

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Details	
Product Status	Active
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	113
Number of Gates	12000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx08a-2tqg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offering

Package	A54SX08A	A54SX16A	A54SX32A	A54SX72A
PQ208	C,I,A,M	C,I,A,M	C,I,A,M	C,I,A,M
TQ100	C,I,A,M	C,I,A,M	C,I,A,M	
TQ144	C,I,A,M	C,I,A,M	C,I,A,M	
TQ176			C,I,M	
BG329			C,I,M	
FG144	C,I,A,M	C,I,A,M	C,I,A,M	
FG256		C,I,A,M	C,I,A,M	C,I,A,M
FG484			C,I,M	C,I,A,M
CQ208			C,M,B	C,M,B
CQ256			C,M,B	C,M,B

Notes:

1. C = Commercial

- 2. I = Industrial
- 3. A = Automotive
- 4. M = Military
- 5. B = MIL-STD-883 Class B

6. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.

7. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Speed Grade and Temperature Grade Matrix

	F	Std	-1	-2	-3
Commercial	✓	1	1	1	Discontinued
Industrial		1	1	1	Discontinued
Automotive		1			
Military		1	1		
MIL-STD-883B		1	1		

Notes:

1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.

2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Contact your Actel Sales representative for more information on availability.

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using $0.22 \,\mu/0.25 \,\mu$ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation of* Security in Actel Antifuse FPGAs application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, *Actel eX, SX-A, and RTSX-S I/Os*.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input.

Each I/O module has an available power-up resistor of approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os.* Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units	
V _{CCI}	DC Supply Voltage for I/Os	-0.3 to +6.0	V	
V _{CCA}	DC Supply Voltage for Arrays	-0.3 to +3.0	V	
VI	Input Voltage	-0.5 to +5.75	V	
V _O	Output Voltage	–0.5 to + V _{CCI} + 0.5	V	
T _{STG}	Storage Temperature	-65 to +150	°C	

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions".

Table 2-2 Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range	0 to +70	-40 to +85	°C
2.5 V Power Supply Range (V _{CCA} and V _{CCI})	2.25 to 2.75	2.25 to 2.75	V
3.3 V Power Supply Range (V _{CCI})	3.0 to 3.6	3.0 to 3.6	V
5 V Power Supply Range (V _{CCI})	4.75 to 5.25	4.75 to 5.25	V

Typical SX-A Standby Current

Table 2-3 • Typical Standby Current for SX-A at 25°C with $V_{CCA} = 2.5 V$

Product	V _{CCI} = 2.5 V	V _{CCI} = 3.3 V	V _{CCI} = 5 V
A54SX08A	0.8 mA	1.0 mA	2.9 mA
A54SX16A	0.8 mA	0.8 mA 1.0 mA	
A54SX32A	0.9 mA	1.0 mA	3.0 mA
A54SX72A	3.6 mA	3.8 mA	4.5 mA

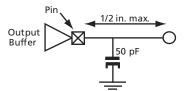
Table 2-4 • Supply Voltages

V _{CCA}	V _{CCI} *	Maximum Input Tolerance	Maximum Output Drive
2. 5 V	2.5 V	5.75 V	2.7 V
2.5 V	3.3 V	5.75 V	3.6 V
2.5 V	5 V	5.75 V	5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.

Symbol	Parameter	Parameter Condition Min.				
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{-1}$	-44	-	mA	
		$1.4 \le V_{OUT} < 2.4^{-1, 2}$	(-44 + (V _{OUT} - 1.4)/0.024)	_	mA	
		3.1 < V _{OUT} < V _{CCI} ^{1, 3}	-	EQ 2-1 on page 2-5	-	
	(Test Point)	V _{OUT} = 3.1 ³	142 95 -			
I _{OL(AC)}	Switching Current Low	$V_{OUT} \ge 2.2^{-1}$	95	-	mA	
		2.2 > V _{OUT} > 0.55 ¹	(V _{OUT} /0.023)	_	mA	
	Switching Current Low (Test Point)	0.71 > V _{OUT} > 0 ^{1, 3}	-	EQ 2-2 on page 2-5	-	
	(Test Point)	V _{OUT} = 0.71 ³	-	206	mA	
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015	-	mA	
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load 4	1	5	V/ns	
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load 4	1	5	V/ns	

Table 2-8 • AC Specifications (5 V PCI Operation)


Notes:

1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Where:

