

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PS2, PWM, WDT
Number of I/O	45
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/nuc220se3an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 GENERAL DESCRIPTION

The NuMicro[™] NUC200 Series 32-bit microcontrollers is embedded with the newest ARM[®] Cortex[™]-M0 core with a cost equivalent to traditional 8-bit MCU for industrial control and applications requiring rich communication interfaces. The NuMicro[™] NUC200 Series includes NUC200 and NUC220 product lines.

The NuMicro[™] NUC200 Advanced Line is embedded with the Cortex[™]-M0 core running up to 50 MHz and features 32K/64K/128K bytes flash, 8K/16K bytes embedded SRAM, and 4 Kbytes loader ROM for the ISP. It is also equipped with plenty of peripheral devices, such as Timers, Watchdog Timer, Window Watchdog Timer, RTC, PDMA with CRC calculation unit, UART, SPI, I²C, I²S, PWM Timer, GPIO, PS/2, Smart Card Host, 12-bit ADC, Analog Comparator, Low Voltage Reset Controller and Brown-out Detector.

The NuMicro[™] NUC220 USB Line with USB 2.0 full-speed function is embedded with the Cortex[™]-M0 core running up to 50 MHz and features 32K/64K/128K bytes flash, 8K/16K bytes embedded SRAM, and 4 Kbytes loader ROM for the ISP. It is also equipped with plenty of peripheral devices, such as Timers, Watchdog Timer, Window Watchdog Timer, RTC, PDMA with CRC calculation unit, UART, SPI, I²C, I²S, PWM Timer, GPIO, PS/2, USB 2.0 FS Device, Smart Card Host, 12-bit ADC, Analog Comparator, Low Voltage Reset Controller and Brown-out Detector.

Product Line	UART	SPI	l ² C	USB	LIN	CAN	PS/2	l ² S	SC
NUC200	•	٠	•				•	٠	• 9
NUC220	•	٠	•	•			•	٠	•

Table 1-1 Connectivity Support Table

nuvoTon

3 PARTS INFORMATION LIST AND PIN CONFIGURATION

3.1 NuMicro™ NUC200/220xxxAN Selection Guide

3.1.1 NuMicro™ NUC200 Advanced Line Selection Guide

Part number			Data	ISP				C	Conne	ctivity			² 0			-			ISP	
	APROM	RAM	Flash	ROM	10	Imer	UART	SPI	I ² C	USB	LIN	CAN	15	sc	Comp.	PWM	ADC	RIC	ICP IAP	Гаскауе
NUC200LC2AN	32 KB	8 KB	4 KB	4 KB	up to 35	4x32-bit	2	1	2	-	-	-	1	2	1	6	7x12-bit	v	v	LQFP48
NUC200LD2AN	64 KB	8 KB	4KB	4 KB	up to 35	4x32-bit	2	1	2	-	-	-	1	2	1	6	7x12-bit	v	v	LQFP48
NUC200LE3AN	128 KB	16 KB	Definable	4 KB	up to 35	4x32-bit	2	1	2	-	-	-	1	2	21	6	7x12-bit	v	v	LQFP48
NUC200SC2AN	32 KB	8 KB	4 KB	4 KB	up to 49	4x32-bit	3	2	2	-	-	-	1	2	2	6	7x12-bit	v	v	LQFP64
NUC200SD2AN	64 KB	8 KB	4KB	4 KB	up to 49	4x32-bit	3	2	2	-	-	-	1	2	2	6	7x12-bit	v	v	LQFP64
NUC200SE3AN	128 KB	16 KB	Definable	4 KB	up to 49	4x32-bit	3	2	2	-	-	-	1	2	2	6	7x12-bit	v	v	LQFP64
NUC200VE3AN	128 KB	16 KB	Definable	4 KB	up to 83	4x32-bit	3	4	2	-	-	-	1	3	2	8	8x12-bit	v	v	LQFP100

