1
0

3.5 4.0 4.5 5.5

FUNCTIONALITY

FUNCTIONALITY
GUARANTEED
IN THIS AREANOT GUARANTEED

IN THIS AREA

3.8

6 (UNLESS

OTHERWISE

SPECIFIED

IN THE TABLES

OF PARAMETRIC

DATA)

Electrical characteristics ST72321xx-Auto

192/243 Doc ID 13829 Rev 1

Power consumption vs fCPU: Flash devices

Figure 74. Typical IDD in Run mode

Figure 75. Typical IDD in Slow mode

Figure 76. Typical IDD in Wait mode

0

1

2

3

4

5

6

7

8

9

3.2 3.6 4 4.4 4.8 5.2 5.5

Vdd (V)

Id
d

(m
A

)

8MHz
4MHz
2MHz
1MHz

0.00

0.20

0.40

0.60

0.80

1.00

1.20

3.2 3.6 4 4.4 4.8 5.2 5.5

Vdd (V)

Id
d

(m
A

)

500kHz

250kHz

125kHz

62.5kHz

0

1

2

3

4

5

6

3.2 3.6 4 4.4 4.8 5.2 5.5

Vdd (V)

Id
d

(m
A

)

8MHz
4MHz
2MHz
1MHz

Electrical characteristics ST72321xx-Auto

198/243 Doc ID 13829 Rev 1

19.5.5 PLL characteristics

The user must take the PLL jitter into account in the application (for example, in serial
communication or sampling of high frequency signals). The PLL jitter is a periodic effect,
which is integrated over several CPU cycles. Therefore, the longer the period of the
application signal, the less it is impacted by the PLL jitter.

Figure 81 shows the PLL jitter integrated on application signals in the range 125 kHz to
4 MHz. At frequencies of less than 125 kHz, the jitter is negligible.

Figure 81. Integrated PLL jitter versus signal frequency(1)

1. Measurement conditions: fCPU = 8 MHz

Table 119. PLL characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOSC PLL input frequency range 2 4 MHz

 fCPU/fCPU Instantaneous PLL jitter(1)

1. Data based on characterization results

fOSC = 4 MHz 1.0 2.5
%

fOSC = 2 MHz 2.5 4.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 MHz 2 MHz 1 MHz 500 kHz 250 kHz

Application Frequency

+/-Jitter (%)

Package characteristics ST72321xx-Auto

220/243 Doc ID 13829 Rev 1

20 Package characteristics

Figure 102. 64-pin (14x14) low profile quad flat package outline

Table 137. 64-pin (14x14) low profile quad flat package mechanical data

Dimension
mm inches

Min Typ Max Min Typ Max

A 1.600 0.0630

A1 0.050 0.150 0.0020 0.0059

A2 1.350 1.400 1.450 0.0531 0.0551 0.0571

b 0.300 0.370 0.450 0.0118 0.0146 0.0177

c 0.090 0.200 0.0035 0.0079

D 16.000 0.6299

D1 14.000 0.5512

E 16.000 0.6299

E1 14.000 0.5512

e 0.800 0.0315

 0° 3.5° 7° 0° 3.5° 7°

L 0.450 0.600 0.750 0.0177 0.0236 0.0295

L1 1.000 0.0394

c



L

L1

e

b

A

A1

A2

EE1

D

D1

ST72321xx-Auto Known limitations

Doc ID 13829 Rev 1 239/243

22.1.7 SCI wrong break duration

Description

A single break character is sent by setting and resetting the SBK bit in the SCICR2 register.
In some cases, the break character may have a longer duration than expected:

● 20 bits instead of 10 bits if M = 0

● 22 bits instead of 11 bits if M = 1

In the same way, as long as the SBK bit is set, break characters are sent to the TDO pin.
This may lead to generating one break more than expected.

Occurrence

The occurrence of the problem is random and proportional to the baud rate. With a transmit
frequency of 19200 baud (fCPU = 8 MHz and SCIBRR = 0xC9), the wrong break duration
occurrence is around 1%.

Workaround

If this wrong duration is not compliant with the communication protocol in the application,
software can request that an Idle line be generated before the break character. In this case,
the break duration is always correct assuming the application is not doing anything between
the idle and the break. This can be ensured by temporarily disabling interrupts.

The exact sequence is:

● Disable interrupts

● Reset and Set TE (IDLE request)

● Set and Reset SBK (Break Request)

● Re-enable interrupts

22.1.8 16-bit timer PWM mode

In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R
register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on
the OLVL1 and OLVL2 settings.

