

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PS2, PWM, WDT
Number of I/O	45
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/nuc220sc2an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NuMicro™ NUC200/220 Series Datasheet

		5.20.1 Overview	
		5.20.2 Features	79
6	ELEC	CTRICAL CHARACTERISTICS	80
	6.1	Absolute Maximum Ratings	80
	6.2	DC Electrical Characteristics	81
	6.3	AC Electrical Characteristics	87
		6.3.1 External 4~24 MHz High Speed Oscillator	
		6.3.2 External 4~24 MHz High Speed Crystal	
		6.3.3 External 32.768 kHz Low Speed Crystal Oscillator	
		6.3.4 Internal 22.1184 MHz High Speed Oscillator	
		6.3.5 Internal 10 kHz Low Speed Oscillator	
	6.4	Analog Characteristics	89
		6.4.1 12-bit SARADC Specification	
		6.4.2 LDO and Power Management Specification	
		6.4.3 Low Voltage Reset Specification	90
		6.4.4 Brown-out Detector Specification	90
		6.4.5 Power-on Reset Specification	90
		6.4.6 Temperature Sensor Specification	91
		6.4.7 Comparator Specification	91
		6.4.8 USB PHY Specification	92
	6.5	Flash DC Electrical Characteristics	
7	PAC	KAGE DIMENSIONS	
	7.1	100-pin LQFP (14x14x1.4 mm footprint 2.0 mm)	95
	7.2	64-pin LQFP (7x7x1.4 mm footprint 2.0 mm)	
	7.3	48-pin LQFP (7x7x1.4 mm footprint 2.0 mm)	
8	REVI	SION HISTORY	
•			

NuMicro™ NUC200/220 Series

Datasheet

nuvoTon

4.2 NuMicro™ NUC220 Block Diagram

Figure 4-2 NuMicro™ NUC220 Block Diagram

nuvoTon

0x4010_0000 – 0x4010_3FFF	PS2_BA	PS/2 Interface Control Registers
0x4011_0000 – 0x4011_3FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4012_0000 – 0x4012_3FFF	I2C1_BA	I ² C1 Interface Control Registers
0x4013_0000 – 0x4013_3FFF	SPI2_BA	SPI2 with master/slave function Control Registers
0x4013_4000 - 0x4013_7FFF	SPI3_BA	SPI3 with master/slave function Control Registers
0x4014_0000 - 0x4014_3FFF	PWMB_BA	PWM4/5/6/7 Control Registers
0x4015_0000 – 0x4015_3FFF	UART1_BA	UART1 Control Registers
0x4015_4000 – 0x4015_7FFF	UART2_BA	UART2 Control Registers
0x4019_0000 – 0x4019_3FFF	SC0_BA	SC0 Control Registers
0x4019_4000 – 0x4019_7FFF	SC1_BA	SC1 Control Registers
0x4019_8000 – 0x4019_BFFF	SC2_BA	SC2 Control Registers
0x401A_0000 - 0x401A_3FFF	I2S_BA	I ² S Interface Control Registers
System Controllers Space (0x	E000_E000 ~ 0>	xE000_EFFF)
0xE000_E010 - 0xE000_E0FF	SYST_BA	System Timer Control Registers
0xE000_E100 - 0xE000_ECFF	NVIC_BA	External Interrupt Controller Control Registers
0xE000_ED00 - 0xE000_ED8F	SCS_BA	System Control Registers
	1	

Table 5-1 Address Space Assignments for On-Chip Controllers

5.2.6.1 Exception Model and System Interrupt Map

The following table lists the exception model supported by NuMicro[™] NUC200 Series. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

Exception Name	Vector Number	Priority					
Reset	1	-3					
NMI	2	-2					
Hard Fault	3	Sp C.					
Reserved	4 ~ 10	Reserved					
SVCall	11	Configurable					
Reserved	12 ~ 13	Reserved					
PendSV	14	Configurable					
SysTick	15	Configurable					
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable					

