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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 768

Number of Logic Elements/Cells -

Total RAM Bits -

Number of I/O 81

Number of Gates 12000

Voltage - Supply 2.25V ~ 5.25V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 70°C (TA)

Package / Case 100-LQFP

Supplier Device Package 100-TQFP (14x14)
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SX-A Family FPGAs
Figure 1-9 • SX-A QCLK Architecture

Figure 1-10 • A54SX72A Routed Clock and QCLK Buffer
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SX-A Family FPGAs
Theta-JA
Junction-to-ambient thermal resistance (θJA) is determined under standard conditions specified by JESD-51 series but
has little relevance in actual performance of the product in real application. It should be employed with caution but is
useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA
package at still air is as follows. i.e.: 

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is
higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or
the airflow inside the system must be increased.

Theta-JC
Junction-to-case thermal resistance (θJC) measures the ability of a device to dissipate heat from the surface of the chip
to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only
applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power
consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required. 

Calculation for Heat Sink
For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is
3.00 W. The user-dependent data TJ and TA are given as follows:

From the datasheet:  

EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the
device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated
by:

EQ 2-13

θJA = 17.1°C/W is taken from Table 2-12 on page 2-11

TA = 125°C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power Max Junction Temp Max. Ambient Temp–
θJA

------------------------------------------------------------------------------------------------------------ 150°C 125°C–
17.1°C/W

---------------------------------------- 1.46 W= = =

TJ = 110°C

TA = 70°C

θJA = 18.0°C/W

θJC = 3.2 °C/W

P Max Junction Temp Max. Ambient Temp–
θJA

------------------------------------------------------------------------------------------------------------ 110°C 70°C–
18.0°C/W

------------------------------------ 2.22 W= = =

θJA
Max Junction Temp Max. Ambient Temp–

P
------------------------------------------------------------------------------------------------------------ 110°C 70°C–

3.00 W
------------------------------------ 13.33°C/W= = =
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SX-A Family FPGAs
SX-A Timing Model

Sample Path Calculations

Hardwired Clock Routed Clock

Note: *Values shown for A54SX72A, –2, worst-case commercial conditions at 5 V PCI with standard place-and-route.
Figure 2-3 • SX-A Timing Model
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SX-A Family FPGAs
Table 2-36 • A54SX72A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)

Parameter Description

–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Dedicated (Hardwired) Array Clock Networks

tHCKH Input Low to High
(Pad to R-cell Input)

1.6 1.9 2.1 2.5 3.8 ns

tHCKL Input High to Low
(Pad to R-cell Input)

1.6 1.9 2.1 2.5 3.8 ns

tHPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns

tHPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns

tHCKSW Maximum Skew 1.4 1.6 1.8 2.1 3.3 ns

tHP Minimum Period 3.0 3.4 4.0 4.6 6.4 ns

fHMAX Maximum Frequency 333 294 250 217 156 MHz

Routed Array Clock Networks

tRCKH Input Low to High (Light Load)
(Pad to R-cell Input)

2.3 2.6 2.9 3.4 4.8 ns

tRCKL Input High to Low (Light Load)
(Pad to R-cell Input)

2.8 3.2 3.7 4.3 6.0 ns

tRCKH Input Low to High (50% Load)
(Pad to R-cell Input)

2.4 2.8 3.2 3.7 5.2 ns

tRCKL Input High to Low (50% Load)
(Pad to R-cell Input)

2.9 3.3 3.8 4.5 6.2 ns

tRCKH Input Low to High (100% Load)
(Pad to R-cell Input)

2.6 3.0 3.4 4.0 5.6 ns

tRCKL Input High to Low (100% Load)
(Pad to R-cell Input)

3.1 3.6 4.0 4.7 6.6 ns

tRPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns

tRPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns

tRCKSW Maximum Skew (Light Load) 1.9 2.2 2.5 3.0 4.1 ns

tRCKSW Maximum Skew (50% Load) 1.8 2.1 2.4 2.8 3.9 ns

tRCKSW Maximum Skew (100% Load) 1.8 2.1 2.4 2.8 3.9 ns

Quadrant Array Clock Networks

tQCKH Input Low to High (Light Load)
(Pad to R-cell Input)

2.6 3.0 3.4 4.0 5.6 ns

tQCHKL Input High to Low (Light Load)
(Pad to R-cell Input)

2.6 3.0 3.3 3.9 5.5 ns

tQCKH Input Low to High (50% Load)
(Pad to R-cell Input)

2.8 3.2 3.6 4.3 6.0 ns

tQCHKL Input High to Low (50% Load)
(Pad to R-cell Input)

2.8 3.2 3.6 4.2 5.9 ns

Note: *All –3 speed grades have been discontinued.
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