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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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SX-A Family FPGAs
Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

DirectConnect
• No Antifuses
• 0.1 ns Maximum Routing Delay 

FastConnect
• One Antifuse
• 0.3 ns Maximum Routing Delay 

Routing Segments
• Typically Two Antifuses
• Max. Five Antifuses

DirectConnect
• No Antifuses
• 0.1 ns Maximum Routing Delay 

FastConnect
• One Antifuse
• 0.3 ns Maximum Routing Delay 

Routing Segments
• Typically Two Antifuses
• Max. Five Antifuses
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SX-A Family FPGAs
Clock Resources
Actel’s high-drive routing structure provides three clock
networks (Table 1-1). The first clock, called HCLK, is
hardwired from the HCLK buffer to the clock select
multiplexor (MUX) in each R-cell. HCLK cannot be
connected to combinatorial logic. This provides a fast
propagation path for the clock signal. If not used, this
pin must be set as Low or High on the board. It must not
be left floating. Figure 1-7 describes the clock circuit
used for the constant load HCLK and the macros
supported. 

HCLK does not function until the fourth clock cycle each
time the device is powered up to prevent false output
levels due to any possible slow power-on-reset signal and
fast start-up clock circuit. To activate HCLK from the first
cycle, the TRST pin must be reserved in the Design
software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that
can be sourced from external pins or from internal logic
signals within the SX-A device. CLKA and CLKB may be
connected to sequential cells or to combinational logic. If
CLKA or CLKB pins are not used or sourced from signals,
these pins must be set as Low or High on the board. They
must not be left floating. Figure 1-8 describes the CLKA

and CLKB circuit used and the macros supported in SX-A
devices with the exception of A54SX72A. 

In addition, the A54SX72A device provides four
quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD—
corresponding to bottom-left, bottom-right, top-left,
and top-right locations on the die, respectively), which
can be sourced from external pins or from internal logic
signals within the device. Each of these clocks can
individually drive up to an entire quadrant of the chip,
or they can be grouped together to drive multiple
quadrants (Figure 1-9 on page 1-6). QCLK pins can
function as user I/O pins. If not used, the QCLK pins
must be tied Low or High on the board and must not be
left floating.
For more information on how to use quadrant clocks in
the A54SX72A device, refer to the Global Clock Networks
in Actel’s Antifuse Devices and Using A54SX72A and
RT54SX72S Quadrant Clocks application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well
as the macros supported are shown in Figure 1-10 on
page 1-6. Note that bidirectional clock buffers are only
available in A54SX72A. For more information, refer to
the "Pin Description" section on page 1-15.   

Table 1-1 • SX-A Clock Resources

A54SX08A A54SX16A A54SX32A A54SX72A

Routed Clocks (CLKA, CLKB) 2 2 2 2

Hardwired Clocks (HCLK) 1 1 1 1

Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD) 0 0 0 4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer 

Constant Load 
Clock Network

HCLKBUF

Clock Network

From Internal Logic
CLKBUF
CLKBUFI
CLKINT
CLKINTI
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SX-A Family FPGAs
Figure 1-9 • SX-A QCLK Architecture

Figure 1-10 • A54SX72A Routed Clock and QCLK Buffer
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SX-A Family FPGAs
Other Architectural Features

Technology
The Actel SX-A family is implemented on a high-voltage,
twin-well CMOS process using 0.22 μ / 0.25 μ design
rules. The metal-to-metal antifuse is comprised of a
combination of amorphous silicon and dielectric material
with barrier metals and has a programmed ('on' state)
resistance of 25 Ω with capacitance of 1.0 fF for low
signal impedance. 

Performance
The unique architectural features of the SX-A family
enable the devices to operate with internal clock
frequencies of 350 MHz, causing very fast execution of
even complex logic functions. The SX-A family is an
optimal platform upon which to integrate the
functionality previously contained in multiple complex
programmable logic devices (CPLDs). In addition, designs
that previously would have required a gate array to meet
performance goals can be integrated into an SX-A device
with dramatic improvements in cost and time-to-market.
Using timing-driven place-and-route tools, designers can
achieve highly deterministic device performance. 

User Security
Reverse engineering is virtually impossible in SX-A
devices because it is extremely difficult to distinguish
between programmed and unprogrammed antifuses. In
addition, since SX-A is a nonvolatile, single-chip solution,
there is no configuration bitstream to intercept at device
power-up.