Table 5-2 Exception Model

	Vector Number	Interrupt Number (Bit in Interrupt Registers)	Interrupt Name	Source IP	Interrupt Description
. 125	0 ~ 15	-	-	-	System exceptions
A.	16	0	BOD_INT	Brown-out	Brown-out low voltage detected interrupt
gh the	17	1	WDT_INT	WDT	Watchdog Timer interrupt
	18	2	EINT0	GPIO	External signal interrupt from PB.14 pin
× Cr.	19	3	EINT1	GPIO	External signal interrupt from PB.15 pin
- Carlor - C	20	4	GPAB_INT	GPIO	External signal interrupt from PA[15:0]/PB[13:0]
	21	5	GPCDEF_INT	GPIO	External interrupt from PC[15:0]/PD[15:0]/PE[15:0]/ PF[3:0]
	22	6	PWMA_INT	PWM0~3	PWM0, PWM1, PWM2 and PWM3 interrupt
	23	0 AZ 50	PWMB_INT	PWM4~7	PWM4, PWM5, PWM6 and PWM7 interrupt
	24	8	TMR0_INT	TMR0	Timer 0 interrupt
	25	9	TMR1_INT	TMR1	Timer 1 interrupt
	26	10	TMR2_INT	TMR2	Timer 2 interrupt

ηυνοΤοη

5.2.6.2 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset	Description
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 5-4 Vector Table Format

5.2.6.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

5.2.6.4 Interrupt Source Register Map

Besides the interrupt control registers associated with the NVIC, the NuMicro[™] NUC200 Series also implements some specific control registers to facilitate the interrupt functions, including "interrupt source identification", "NMI source selection" and "interrupt test mode", which are described below.

R: read only	, W: write	only, R/	W: both	read	and write
--------------	------------	----------	---------	------	-----------

Register	Offset	R/W	Description	Reset Value
INT Base Add	lress:		Ch +	
INT_BA = 0x5	000_0300			h
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) interrupt source identity	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) interrupt source identity	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) interrupt source identity	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) interrupt source identity	0xXXXX_XXX
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (GPA/GPB) interrupt source identity	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (GPC/GPD/GPE/GPF) interrupt source identity	0xXXXX_XXX
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (PWMA) interrupt source identity	0xXXXX_XXX
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (PWMB) interrupt source identity	0xXXXX_XXX
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) interrupt source identity	0xXXXX_XXX
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) interrupt source identity	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	R	IRQ10 (TMR2) interrupt source identity	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	R	IRQ11 (TMR3) interrupt source identity	0xXXXX_XXX
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0/UART2) interrupt source identity	0xXXXX_XXX
IRQ13_SRC	INT_BA+0x34	R	IRQ13 (UART1) interrupt source identity	0xXXXX_XXX
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) interrupt source identity	0xXXXX_XXX
IRQ15_SRC	INT_BA+0x3C	R	IRQ15 (SPI1) interrupt source identity	0xXXXX_XXX
IRQ16_SRC	INT_BA+0x40	R	IRQ16 (SPI2) interrupt source identity	0xXXXX_XXX
IRQ17_SRC	INT_BA+0x44	R	IRQ17 (SPI3) interrupt source identity	0xXXXX_XXX
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I ² C0) interrupt source identity	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	R	IRQ19 (I ² C1) interrupt source identity	0xXXXX_XXX
IRQ20_SRC	INT_BA+0x50	R	Reserved	0xXXXX_XXX
IRQ21_SRC	INT_BA+0x54	R	Reserved	0xXXXX_XXX
IRQ22_SRC	INT_BA+0x58	R	IRQ22 (SC0/SC1/SC2) interrupt source identity	0xXXXX_XXXX

June 06, 2012

nuvoTon

5.2.7 System Control (SCS)

The Cortex[™]-M0 status and operating mode control are managed by System Control Registers. Including CPUID, Cortex[™]-M0 interrupt priority and Cortex[™]-M0 power management can be controlled through these system control registers