3.1.2 NuMicro™ NUC220 USB Line Selection Guide

	Part number	APROM	RAM	Data	ISP Loader	1/0	Timer		C	Conne	ctivity			I ² S	SC	Comp	PWM	ADC	RTC	ISP	Package
				Flash	ROM			UART	SPI	I ² C	USB	LIN	CAN			•••p.				IAP	. uonugo
	NUC220LC2AN	32 KB	8 KB	4 KB	4 KB	up to 31	4x32-bit	2	1	2	1	-	-	1	2	1	4	7x12-bit	v	v	LQFP48
	NUC220LD2AN	64 KB	8 KB	4 KB	4 KB	up to 31	4x32-bit	2	1	2	1	-	-	1	2	1	4	7x12-bit	v	v	LQFP48
	NUC220LE3AN	128 KB	16 KB	Definable	4 KB	up to 31	4x32-bit	2	1	2	1	-	-	1	2	1	4	7x12-bit	v	v	LQFP48
	NUC220SC2AN	32 KB	8 KB	4 KB	4 KB	up to 45	4x32-bit	2	2	2	1	-	-	1	2	2	6	7x12-bit	v	v	LQFP64
	NUC220SD2AN	64 KB	8 KB	8 KB	4 KB	up to 45	4x32-bit	2	2	2	1	-	-	1	2	2	6	7x12-bit	v	v	LQFP64
	NUC220SE3AN	128 KB	16 KB	Definable	4 KB	up to 45	4x32-bit	2	2	2	1	-	-	1	2	2	6	7x12-bit	v	v	LQFP64
é	NUC220VE3AN	128 KB	16 KB	Definable	4 KB	up to 79	4x32-bit	3	4	2	1	-	-	1	3	2	8	8x12-bit	v	v	LQFP100
D.	See. N																				

NuMicro™ NUC200/220 Series

nuvoTon

Figure 3-1 NuMicro[™] NUC200 Series Selection Code

June 06, 2014

NuMicro™ NUC200/220 Series

Datasheet

nuvoTon

		Pin No.			D .	
	LQFP 100-pin	LQFP 64-pin	LQFP 48-pin	Pin Name	Ріп Туре	Description
		40	27	PA.5	I/O	General purpose digital I/O pin.
	76	49	57	ADC5	AI	ADC5 analog input.
				SC1_RST	0	SmartCard1 reset pin.
2		50	20	PA.6	I/O	General purpose digital I/O pin.
	77	50	30	ADC6	AI	ADC6 analog input.
				SC1_CLK	I/O	SmartCard1 clock pin.
				PA.7	I/O	General purpose digital I/O pin.
	70			ADC7	AI	ADC7 analog input.
	70			SC1_CLK	0	SmartCard1 clock pin.
				SPI2_SS1	I/O	2 nd SPI2 slave select pin.
	79	51	39	V _{REF}	AP	Voltage reference input for ADC.
	80	52	40	AV _{DD}	AP	Power supply for internal analog circuit.
	01			PD.0	I/O	General purpose digital I/O pin.
	81			SPI2_SS0	I/O	1 st SPI2 slave select pin.
			PD.1 I/O		I/O	General purpose digital I/O pin.
	82			SPI2_CLK	I/O	SPI2 serial clock pin.
				PD.2	I/O	General purpose digital I/O pin.
	83			SPI2_MISO0	I/O	1 st SPI2 MISO (Master In, Slave Out) pin.
1.00	0.4			PD.3	I/O	General purpose digital I/O pin.
	04			SPI2_MOSI0	I/O	1 st SPI2 MOSI (Master Out, Slave In) pin.
	05			PD.4	I/O	General purpose digital I/O pin.
	60			SPI2_MISO1	I/O	2 nd SPI2 MISO (Master In, Slave Out) pin.
	00			PD.5	I/O	General purpose digital I/O pin.
	00	100		SPI2_MOSI1	I/O	2 nd SPI2 MOSI (Master Out, Slave In) pin.
	SZA	52	44	PC.7	I/O	General purpose digital I/O pin.
	87	53	41	CMP0_N	AI	Comparator0 negative input pin.
		50	n	SC1_CD	I	SmartCard1 card detect pin.
		- 59	6	PC.6	I/O	General purpose digital I/O pin.
	88	54	42	CMP0_P	AI	Comparator0 positive input pin.
			23	SC0_CD	I	SmartCard0 card detect pin.