The Actel FuseLock advantage ensures that unauthorized
users will not be able to read back the contents of an
Actel antifuse FPGA. In addition to the inherent
strengths of the architecture, special security fuses that
prevent internal probing and overwriting are hidden
throughout the fabric of the device. They are located
where they cannot be accessed or bypassed without
destroying access to the rest of the device, making both
invasive and more-subtle noninvasive attacks ineffective
against Actel antifuse FPGAs. 

Look for this symbol to ensure your valuable IP is secure
(Figure 1-11). 

For more information, refer to Actel’s Implementation of
Security in Actel Antifuse FPGAs application note.

I/O Modules
For a simplified I/O schematic, refer to Figure 1 in the
application note, Actel eX, SX-A, and RTSX-S I/Os.

Each user I/O on an SX-A device can be configured as an
input, an output, a tristate output, or a bidirectional pin.
Mixed I/O standards can be set for individual pins,
though this is only allowed with the same voltage as the
input. These I/Os, combined with array registers, can
achieve clock-to-output-pad timing as fast as 3.8 ns, even
without the dedicated I/O registers. In most FPGAs, I/O
cells that have embedded latches and flip-flops,
requiring instantiation in HDL code; this is a design
complication not encountered in SX-A FPGAs. Fast pin-
to-pin timing ensures that the device is able to interface
with any other device in the system, which in turn
enables parallel design of system components and
reduces overall design time. All unused I/Os are
configured as tristate outputs by the Actel Designer
software, for maximum flexibility when designing new
boards or migrating existing designs. 
SX-A I/Os should be driven by high-speed push-pull
devices with a low-resistance pull-up device when being
configured as tristate output buffers. If the I/O is driven
by a voltage level greater than VCCI and a fast push-pull
device is NOT used, the high-resistance pull-up of the
driver and the internal circuitry of the SX-A I/O may
create a voltage divider. This voltage divider could pull
the input voltage below specification for some devices
connected to the driver. A logic '1' may not be correctly
presented in this case. For example, if an open drain
driver is used with a pull-up resistor to 5 V to provide the
logic '1' input, and VCCI is set to 3.3 V on the SX-A device,
the input signal may be pulled down by the SX-A input.
Each I/O module has an available power-up resistor of
approximately 50 kΩ that can configure the I/O in a
known state during power-up. For nominal pull-up and
pull-down resistor values, refer to Table 1-4 on page 1-8
of the application note Actel eX, SX-A, and RTSX-S I/Os.
Just slightly before VCCA reaches 2.5 V, the resistors are
disabled, so the I/Os will be controlled by user logic. See
Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for
more information concerning available I/O features.

Figure 1-11 • FuseLock
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SX-A Family FPGAs
SX-A Probe Circuit Control Pins
SX-A devices contain internal probing circuitry that
provides built-in access to every node in a design,
enabling 100% real-time observation and analysis of a
device's internal logic nodes without design iteration.
The probe circuitry is accessed by Silicon Explorer II, an
easy to use, integrated verification and logic analysis tool
that can sample data at 100 MHz (asynchronous) or
66 MHz (synchronous). Silicon Explorer II attaches to a
PC’s standard COM port, turning the PC into a fully
functional 18-channel logic analyzer. Silicon Explorer II
allows designers to complete the design verification
process at their desks and reduces verification time from
several hours per cycle to a few seconds. 

The Silicon Explorer II tool uses the boundary-scan ports
(TDI, TCK, TMS, and TDO) to select the desired nets for
verification. The selected internal nets are assigned to the

PRA/PRB pins for observation. Figure 1-13 illustrates the
interconnection between Silicon Explorer II and the FPGA
to perform in-circuit verification.

Design Considerations
In order to preserve device probing capabilities, users
should avoid using the TDI, TCK, TDO, PRA, and PRB pins
as input or bidirectional ports. Since these pins are active
during probing, critical input signals through these pins
are not available. In addition, the security fuse must not
be programmed to preserve probing capabilities. Actel
recommends that you use a 70 Ω series termination
resistor on every probe connector (TDI, TCK, TMS, TDO,
PRA, PRB). The 70 Ω series termination is used to prevent
data transmission corruption during probing and
reading back the checksum.  