For more detailed information, please refer to the "ARM[®] Cortex[™]-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

5.3 Clock Controller

5.3.1 Overview

The clock controller generates clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip enters Power-down mode when Cortex[™]-M0 core executes the WFI instruction only if the PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1. After that, chip enters Power-down mode and waits for wake-up interrupt source triggered to exit Power-down mode. In Power-down mode, the clock controller turns off the external 4~24 MHz high speed crystal and internal 22.1184 MHz high speed oscillator to reduce the overall system power consumption.

nuvoTon

Figure 5-4 Clock Generator Global View Diagram

5.3.4 Peripherals Clock

The peripherals clock can be selected as different clock source depends on the clock source select control registers (CLKSEL1, CLKSEL2 and CLKSEL3).

5.3.5 Power-down Mode Clock

When chip enters Power-down mode, system clocks, some clock sources, and some peripheral clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down mode.

The clocks still kept active are listed below:

- Clock Generator
 - Internal 10 kHz low speed oscillator clock
 - External 32.768 kHz low speed crystal clock
- Peripherals Clock (when IP adopt external 32.768 kHz low speed crystal oscillator or 10 kHz low speed oscillator as clock source)

5.10 Timer Controller (TMR)

5.10.1 Overview

The timer controller includes four 32-bit timers, TIMER0~TIMER3, allowing user to easily implement a timer control for applications. The timer can perform functions, such as frequency measurement, event counting, interval measurement, clock generation, and delay timing. The timer can generate an interrupt signal upon time-out, or provide the current value during operation.

5.10.2 Features

- Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter
- Independent clock source for each timer
- Provides one-shot, periodic, toggle and continuous counting operation modes
- Time-out period = (Period of timer clock input) * (8-bit prescale counter + 1) * (24-bit TCMP)
- Maximum counting cycle time = $(1 / T MHz) * (2^8) * (2^{24})$, T is the period of timer clock
- 24-bit up counter value is readable through TDR (Timer Data Register)
- Supports event counting function to count the event from external pin
- Supports external pin capture function for interval measurement
- Supports external pin capture function for reset timer counter
- Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated (TIF set to 1)

June 06, 2012

	TO	0

	Parameter	Register	Parameter	Register	Parameter	Register
921600	x	х	A=0,B=11	0x2B00_0000	A=22	0x3000_0016
460800	A=1	0x0000_0001	A=1,B=15 A=2,B=11	0x2F00_0001 0x2B00_0002	A=46	0x3000_002E
230400	A=4	0x0000_0004	A=4,B=15 A=6,B=11	0x2F00_0004 0x2B00_0006	A=94	0x3000_005E
115200	A=10	0x0000_000A	A=10,B=15 A=14,B=11	0x2F00_000A 0x2B00_000E	A=190	0x3000_00BE
57600	A=22	0x0000_0016	A=22,B=15 A=30,B=11	0x2F00_0016 0x2B00_001E	A=382	0x3000_017E
38400	A=34	0x0000_0022	A=62,B=8 A=46,B=11 A=34,B=15	0x2800_003E 0x2B00_002E 0x2F00_0022	A=574	0x3000_023E
19200	A=70	0x0000_0046	A=126,B=8 A=94,B=11 A=70,B=15	0x2800_007E 0x2B00_005E 0x2F00_0046	A=1150	0x3000_047E
9600	A=142	0x0000_008E	A=254,B=8 A=190,B=11 A=142,B=15	0x2800_00FE 0x2B00_00BE 0x2F00_008E	A=2302	0x3000_08FE
4800	A=286	0x0000_011E	A=510,B=8 A=382,B=11 A=286,B=15	0x2800_01FE 0x2B00_017E 0x2F00_011E	A=4606	0x3000_11FE

Table 5-6 UART Baud Rate Setting Table

The UART0 and UART1 controllers support the auto-flow control function that uses two low-level signals, nCTS (clear-to-send) and nRTS (request-to-send), to control the flow of data transfer between the chip and external devices (e.g. Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts nRTS to external device. When the number of bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR [19:16]), the nRTS is deasserted. The UART sends data out when UART controller detects nCTS is asserted from external device. If a valid asserted nCTS is not detected the UART controller will not send data out.