5 FUNCTIONAL DESCRIPTION

5.1 ARM[®] Cortex[™]-M0 Core

The Cortex[™]-M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex[™]-M profile processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return. Figure 5-1 shows the functional controller of processor.

Figure 5-1 Functional Controller Diagram

The implemented device provides the following components and features:

- A low gate count processor:
 - ♦ ARMv6-M Thumb[®] instruction set
 - Thumb-2 technology
 - ARMv6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - System interface supported with little-endian data accesses
 - Ability to have deterministic, fixed-latency, interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature

5.2.4 System Memory Map

The NuMicro[™] NUC200 Series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in the following table. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip peripheral. The NuMicro[™] NUC200 Series only supports little-endian data format.

Address Space	Token	Controllers
Flash and SRAM Memory Spa	ce	Contra
0x0000_0000 – 0x0001_FFFF	FLASH_BA	FLASH Memory Space (128 KB)
0x2000_0000 – 0x2000_3FFF	SRAM_BA	SRAM Memory Space (16 KB)
AHB Controllers Space (0x500)0_0000 – 0x50	IIF_FFFF)
0x5000_0000 – 0x5000_01FF	GCR_BA	System Global Control Registers
0x5000_0200 – 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 – 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF	GPIO_BA	GPIO Control Registers
0x5000_8000 – 0x5000_BFFF	PDMA_BA	Peripheral DMA Control Registers
0x5000_C000 – 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
APB1 Controllers Space (0x40)00_0000 ~ 0x4	00F_FFFF)
0x4000_4000 – 0x4000_7FFF	WDT_BA	Watchdog Timer Control Registers
0x4000_8000 – 0x4000_BFFF	RTC_BA	Real Time Clock (RTC) Control Register
0x4001_0000 – 0x4001_3FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4002_0000 – 0x4002_3FFF	I2C0_BA	I ² C0 Interface Control Registers
0x4003_0000 – 0x4003_3FFF	SPI0_BA	SPI0 with master/slave function Control Registers
0x4003_4000 – 0x4003_7FFF	SPI1_BA	SPI1 with master/slave function Control Registers
0x4004_0000 – 0x4004_3FFF	PWMA_BA	PWM0/1/2/3 Control Registers
0x4005_0000 – 0x4005_3FFF	UART0_BA	UART0 Control Registers
0x4006_0000 – 0x4006_3FFF	USBD_BA	USB 2.0 FS device Controller Registers
0x400D_0000 - 0x400D_3FFF	ACMP_BA	Analog Comparator Control Registers
0x400E_0000 - 0x400E_FFFF	ADC_BA	Analog-Digital-Converter (ADC) Control Registers
APB2 Controllers Space (0x4(010 0000 ~ 0x4	⊥ ↓01F FFFF)

5.2.5 System Timer (SysTick)

The Cortex[™]-M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0 before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "ARM[®] Cortex[™]-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

ηυνοΤοη

5.2.6.2 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset	Description
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 5-4 Vector Table Format

5.2.6.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

nuvoTon

5.3.2 Clock Generator

The clock generator consists of 5 clock sources as listed below:

- One external 32.768 kHz low speed crystal
- One external 4~24 MHz high speed crystal
- One programmable PLL FOUT (PLL source consists of external 4~24 MHz high speed crystal and internal 22.1184 MHz high speed oscillator)
- One internal 22.1184 MHz high speed oscillator
- One internal 10 kHz low speed oscillator

Figure 5-5 Clock Generator Block Diagram

5.3.4 Peripherals Clock

The peripherals clock can be selected as different clock source depends on the clock source select control registers (CLKSEL1, CLKSEL2 and CLKSEL3).

5.3.5 Power-down Mode Clock

When chip enters Power-down mode, system clocks, some clock sources, and some peripheral clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down mode.

The clocks still kept active are listed below:

- Clock Generator
 - Internal 10 kHz low speed oscillator clock
 - External 32.768 kHz low speed crystal clock
- Peripherals Clock (when IP adopt external 32.768 kHz low speed crystal oscillator or 10 kHz low speed oscillator as clock source)

5.6 I²C Serial Interface Controller (I²C)

5.6.1 Overview

 I^2C is a two-wire, bidirectional serial bus that provides a simple and efficient method of data exchange between devices. The I^2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

Data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to Figure 5-10 for more detailed I²C BUS Timing.