- C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF
- C_{EQSM} = Equivalent capacitance of sequential modules (R-Cells) in pF
- C_{EQI} = Equivalent capacitance of input buffers in pF
- C_{EQO} = Equivalent capacitance of output buffers in pF
- C_{EQCR} = Equivalent capacitance of CLKA/B in pF
- C_{EQHV} = Variable capacitance of HCLK in pF
- C_{EQHF} = Fixed capacitance of HCLK in pF
 - C_{L =} Output lead capacitance in pF
 - f_m = Average logic module switching rate in MHz
 - $f_n =$ Average input buffer switching rate in MHz
 - f_p = Average output buffer switching rate in MHz
 - $f_{a1} =$ Average CLKA rate in MHz
 - $f_{\alpha 2}$ = Average CLKB rate in MHz
 - f_{s1} = Average HCLK rate in MHz
 - m = Number of logic modules switching at fm
 - n = Number of input buffers switching at fn
 - p = Number of output buffers switching at fp
 - q₁ = Number of clock loads on CLKA
 - q₂ = Number of clock loads on CLKB
 - $r_1 =$ Fixed capacitance due to CLKA
 - r₂ = Fixed capacitance due to CLKB
 - s1 = Number of clock loads on HCLK
 - x = Number of I/Os at logic low
 - y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

Thermal Characteristics

Introduction

The temperature variable in Actel Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction to be higher than the ambient, case, or board temperatures. EQ 2-9 and EQ 2-10 give the relationship between thermal resistance, temperature gradient and power.

 $\theta_{JA} = \frac{T_J - T_A}{P}$ EQ 2-9 $\theta_{JA} = \frac{T_C - T_A}{P}$

EQ 2-10

Where:

- θ_{JA} = Junction-to-air thermal resistance
- θ_{JC} = Junction-to-case thermal resistance
- T_J = Junction temperature
- T_A = Ambient temperature
- T_C = Ambient temperature
- P = total power dissipated by the device

Table 2-12 • Package Thermal Characteristics

			AL ^θ			
Package Type	Pin Count	οι ^θ	Still Air	1.0 m/s 200 ft./min.	2.5 m/s 500 ft./min.	Units
Thin Quad Flat Pack (TQFP)	100	14	33.5	27.4	25	°C/W
Thin Quad Flat Pack (TQFP)	144	11	33.5	28	25.7	°C/W
Thin Quad Flat Pack (TQFP)	176	11	24.7	19.9	18	°C/W
Plastic Quad Flat Pack (PQFP) ¹	208	8	26.1	22.5	20.8	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader ²	208	3.8	16.2	13.3	11.9	°C/W
Plastic Ball Grid Array (PBGA)	329	3	17.1	13.8	12.8	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	26.9	22.9	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	18	14.7	13.6	°C/W

Notes:

1. The A54SX08A PQ208 has no heat spreader.

2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.

Table 2-18 • A54SX08A Timing Characteristics

		-2 S	peed	-1 S	peed	Std. S	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMC	DS Output Module Timing ^{1,2}	•								
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 5	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	itput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{2}	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ²	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-21 A54SX16A Timing Characteristics (Continued)

(Worst-Case Commercial C	Conditions	V	///20// 1	[. — 70°C)
(worst-case commercial c	Lonunuons,	$V C C \Delta = Z Z J V$	v (() – 5.0 v, i	1 = 70 C

		-3 S	beed ¹	–2 S	peed	–1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.7		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.7		0.8		0.9		1.1		1.5	ns
Input Modu	le Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		0.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-31 A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4.7	′5 V, T _J = 70°C)
-----------------------------------	---	------------------------------

		-3 Sp	beed*	-2 S	-2 Speed -1 Speed Std. Spee			Speed	-F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks		1								1
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.7		1.9		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks	4										<u>.</u>
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.5		2.8		3.3		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.8		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.2	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-35 • A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 S	beed ¹	-2 S	peed	-1 S	–1 Speed		Speed	ed –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ²											4
t _{PD}	Internal Array Module		1.0		1.1		1.3		1.5		2.0	ns
Predicted R	outing Delays ³											-
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.7		0.8		0.9		1.3	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns
R-Cell Timir	ng											4
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.1		1.5	ns
t _{CLR}	Asynchronous Clear-to-Q		0.6		0.7		0.7		0.9		1.2	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.8		1.0		1.4	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.3		1.5		1.7		2.0		2.8		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.5		1.7		2.0		2.3		3.2		ns
Input Modu	le Propagation Delays											•
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.6		0.7		0.8		0.9		1.3	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		0.8		1.0		1.1		1.3		1.7	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.8		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.2		1.3		1.5		2.1	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions	$V_{CCA} = 2.25 V, V_{CCI}$	= 2.25 V, T _J = 70°C)
-----------------------------------	-----------------------------	----------------------------------

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{hcksw}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.3		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.0		4.7		6.6	ns
t _{RPVVH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPVVL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{rcksw}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.8		2.1		2.4		2.8		3.9	ns
t _{rcksw}	Maximum Skew (100% Load)		1.8		2.1		2.4		2.8		3.9	ns
Quadrant A	Array Clock Networks	•		-		-				-		-
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.6		3.0		3.3		3.9		5.5	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.2		5.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-37 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-3 Speed*		-2 S	-2 Speed		–1 Speed		Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-40 A54SX72A Timing Characteristics