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (User must set IrDA_EN (UA_FUN_SEL [1]) to enable IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with 1 start bit, 8 data bits, and 1 stop bit. The maximum data rate supports up to 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR Protocol encoder/decoder is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10ms transfer delay between transmission and reception, and this delay feature must be implemented by software.

The alternate function of UART controllers is LIN (Local Interconnect Network) function. The LIN mode is selected by setting the UA_FUN_SEL[1:0] to '01'. In LIN mode, 1 start bit and 8 data bits format with 1 stop bit are required in accordance with the LIN standard.

For NuMicro[™] NUC200 Series, another alternate function of UART controllers is RS-485 9-bit mode, and direction control provided by nRTS pin or can program GPIO (PB.2 for UART0_nRTS and PB.6 for UART1_nRTS) to implement the function by software. The RS-485 mode is selected

by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 transceiver control is implemented using the nRTS control signal from an asynchronous serial port to enable the RS-485 transceiver. In RS-485 mode, many characteristics of the receiving and transmitting are same as UART.

5.13.2 Features

- Full duplex, asynchronous communications
- Separates receive / transmit 64/16/16 bytes (UART0/UART1/UART2) entry FIFO for data payloads
- Supports hardware auto flow control/flow control function (nCTS, nRTS) and programmable nRTS flow control trigger level (UART0 and UART1 support)
- Programmable receiver buffer trigger level
- Supports programmable baud-rate generator for each channel individually
- Supports nCTS wake-up function (UART0 and UART1 support)
- Supports 7-bit receiver buffer time-out detection function
- UART0/UART1 can through DMA channels to receive/transmit data
- Programmable transmitting data delay time between the last stop and the next start bit by setting UA_TOR [DLY] register
- Supports break error, frame error, parity error and receive / transmit buffer overflow detect function
- Fully programmable serial-interface characteristics
 - Programmable data bit length, 5-, 6-, 7-, 8-bit character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - Programmable stop bit length, 1, 1.5, or 2 stop bit generation
- IrDA SIR function mode
 - Supports 3-/16-bit duration for normal mode
- LIN function mode
 - Supports LIN master/slave mode
 - Supports programmable break generation function for transmitter
 - Supports break detect function for receiver
- RS-485 function mode.
 - Supports RS-485 9-bit mode
 - Supports hardware or software direct enable control provided by nRTS pin

5.16 Analog-to-Digital Converter (ADC)

5.16.1 Overview

The NuMicro[™] NUC200 Series contains one 12-bit successive approximation analog-to-digital converters (SAR A/D converter) with 8 input channels. The A/D converter supports three operation modes: single, single-cycle scan and continuous scan mode. The A/D converter can be started by software, PWM Center-aligned trigger and external STADC pin.

5.16.2 Features

- Analog input voltage range: 0~V_{REF}
- 12-bit resolution and 10-bit accuracy is guaranteed
- Up to 8 single-end analog input channels or 4 differential analog input channels
- Up to 760 kSPS conversion rate as ADC clock frequency is 16 MHz (chip working at 5V)
- Three operating modes
 - Single mode: A/D conversion is performed one time on a specified channel
 - Single-cycle scan mode: A/D conversion is performed one cycle on all specified channels with the sequence from the smallest numbered channel to the largest numbered channel
 - Continuous scan mode: A/D converter continuously performs Single-cycle scan mode until software stops A/D conversion
- An A/D conversion can be started by:
 - Writing 1 to ADST bit through software
 - PWM Center-aligned trigger
 - External pin STADC
- Conversion results are held in data registers for each channel with valid and overrun indicators
- Conversion result can be compared with specify value and user can select whether to generate an interrupt when conversion result matches the compare register setting
- Channel 7 supports 3 input sources: external analog voltage, internal Band-gap voltage, and internal temperature sensor output

5.19 Smart Card Host Interface (SC)

5.19.1 Overview

The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and fully compliant with PC/SC Specifications. It also provides status of card insertion/removal.

