E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

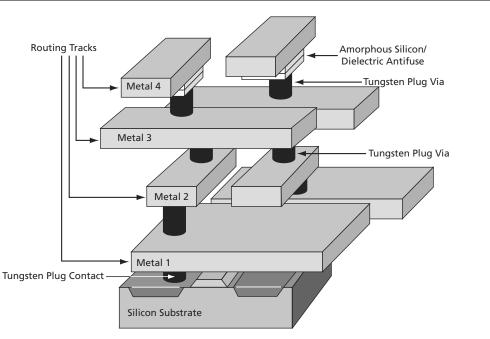
Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	130
Number of Gates	12000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx08a-2pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description


Introduction

The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 μm / 0.25 μm CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing time-to-market.

SX-A Family Architecture

The SX-A family's device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

Figure 1-1 • SX-A Family Interconnect Elements

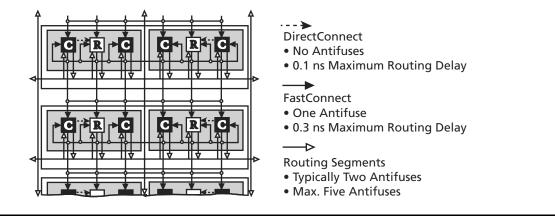


Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

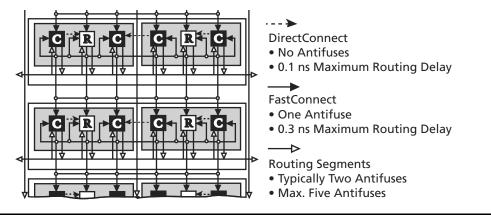


Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications.

Function	Description
Input Buffer Threshold Selections	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Output Buffer	 "Hot-Swap" Capability (3.3 V PCI is not hot swappable) I/O on an unpowered device does not sink current Can be used for "cold-sparing" Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device V _{CCA} and V _{CCI} can be powered in any order

Table 1-2 • I/O Features

Table 1-3 • I/O Characteristics for All I/O Configurations

	Hot Swappable	Slew Rate Control	Power-Up Resistor
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μs	5 V/ms	2.5 V/ms	0.5 V/ms	0.5 V/ms 0.25 V/ms 0.1 V/m		0.025 V/ms
Units	μs	μs	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

Pin Description

CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption.

For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer builtin programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating).

QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating).

These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only.

GND Ground

Low supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software.

NC No Connection

This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device.

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete.

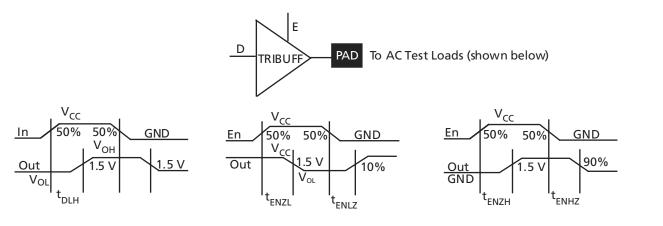
TMS Test Mode Select

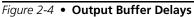
The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset Pin** is not selected in Designer.

V_{CCI} Supply Voltage


Supply voltage for I/Os. See Table 2-2 on page 2-1. All V_{CCI} power pins in the device should be connected.


V_{CCA} Supply Voltage

Supply voltage for array. See Table 2-2 on page 2-1. All V_{CCA} power pins in the device should be connected.

Output Buffer Delays

AC Test Loads

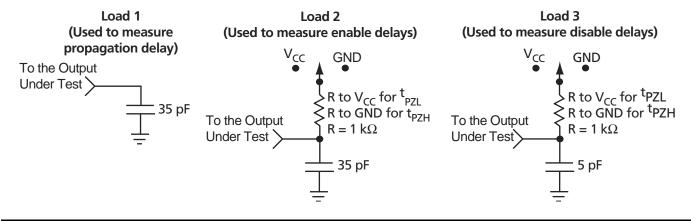


Figure 2-5 • AC Test Loads

Timing Characteristics

Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

 Table 2-13
 Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, V_{CCA} = 2.25 V)

	Junction Temperature (T _J)											
V _{CCA}	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C					
2.250 V	0.79	0.80	0.87	0.89	1.00	1.04	1.14					
2.500 V	0.74	0.75	0.82	0.83	0.94	0.97	1.07					
2.750 V	0.68	0.69	0.75	0.77	0.87	0.90	0.99					

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 Speed		-1 Speed		Std.	Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	itput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{2}	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ²	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-27 A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	$x = 2.25 \text{ V}, \text{ V}_{\text{CCI}} = 4.75 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$
--	--

		-3 Speed ¹ -2 Speed -1 Speed Std. Speed				–F S						
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.5		2.8		3.3		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^{3}	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.7		7.7		8.7		10.2		14.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d _{TLH} ³	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-30 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
-----------------------------------	---