Figure 5-10 I²C Bus Timing

The device's on-chip I²C logic provides a serial interface that meets the I²C bus standard mode specification. The I²C port handles byte transfers autonomously. To enable this port, the bit ENS1 in I2CON should be set to '1'. The I²C H/W interfaces to the I²C bus via two pins: SDA and SCL. Pull-up resistor is needed for I²C operation as the SDA and SCL are open drain pins. When I/O pins are used as I²C ports, user must set the pins function to I²C in advance.

5.9 Serial Peripheral Interface (SPI)

5.9.1 Overview

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bidirection interface. The NuMicro[™] NUC200 series contains up to four sets of SPI controllers performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI controller can be configured as a master or a slave device.

The SPI controller supports the variable serial clock function for special applications and 2-bit Transfer mode to connect 2 off-chip slave devices at the same time. This controller also supports the PDMA function to access the data buffer and also supports Dual I/O Transfer mode.

5.9.2 Features

- Up to four sets of SPI controllers
- Supports Master or Slave mode operation
- Supports 2-bit Transfer mode
- Supports Dual I/O Transfer mode
- Configurable bit length of a transfer word from 8 to 32-bit
- Provides separate 8-layer depth transmit and receive FIFO buffers
- Supports MSB first or LSB first transfer sequence
- Two slave select lines in Master mode
- Supports the byte reorder function
- Supports Byte or Word Suspend mode
- Variable output serial clock frequency in Master mode
- Supports PDMA transfer
- Supports 3-wire, no slave select signal, bi-direction interface

	TO	0

	Parameter	Register	Parameter	Register	Parameter	Register
921600	x	х	A=0,B=11	0x2B00_0000	A=22	0x3000_0016
460800	A=1	0x0000_0001	A=1,B=15 A=2,B=11	0x2F00_0001 0x2B00_0002	A=46	0x3000_002E
230400	A=4	0x0000_0004	A=4,B=15 A=6,B=11	0x2F00_0004 0x2B00_0006	A=94	0x3000_005E
115200	A=10	0x0000_000A	A=10,B=15 A=14,B=11	0x2F00_000A 0x2B00_000E	A=190	0x3000_00BE
57600	A=22	0x0000_0016	A=22,B=15 A=30,B=11	0x2F00_0016 0x2B00_001E	A=382	0x3000_017E
38400	A=34	0x0000_0022	A=62,B=8 A=46,B=11 A=34,B=15	0x2800_003E 0x2B00_002E 0x2F00_0022	A=574	0x3000_023E
19200	A=70	0x0000_0046	A=126,B=8 A=94,B=11 A=70,B=15	0x2800_007E 0x2B00_005E 0x2F00_0046	A=1150	0x3000_047E
9600	A=142	0x0000_008E	A=254,B=8 A=190,B=11 A=142,B=15	0x2800_00FE 0x2B00_00BE 0x2F00_008E	A=2302	0x3000_08FE
4800	A=286	0x0000_011E	A=510,B=8 A=382,B=11 A=286,B=15	0x2800_01FE 0x2B00_017E 0x2F00_011E	A=4606	0x3000_11FE

Table 5-6 UART Baud Rate Setting Table

The UART0 and UART1 controllers support the auto-flow control function that uses two low-level signals, nCTS (clear-to-send) and nRTS (request-to-send), to control the flow of data transfer between the chip and external devices (e.g. Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts nRTS to external device. When the number of bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR [19:16]), the nRTS is deasserted. The UART sends data out when UART controller detects nCTS is asserted from external device. If a valid asserted nCTS is not detected the UART controller will not send data out.

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (User must set IrDA_EN (UA_FUN_SEL [1]) to enable IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with 1 start bit, 8 data bits, and 1 stop bit. The maximum data rate supports up to 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR Protocol encoder/decoder is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10ms transfer delay between transmission and reception, and this delay feature must be implemented by software.

The alternate function of UART controllers is LIN (Local Interconnect Network) function. The LIN mode is selected by setting the UA_FUN_SEL[1:0] to '01'. In LIN mode, 1 start bit and 8 data bits format with 1 stop bit are required in accordance with the LIN standard.