5.19.2 Features

- ISO7816-3 T=0, T=1 compliant
- EMV2000 compliant
- Supports up to three ISO7816-3 ports
- Separates receive/ transmit 4 byte entry buffer for data payloads
- Programmable transmission clock frequency
- Programmable receiver buffer trigger level
- Programmable guard time selection (11 ETU ~ 266 ETU)
- One 24-bit and two 8-bit time-out counters for Answer to Request (ATR) and waiting times processing
- Supports auto inverse convention function
- Supports transmitter and receiver error retry and error retry number limitation function
- Supports hardware activation sequence process
- Supports hardware warm reset sequence process
- Supports hardware deactivation sequence process
- Supports hardware auto deactivation sequence when detecting the card removal

ηυνοτοη

5.20 FLASH MEMORY CONTROLLER (FMC)

5.20.1 Overview

The NuMicro[™] NUC200 Series has 128/64/32K bytes on-chip embedded Flash for application program memory (APROM) that can be updated through ISP procedure. The In-System-Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip is powered on, Cortex[™]-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in Config0. By the way, the NuMicro[™] NUC200 Series also provides additional DATA Flash for user to store some application dependent data. For 128K bytes APROM device, the data flash is shared with original 128K program memory and its start address is configurable in Config1. For 64K/32K bytes APROM device, the data flash is fixed at 4K.

5.20.2 Features

- Runs up to 50 MHz with zero wait state for continuous address read access
- All embedded flash memory supports 512 bytes page erase
- 128/64/32 KB application program memory (APROM)
- 4 KB In-System-Programming (ISP) loader program memory (LDROM)
- 4KB data flash for 64/32 KB APROM device
- Configurable data flash size for 128KB APROM device
- Configurable or fixed 4 KB data flash with 512 bytes page erase unit
- Supports In-Application-Programming (IAP) to switch code between APROM and LDROM without reset
- In-System-Programming (ISP) to update on-chip Flash

NuMicro[™] NUC200/220 Series Datasheet

nuvoTon

	DADAMETED	CVM	SPECIFICATION			TEST CONDITIONS		
	PARAMETER	5 T WI.	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
		I _{DD8}		2.6		mA	V _{DD} = 3.3V, All IP and PLL disabled, XTAL = 12 MHz	
		I _{DD9}		3.6	Q	mA	V _{DD} = 5.5V, All IP enabled and PLL disabled, XTAL = 4 MHz	
	Operating Current	I _{DD10}		2		mA	V _{DD} = 5.5V, All IP and PLL disabled, XTAL = 4 MHz	
	at 4 MHz	I _{DD11}		2.8		mA	V _{DD} = 3.3V, All IP enabled and PLL disabled, XTAL = 4 MHz	
		I _{DD12}		1.2		mA	V _{DD} = 3.3V, All IP and PLL disabled, XTAL = 4 MHz	
	Operating Current Normal Run Mode at 32.768 kHz	I _{DD13}		141		μA	V _{DD} = 5.5V, All IP enabled and PLL disabled, XTAL = 32.768 kHz	
		I _{DD14}		129		μA	V _{DD} = 5.5V, All IP and PLL disabled, XTAL = 32.768 kHz	
		I _{DD15}		138		μΑ	V _{DD} = 3.3V, All IP enabled and PLL disabled, XTAL = 32.768 kHz	
		I _{DD16}		125		μΑ	V _{DD} = 3.3V, All IP and PLL disabled, XTAL = 32.768 kHz	
	Operating Current	I _{DD17}		125		μΑ	V _{DD} = 5.5V, All IP enabled and PLL disabled, LIRC10 kHz enabled	
	Normal Run Mode at 10 kHz	I _{DD18}		120		μA	V _{DD} = 5.5V, All IP and PLL disabled, LIRC10 kHz enabled	