(Worst-Case Commercial	Conditions Vaca -	- 2 25 V V	$30V T_{1} - 70^{\circ}C$
(worst-case commercial	Conditions VCCA -	- 2.23 v, v _{CCl} –	3.0 v, 1 = 70 C)

		-3 Sp	beed ¹	-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.3		2.7		3.0		3.6		5.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.0		3.6		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		3.2		3.7		4.2		5.0		6.9	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.7		4.2		4.9		6.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.3		11.9		13.5		15.8		22.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.2		3.7		4.2		5.0		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.7		4.2		4.9		6.9	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

208-Pin PQFP				208-Pin PQFP					
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function
71	I/O	I/O	I/O	I/O	106	NC	I/O	I/O	I/O
72	I/O	I/O	I/O	I/O	107	I/O	ΙΟ	I/O	I/O
73	NC	I/O	I/O	I/O	108	NC	I/O	I/O	I/O
74	I/O	I/O	I/O	QCLKA	109	I/O	ΙΟ	I/O	I/O
75	NC	I/O	I/O	I/O	110	I/O	ΙΟ	I/O	I/O
76	PRB, I/O	PRB, I/O	PRB, I/O	PRB,I/O	111	I/O	ΙΟ	I/O	I/O
77	GND	GND	GND	GND	112	I/O	ΙΟ	I/O	I/O
78	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	113	I/O	ΙΟ	I/O	I/O
79	GND	GND	GND	GND	114	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}
80	NC	NC	NC	NC	115	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}
81	I/O	I/O	I/O	I/O	116	NC	I/O	I/O	GND
82	HCLK	HCLK	HCLK	HCLK	117	I/O	I/O	I/O	V _{CCA}
83	I/O	I/O	I/O	V _{CCI}	118	I/O	I/O	I/O	I/O
84	I/O	I/O	I/O	QCLKB	119	NC	I/O	I/O	I/O
85	NC	I/O	I/O	I/O	120	I/O	I/O	I/O	I/O
86	I/O	I/O	I/O	I/O	121	I/O	I/O	I/O	I/O
87	I/O	I/O	I/O	I/O	122	NC	I/O	I/O	I/O
88	NC	I/O	I/O	I/O	123	I/O	I/O	I/O	I/O
89	I/O	I/O	I/O	I/O	124	I/O	I/O	I/O	I/O
90	I/O	I/O	I/O	I/O	125	NC	I/O	I/O	I/O
91	NC	I/O	I/O	I/O	126	I/O	I/O	I/O	I/O
92	I/O	I/O	I/O	I/O	127	I/O	I/O	I/O	I/O
93	I/O	I/O	I/O	I/O	128	I/O	I/O	I/O	I/O
94	NC	I/O	I/O	I/O	129	GND	GND	GND	GND
95	I/O	I/O	I/O	I/O	130	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}
96	I/O	I/O	I/O	I/O	131	GND	GND	GND	GND
97	NC	I/O	I/O	I/O	132	NC	NC	NC	I/O
98	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	133	I/O	I/O	I/O	I/O
99	I/O	I/O	I/O	I/O	134	I/O	I/O	I/O	I/O
100	I/O	I/O	I/O	I/O	135	NC	I/O	I/O	I/O
101	I/O	I/O	I/O	I/O	136	I/O	I/O	I/O	I/O
102	I/O	I/O	I/O	I/O	137	I/O	I/O	I/O	I/O
103	TDO, I/O	TDO, I/O	TDO, I/O	TDO, I/O	138	NC	I/O	I/O	I/O
104	I/O	I/O	I/O	I/O	139	I/O	I/O	I/O	I/O
105	GND	GND	GND	GND	140	I/O	I/O	I/O	I/O