For NuMicro[™] NUC200 Series, another alternate function of UART controllers is RS-485 9-bit mode, and direction control provided by nRTS pin or can program GPIO (PB.2 for UART0_nRTS and PB.6 for UART1_nRTS) to implement the function by software. The RS-485 mode is selected

5.14 PS/2 Device Controller (PS2D)

5.14.1 Overview

PS/2 device controller provides a basic timing control for PS/2 communication. All communication between the device and the host is managed through the PS2_CLK and PS2_DAT pins. Unlike PS/2 keyboard or mouse device controller, the receive/transmit code needs to be translated as meaningful code by firmware. The device controller generates the PS2_CLK signal after receiving a "Request to Send" state, but host has ultimate control over communication. Data of PS2_DAT line sent from the host to the device is read on the rising edge and sent from the device to the host is change after rising edge. A 16 bytes FIFO is used to reduce CPU intervention. Software can select 1 to 16 bytes for a continuous transmission.

5.14.2 Features

- Host communication inhibit and Request to Send state detection
- Reception frame error detection
- Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention
- Double buffer for data reception
- Software override bus

ηυνοτοη

5.20 FLASH MEMORY CONTROLLER (FMC)

5.20.1 Overview

The NuMicro[™] NUC200 Series has 128/64/32K bytes on-chip embedded Flash for application program memory (APROM) that can be updated through ISP procedure. The In-System-Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip is powered on, Cortex[™]-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in Config0. By the way, the NuMicro[™] NUC200 Series also provides additional DATA Flash for user to store some application dependent data. For 128K bytes APROM device, the data flash is shared with original 128K program memory and its start address is configurable in Config1. For 64K/32K bytes APROM device, the data flash is fixed at 4K.

5.20.2 Features

- Runs up to 50 MHz with zero wait state for continuous address read access
- All embedded flash memory supports 512 bytes page erase
- 128/64/32 KB application program memory (APROM)
- 4 KB In-System-Programming (ISP) loader program memory (LDROM)
- 4KB data flash for 64/32 KB APROM device
- Configurable data flash size for 128KB APROM device
- Configurable or fixed 4 KB data flash with 512 bytes page erase unit
- Supports In-Application-Programming (IAP) to switch code between APROM and LDROM without reset
- In-System-Programming (ISP) to update on-chip Flash

ηυνοΤοη

	PARAMETER S		9	SPECIFIC	CATION		
			MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
	Power-down Mode (Deen Sleen Mode)	I _{PWD2}		15	冬	μA	V _{DD} = 3.3V, RTC disabled, When BOD function disabled
	(I _{PWD3}		17	2	μA	V _{DD} = 5.5V, RTC enabled , When BOD function disabled
		I _{PWD4}		17	R.	μA	V _{DD} = 3.3V, RTC enabled , When BOD function disabled
	Input Current PA, PB, PC, PD, PE, PF (Quasi- bidirectional mode)	I _{IN1}		-50	-60	μΑ	$V_{DD} = 5.5V, V_{IN} = 0V \text{ or } V_{IN} = V_{DD}$
	Input Current at nRESET ^[1]	I _{IN2}	-55	-45	-30	μΑ	$V_{DD} = 3.3V, V_{IN} = 0.45V$
	Input Leakage Current PA, PB, PC, PD, PE, PF	I _{LK}	-2	-	+2	μA	$V_{DD} = 5.5V, 0 < V_{IN} < V_{DD}$
	Logic 1 to 0 Transition Current PA~PF (Quasi-bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μΑ	V _{DD} = 5.5V, V _{IN} <2.0V
	Input Low Voltage PA, PB,	V	-0.3	-	0.8	V	V _{DD} = 4.5V
	PC, PD, PE, PF (TTL input)	VIL1	-0.3	-	0.6	V	V _{DD} = 2.5V
	Input High Voltage PA, PB,	V	2.0	-	V _{DD} +0.2	V	V _{DD} = 5.5V
	PC, PD, PE, PF (TTL input)	V IH1	1.5	-	V _{DD} +0.2	V	V _{DD} =3.0V
	Input Low Voltage PA, PB, PC, PD, PE, PF (Schmitt input)	V_{IL2}	-0.3	-	$0.3V_{DD}$	v	
	Input High Voltage PA, PB, PC, PD, PE, PF (Schmitt input)	V _{IH2}	$0.7V_{DD}$	-	V _{DD} +0.2	v	
	Hysteresis voltage of PA, PB, PC, PD,PE, PF (Schmitt input)	V _{HY}		0.2V _{DD}		v	
	Input Low Voltage XT1 IN ^[*2]	V. o	0	-	0.8	V	V _{DD} = 4.5V
	par _on ronago /	VIL3	0	-	0.4	v	$V_{DD} = 3.0 V$
	Input High Voltage XT1 IN ^[*2]	Maria	3.5	-	V _{DD} +0.2	V	$V_{DD} = 5.5V$
	input high voltage xt t_itt	V IH3	2.4	-	V _{DD} +0.2		V _{DD} = 3.0V
	Input Low Voltage X32_IN ^[*2]	V _{IL4}	0	-	0.4	v	
	Input High Voltage X32_IN ^[*2]	V _{IH4}	1.2		1.8	V	
	Negative going threshold (Schmitt input), nRESET	VILS	-0.5	-	0.2V _{DD} -0.2	V	