ηυνοΤοη

		SYM.	SPECIFICATION				
			MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
	Power-down Mode (Deen Sleen Mode)	I _{PWD2}		15	冬	μA	V _{DD} = 3.3V, RTC disabled, When BOD function disabled
	(I _{PWD3}		17	2	μA	V _{DD} = 5.5V, RTC enabled , When BOD function disabled
		I _{PWD4}		17	R.	μA	V _{DD} = 3.3V, RTC enabled , When BOD function disabled
	Input Current PA, PB, PC, PD, PE, PF (Quasi- bidirectional mode)	I _{IN1}		-50	-60	μΑ	$V_{DD} = 5.5V, V_{IN} = 0V \text{ or } V_{IN} = V_{DD}$
	Input Current at nRESET ^[1]	I _{IN2}	-55	-45	-30	μΑ	$V_{DD} = 3.3V, V_{IN} = 0.45V$
	Input Leakage Current PA, PB, PC, PD, PE, PF	I _{LK}	-2	-	+2	μA	$V_{DD} = 5.5 V, 0 < V_{IN} < V_{DD}$
	Logic 1 to 0 Transition Current PA~PF (Quasi-bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μΑ	V _{DD} = 5.5V, V _{IN} <2.0V
	Input Low Voltage PA, PB,	V	-0.3	-	0.8	V	V _{DD} = 4.5V
	PC, PD, PE, PF (TTL input)	V _{IL1}	-0.3	-	0.6	v	V _{DD} = 2.5V
	Input High Voltage PA, PB,	V	2.0	-	V _{DD} +0.2	V	V _{DD} = 5.5V
	PC, PD, PE, PF (TTL input)	V IH1	1.5	-	V _{DD} +0.2	V	V _{DD} =3.0V
	Input Low Voltage PA, PB, PC, PD, PE, PF (Schmitt input)	V_{IL2}	-0.3	-	$0.3V_{DD}$	v	
	Input High Voltage PA, PB, PC, PD, PE, PF (Schmitt input)	V _{IH2}	$0.7V_{DD}$	-	V _{DD} +0.2	v	
	Hysteresis voltage of PA, PB, PC, PD,PE, PF (Schmitt input)	V _{HY}		0.2V _{DD}		v	
	Input Low Voltage XT1 IN ^[*2]	Vo	0	-	0.8	V	V _{DD} = 4.5V
	par _on ronago /	VIL3	0	-	0.4	v	$V_{DD} = 3.0 V$
	Input High Voltage XT1 IN ^[*2]	Maria	3.5	-	V _{DD} +0.2	V	$V_{DD} = 5.5V$
input high voltage XTT_IN	V IH3	2.4	-	V _{DD} +0.2		V _{DD} = 3.0V	
	Input Low Voltage X32_IN ^[*2]	V _{IL4}	0	-	0.4	v	
	Input High Voltage X32_IN ^[*2]	V _{IH4}	1.2		1.8	V	
	Negative going threshold (Schmitt input), nRESET	VILS	-0.5	-	0.2V _{DD} -0.2	V	