		-3 Speed*		-2 Speed		-1 Speed		Std. Speed		I –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks										<u> </u>
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPVVL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.6	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.4		2.7		3.2		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.3		2.7		3.1		3.6		5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.5		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{rckl}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.1	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.9		1.0		1.2		1.4		1.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.4		1.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-33 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	$V_{CCA} = 2.25 V, V_{CCI} = 3.0$	V, T _J = 70°C)
-----------------------------------	-----------------------------------	---------------------------

		-3 Speed ¹ -2 Speed -1 Speed Std. Spe					Speed	–F S	peed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.0		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.0		2.3		2.6		3.1		4.3	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{3}	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.6		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		2.6		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		9.0		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.6		3.0		3.4		4.0		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.6		3.0		3.3		3.9		5.5	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^3	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-35 A545X72A Timing Characteristics (Continued)

		-3 Sp	peed ¹	-2 S	peed	–1 S	peed	Std. 9	5peed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.0		1.2		1.6	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.7		0.8		0.9		1.3	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-41 • A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4.75 V, T _J = 70°C)
-----------------------------------	--

		-3 Speed ¹		-2 S	peed	–1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²									•		
t _{DLH}	Data-to-Pad Low to High		2.7		3.1		3.5		4.1		5.7	ns
t _{DHL}	Data-to-Pad High to Low		3.4		3.9		4.4		5.1		7.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.7		3.1		3.5		4.1		5.7	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.4		3.9		4.4		5.1		7.2	ns
d _{TLH} ³	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d _{THL} ³	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴	•								•		
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.1		3.7		5.1	ns
t _{DHL}	Data-to-Pad High to Low		3.1		3.5		4.0		4.7		6.6	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.4		8.5		9.7		11.4		15.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.1		3.7		5.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.1		3.5		4.0		4.7		6.6	ns
d _{TLH} ³	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d_{THL}^{3}	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

176-Pin TQFP

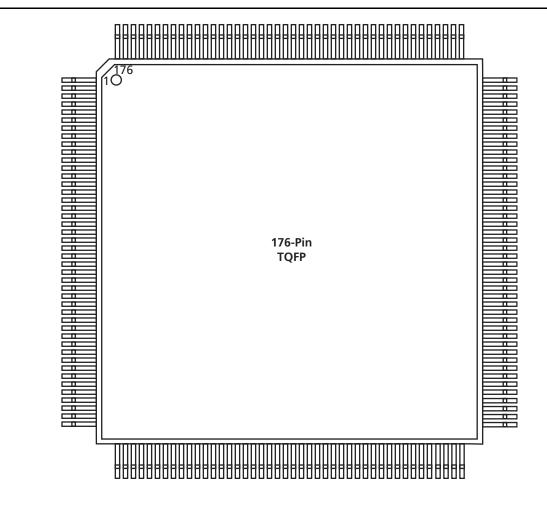


Figure 3-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pin FBGA					
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function			
P15	I/O	I/O	I/O			
P16	I/O	I/O	I/O			
R1	I/O	I/O	I/O			
R2	GND	GND	GND			
R3	I/O	I/O	I/O			
R4	NC	I/O	I/O			
R5	I/O	I/O	I/O			
R6	I/O	I/O	I/O			
R7	I/O	I/O	I/O			
R8	I/O	I/O	I/O			
R9	HCLK	HCLK	HCLK			
R10	I/O	I/O	QCLKB			
R11	I/O	I/O	I/O			
R12	I/O	I/O	I/O			
R13	I/O	I/O	I/O			
R14	I/O	I/O	I/O			
R15	GND	GND	GND			
R16	GND	GND	GND			
T1	GND	GND	GND			
T2	I/O	I/O	I/O			
T3	I/O	I/O	I/O			
T4	NC	I/O	I/O			
T5	I/O	I/O	I/O			
T6	I/O	I/O	I/O			
T7	I/O	I/O	I/O			
T8	I/O	I/O	I/O			
Т9	V _{CCA}	V _{CCA}	V _{CCA}			
T10	I/O	I/O	I/O			
T11	I/O	I/O	I/O			
T12	NC	I/O	I/O			
T13	I/O	I/O	I/O			
T14	I/O	I/O	I/O			
T15	TDO, I/O	TDO, I/O	TDO, I/O			
T16	GND	GND	GND			

	484-Pin FBG	Α	
Pin Number	A54SX32A Function	A54SX72A Function	Nu
K10	GND	GND	
K11	GND	GND	Ν
K12	GND	GND	Ν
K13	GND	GND	Ν
K14	GND	GND	Ν
K15	GND	GND	Ν
K16	GND	GND	Ν
K17	GND	GND	Ν
K22	I/O	I/O	Ν
K23	I/O	I/O	Ν
K24	NC*	NC	Ν
K25	NC*	I/O	Ν
K26	NC*	I/O	Ν
L1	NC*	I/O	Ν
L2	NC*	ΙΟ	
L3	I/O	I/O	
L4	I/O	I/O	
L5	I/O	I/O	
L10	GND	GND	
L11	GND	GND	1
L12	GND	GND	1
L13	GND	GND	1
L14	GND	GND	1
L15	GND	GND	1
L16	GND	GND	1
L17	GND	GND	1
L22	I/O	I/O	1
L23	I/O	I/O	1
L24	I/O	I/O	1
L25	I/O	I/O	1
L26	I/O	I/O	1
M1	NC*	NC	1
M2	I/O	I/O	
M3	I/O	I/O	
M4	I/O	I/O	