nuvoTon

6.4.3 Low Voltage Reset Specification

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Operation Voltage	an an	0	-	5.5	V
Quiescent Current	V _{DD} =5.5 V	5-	1	5	μA
Operation Temperature		-40	25	85	°C
	Temperature=25℃	1.7	2.0	2.3	V
Threshold Voltage	Temperature=-40°C	Q	2.4	-	V
	Temperature=85℃	- 4	1.6	B	V
Hysteresis	-	0	0	0	V

6.4.4 Brown-out Detector Specification

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Operation Voltage	-	0	-	5.5	V
Operation Temperature	-	-40	25	85	°C
Quiescent Current	AV_{DD} =5.5 V	-	-	125	μA
	BOD_VL[1:0]=11	4.2	4.4	4.6	V
Brown-out Voltage	BOD_VL [1:0]=10	3.5	3.7	3.9	V
	BOD_VL [1:0]=01	2.6	2.7	2.8	V
	BOD_VL [1:0]=00	2.1	2.2	2.3	V
Hysteresis	-	30	-	150	mV

6.4.5 Power-on Reset Specification

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Operation Temperature	-	-40	25	85	°C
Reset Voltage	V+	-	2	-	V
Quiescent Current	Vin > reset voltage	-	1	-	nA

6.4.6 Temperature Sensor Specification

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT	
Operation Voltage ^[1]		2.5	-	5.5	V	
Operation Temperature	- Va	-40		85	°C	
Current Consumption	X	6.4	2	10.5	μA	
Gain		°Q	-1.76	2	mV/°C	
Offset Voltage	Temp=0 ℃	4	720	-A	mV	

Note: Internal operation voltage comes from internal LDO.

6.4.7 Comparator Specification

	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Operation Voltage AV _{DD}	-	2.5		5.5	V
	Operation Temperature	-	-40	25	85	°C
	Operation Current	V _{DD} =3.0 V	-	20	40	μA
	Input Offset Voltage	-	-	5	15	mV
	Output Swing	-	0.1	-	V _{DDA} -0.1	V
	Input Common Mode Range	-	0.1	-	V _{DDA} -1.2	V
	DC Gain	-	-	70	-	dB
	Propagation Delay	VCM = 1.2 V and VDIFF = 0.1 V	-	200	-	ns
	Comparison Voltage	20 mV at VCM=1 V 50 mV at VCM=0.1 V 50 mV at VCM=V _{DD} -1.2 10 mV for non-hysteresis	10	20	-	mV
	Hysteresis	VCM=0.4 V ~ V _{DD} -1.2 V	-	±10	-	mV
	Wake-up Time	CINP = 1.3 V CINN = 1.2 V	-	-	2	μs

8 **REVISION HISTORY**

Revision	Date	Description
V1.00	June 07, 2012	Initial release

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners

June 06, 2012

Page 98 of 98