nuvoTon

DADAMETED	SYM.	SPECIFICATION						
PARAMETER		MIN.	TYP.	MAX.	UNIT			
Positive going threshold (Schmitt input), nRESET	V _{IHS}	$0.7V_{DD}$	0	V _{DD} +0.5	V			
Source Current PA, PB, PC, PD, PE, PF (Quasi- bidirectional Mode)	I _{SR11}	-300	-370	-450	μΑ	$V_{DD} = 4.5V, V_{S} = 2.4V$		
	I _{SR12}	-50	-70	-90	μΑ	$V_{DD} = 2.7 V, V_{S} = 2.2 V$		
	I _{SR12}	-40	-60	-80	μΑ	$V_{DD} = 2.5 V, V_{S} = 2.0 V$		
Source Current PA, PB, PC, PD, PE, PF (Push-pull Mode)	I _{SR21}	-24	-28	-32	mA	$V_{DD} = 4.5 V, V_{S} = 2.4 V$		
	I _{SR22}	-4	-6	-8	mA	$V_{DD} = 2.7V, V_S = 2.2V$		
	I _{SR22}	-3	-5	-7	mA	$V_{DD} = 2.5V, V_S = 2.0V$		
Sink Current PA, PB, PC, PD, PE, PF (Quasi-bidirectional and Push-pull Mode)	I _{SK1}	10	16	20	mA	$V_{DD} = 4.5V, V_{S} = 0.45V$		
	I _{SK1}	7	10	13	mA	$V_{DD} = 2.7V, V_{S} = 0.45V$		
	I _{SK1}	6	9	12	mA	$V_{DD} = 2.5V, V_S = 0.45V$		
Brown-out Voltage with BOD_VL [1:0] = 00b	V _{BO2.2}	2.1	2.2	2.3	V	S.S.		
Brown-out Voltage with BOD_VL [1:0] = 01b	V _{BO2.7}	2.6	2.7	2.8	V	0		
Brown-out voltage with BOD_VL [1:0] = 10b	V _{BO3.8}	3.5	3.7	3.9	V			
Brown-out Voltage with BOD_VL [1:0] = 11b	V _{BO4.5}	4.2	4.4	4.6	V			
Hysteresis range of BOD voltage	V _{BH}	30	-	150	mV	V _{DD} = 2.5V~5.5V		

Note:

1. nRESET pin is a Schmitt trigger input.

2. Crystal Input is a CMOS input.

3. Pins of PA, PB, PC, PD, PE and PF can source a transition current when they are being externally driven from 1 to 0. In the condition of V_{DD} = 5.5 V, the transition current reaches its maximum value when V_{IN} approximates to 2 V.

nuvoTon

-40℃~+85℃; V _{DD} =2.5 V~5.5 V	-50	-	+50	%
--	-----	---	-----	---

6.4 Analog Characteristics

6.4.1 12-bit SARADC Specification

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
-	Resolution	22	1	12	Bit
DNL	Differential nonlinearity error	Q.	-1~2	-1~4	LSB
INL	Integral nonlinearity error		±2	±4	LSB
EO	Offset error		±1	10	LSB
EG	Gain error (Transfer gain)	-	1	1.005	2
-	Monotonic	G	Guaranteed		
F _{ADC}	ADC clock frequency $(AV_{DD} = 5V/3V)$	-	-	16/8	MHz
Fs	Sample rate	-	-	760	kSPS
V _{DDA}	Supply voltage	3	-	5.5	V
I _{DD}	Supply surront (Avg.)	-	0.5	-	mA
I _{DDA}	Supply current (Avg.)	-	1.5	-	mA
V _{REF}	Reference voltage	3	-	V _{DDA}	V
I _{REF}	Reference current (Avg.)	-	1	-	mA
V _{IN}	Input voltage	0	-	V _{REF}	V

6.4.2 LDO and Power Management Specification

PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE
Input Voltage V _{DD}	2.5		5.5	V	V _{DD} input voltage
Output Voltage	1.62	1.8	1.98	V	V _{DD} > 2.5 V
Operating Temperature	-40	25	85	°C	
Сbр	-	1	-	μF	R _{ESR} = 1 Ω

Note:

1. It is recommended that a 10 uF or higher capacitor and a 100 nF bypass capacitor are connected between V_{DD} and the closest V_{SS} pin of the device.

2. To ensure power stability, a 1 μF or higher capacitor must be connected between LDO_CAP pin and the closest V_{SS} pin of the device.