100-Pin TQFP

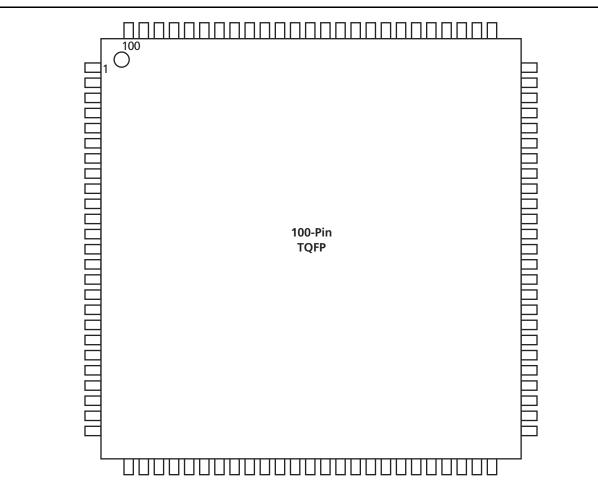


Figure 3-2 • 100-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

144-Pin TQFP

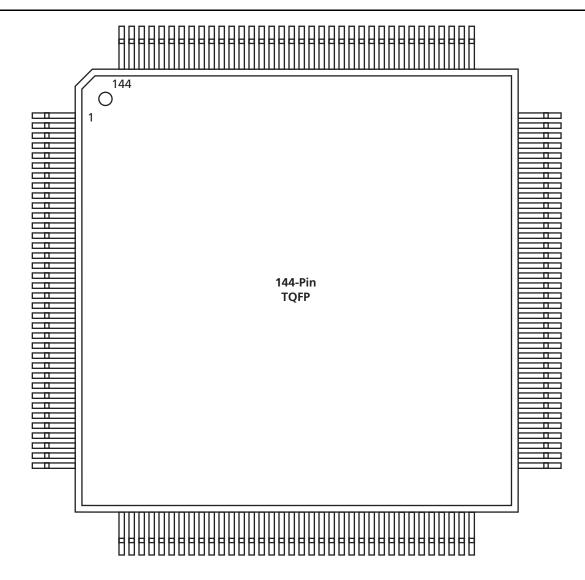


Figure 3-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

176-Pin TQFP					
Pin Number	A54SX32A Function				
145	I/O				
146	I/O				
147	I/O				
148	I/O				
149	I/O				
150	I/O				
151	I/O				
152	CLKA				
153	CLKB				
154	NC				
155	GND				
156	V _{CCA}				
157	PRA, I/O				
158	I/O				
159	I/O				
160	I/O				
161	I/O				
162	I/O				
163	I/O				
164	I/O				
165	I/O				
166	I/O				
167	I/O				
168	I/O				
169	V _{CCI}				
170	I/O				
171	I/O				
172	I/O				
173	I/O				
174	I/O				
175	I/O				
176	TCK, I/O				

329-Pin PBGA		329-Pi	n PBGA	329-Pi	329-Pin PBGA		in PBGA
Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function
D11	V _{CCA}	H1	I/O	L14	GND	P12	GND
D12	NC	H2	I/O	L20	NC	P13	GND
D13	I/O	H3	I/O	L21	I/O	P14	GND
D14	I/O	H4	I/O	L22	I/O	P20	I/O
D15	I/O	H20	V _{CCA}	L23	NC	P21	I/O
D16	I/O	H21	I/O	M1	I/O	P22	I/O
D17	I/O	H22	I/O	M2	I/O	P23	I/O
D18	I/O	H23	I/O	M3	I/O	R1	I/O
D19	I/O	J1	NC	M4	V _{CCA}	R2	I/O
D20	I/O	J2	I/O	M10	GND	R3	I/O
D21	I/O	J3	I/O	M11	GND	R4	I/O
D22	I/O	J4	I/O	M12	GND	R20	I/O
D23	I/O	J20	I/O	M13	GND	R21	I/O
E1	V _{CCI}	J21	I/O	M14	GND	R22	I/O
E2	I/O	J22	I/O	M20	V _{CCA}	R23	I/O
E3	I/O	J23	I/O	M21	I/O	T1	I/O
E4	I/O	K1	I/O	M22	I/O	T2	I/O
E20	I/O	К2	I/O	M23	V _{CCI}	T3	I/O
E21	I/O	К3	I/O	N1	I/O	T4	I/O
E22	I/O	K4	I/O	N2	TRST, I/O	T20	I/O
E23	I/O	K10	GND	N3	I/O	T21	I/O
F1	I/O	K11	GND	N4	I/O	T22	I/O
F2	TMS	K12	GND	N10	GND	T23	I/O
F3	I/O	K13	GND	N11	GND	U1	I/O
F4	I/O	K14	GND	N12	GND	U2	I/O
F20	I/O	K20	I/O	N13	GND	U3	V _{CCA}
F21	I/O	K21	I/O	N14	GND	U4	I/O
F22	I/O	K22	I/O	N20	NC	U20	I/O
F23	I/O	K23	I/O	N21	I/O	U21	V _{CCA}
G1	I/O	L1	I/O	N22	I/O	U22	I/O
G2	I/O	L2	I/O	N23	I/O	U23	I/O
G3	I/O	L3	I/O	P1	I/O	V1	V _{CCI}
G4	I/O	L4	NC	P2	I/O	V2	I/O
G20	I/O	L10	GND	РЗ	I/O	V3	I/O
G21	I/O	L11	GND	P4	I/O	V4	I/O
G22	I/O	L12	GND	P10	GND	V20	I/O
G23	GND	L13	GND	P11	GND	V21	I/O

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.