	484-Pin FBGA					
Pin Number	A54SX32A Function	A54SX72A Function				
M5	I/O	I/O				
M10	GND	GND				
M11	GND	GND				
M12	GND	GND				
M13	GND	GND				
M14	GND	GND				
M15	GND	GND				
M16	GND	GND				
M17	GND	GND				
M22	I/O	I/O				
M23	I/O	I/O				
M24	I/O	I/O				
M25	NC*	I/O				
M26	NC*	I/O				
N1	I/O	I/O				
N2	V _{CCI}	V _{CCI}				
N3	I/O	I/O				
N4	I/O	I/O				
N5	I/O	I/O				
N10	GND	GND				
N11	GND	GND				
N12	GND	GND				
N13	GND	GND				
N14	GND	GND				
N15	GND	GND				
N16	GND	GND				
N17	GND	GND				
N22	V _{CCA}	V _{CCA}				
N23	I/O	I/O				
N24	I/O	I/O				
N25	I/O	I/O				
N26	NC*	NC				
P1	NC*	I/O				
P2	NC*	I/O				
P3	I/O	I/O				

484-Pin FBGA					
Pin Number	A54SX32A Function	A54SX72A Function			
P4	I/O	I/O			
P5	V _{CCA}	V _{CCA}			
P10	GND	GND			
P11	GND	GND			
P12	GND	GND			
P13	GND	GND			
P14	GND	GND			
P15	GND	GND			
P16	GND	GND			
P17	GND	GND			
P22	I/O	ΙΟ			
P23	I/O	ΙΟ			
P24	V _{CCI}	V _{CCI}			
P25	I/O	I/O			
P26	I/O	I/O			
R1	NC*	I/O			
R2	NC*	I/O			
R3	I/O	I/O			
R4	I/O	I/O			
R5	TRST, I/O	TRST, I/O			
R10	GND	GND			
R11	GND	GND			
R12	GND	GND			
R13	GND	GND			
R14	GND	GND			
R15	GND	GND			
R16	GND	GND			
R17	GND	GND			
R22	I/O	I/O			
R23	I/O	I/O			
R24	I/O	I/O			
R25	NC*	I/O			
R26	NC*	I/O			
T1	NC*	I/O			
T2	NC*	I/O			

Note: *These pins must be left floating on the A54SX32A device.

Actel [®]	
SX-A Family FPGAs	

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
T3	I/O	I/O		
T4	I/O	I/O		
T5	I/O	I/O		
T10	GND	GND		
T11	GND	GND		
T12	GND	GND		
T13	GND	GND		
T14	GND	GND		
T15	GND	GND		
T16	GND	GND		
T17	GND	GND		
T22	I/O	I/O		
T23	I/O	I/O		
T24	I/O	I/O		
T25	NC*	I/O		
T26	NC*	I/O		
U1	I/O	I/O		
U2	V _{CCI}	V _{CCI}		
U3	I/O	I/O		
U4	I/O	I/O		
U5	I/O	I/O		
U10	GND	GND		
U11	GND	GND		
U12	GND	GND		
U13	GND	GND		
U14	GND	GND		
U15	GND	GND		
U16	GND	GND		
U17	GND	GND		
U22	I/O	I/O		
U23	I/O	I/O		
U24	I/O	I/O		
U25	V _{CCI}	V _{CCI}		
U26	I/O	I/O		
V1	NC*	I/O		

484-Pin FBGA					
Pin Number	A54SX32A Function	A54SX72A Function			
V2	NC*	I/O			
V3	I/O	I/O			
V4	I/O	I/O			
V5	I/O	I/O			
V22	V _{CCA}	V _{CCA}			
V23	I/O	I/O			
V24	I/O	I/O			
V25	NC*	I/O			
V26	NC*	I/O			
W1	I/O	I/O			
W2	I/O	I/O			
W3	I/O	I/O			
W4	I/O	I/O			
W5	I/O	I/O			
W22	I/O	I/O			
W23	V _{CCA}	V _{CCA}			
W24	I/O	I/O			
W25	NC*	I/O			
W26	NC*	I/O			
Y1	NC*	I/O			
Y2	NC*	I/O			
Y3	I/O	I/O			
Y4	I/O	I/O			
Y5	NC*	I/O			
Y22	I/O	I/O			
Y23	I/O	I/O			
Y24	V _{CCI}	V _{CCI}			
Y25	I/O	I/O			
Y26	I/O	I/O			

Note: *These pins must be left floating on the A54SX32A device.

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.