Figure 1-13 • Probe Setup
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SX-A Family FPGAs
Related Documents

Application Notes
Global Clock Networks in Actel’s Antifuse Devices

http://www.actel.com/documents/GlobalClk_AN.pdf

Using A54SX72A and RT54SX72S Quadrant Clocks 

http://www.actel.com/documents/QCLK_AN.pdf

Implementation of Security in Actel Antifuse FPGAs

http://www.actel.com/documents/Antifuse_Security_AN.pdf

Actel eX, SX-A, and RTSX-S I/Os

http://www.actel.com/documents/AntifuseIO_AN.pdf

Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications

http://www.actel.com/documents/HotSwapColdSparing_AN.pdf

Programming Antifuse Devices 

http://www.actel.com/documents/AntifuseProgram_AN.pdf

Datasheets
HiRel SX-A Family FPGAs

http://www.actel.com/documents/HRSXA_DS.pdf

SX-A Automotive Family FPGAs

http://www.actel.com/documents/SXA_Auto_DS.pdf

User’s Guides
Silicon Sculptor User’s Guide

http://www.actel.com/documents/SiliSculptII_Sculpt3_ug.pdf
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SX-A Family FPGAs
Table 2-8 • AC Specifications (5 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

IOH(AC) Switching Current High 0 < VOUT ≤ 1.4 1 –44 – mA

1.4 ≤ VOUT < 2.4 1, 2 (–44 + (VOUT – 1.4)/0.024) – mA

3.1 < VOUT < VCCI 
1, 3 – EQ 2-1 on 

page 2-5
–

(Test Point) VOUT = 3.1 3 – –142 mA

IOL(AC) Switching Current Low VOUT ≥ 2.2 1 95 – mA

2.2 > VOUT > 0.55 1 (VOUT/0.023) – mA

0.71 > VOUT > 0 1, 3 – EQ 2-2 on 
page 2-5

–

(Test Point) VOUT = 0.71 3 – 206 mA

ICL Low Clamp Current –5 < VIN ≤ –1 –25 + (VIN + 1)/0.015 – mA

slewR Output Rise Slew Rate 0.4 V to 2.4 V load 4 1 5 V/ns

slewF Output Fall Slew Rate 2.4 V to 0.4 V load 4 1 5 V/ns

Notes:

1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half
of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#,
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,
which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than
toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A
and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter
with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not
required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge
rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and
should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Output
Buffer

1/2 in. max.

 50 pF

Pin
2-4 v5.3



SX-A Family FPGAs
Where:  

CEQCM = Equivalent capacitance of combinatorial modules 
(C-cells) in pF

CEQSM = Equivalent capacitance of sequential modules (R-Cells) in pF

CEQI = Equivalent capacitance of input buffers in pF

CEQO = Equivalent capacitance of output buffers in pF

CEQCR = Equivalent capacitance of CLKA/B in pF

CEQHV = Variable capacitance of HCLK in pF

CEQHF = Fixed capacitance of HCLK in pF

CL = Output lead capacitance in pF

fm = Average logic module switching rate in MHz

fn = Average input buffer switching rate in MHz

fp = Average output buffer switching rate in MHz

fq1 = Average CLKA rate in MHz

fq2 = Average CLKB rate in MHz

fs1 = Average HCLK rate in MHz

m = Number of logic modules switching at fm

n = Number of input buffers switching at fn

p = Number of output buffers switching at fp

q1 = Number of clock loads on CLKA

q2 = Number of clock loads on CLKB

r1 = Fixed capacitance due to CLKA

r2 = Fixed capacitance due to CLKB

s1 = Number of clock loads on HCLK

x = Number of I/Os at logic low

y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

A54SX08A A54SX16A A54SX32A A54SX72A

Combinatorial modules (CEQCM) 1.70 pF 2.00 pF 2.00 pF 1.80 pF

Sequential modules (CEQCM) 1.50 pF 1.50 pF 1.30 pF 1.50 pF

Input buffers (CEQI) 1.30 pF 1.30 pF 1.30 pF 1.30 pF

Output buffers (CEQO) 7.40 pF 7.40 pF 7.40 pF 7.40 pF

Routed array clocks (CEQCR) 1.05 pF 1.05 pF 1.05 pF 1.05 pF

Dedicated array clocks – variable
(CEQHV)

0.85 pF 0.85 pF 0.85 pF 0.85 pF

Dedicated array clocks – fixed (CEQHF) 30.00 pF 55.00 pF 110.00 pF 240.00 pF

Routed array clock A (r1) 35.00 pF 50.00 pF 90.00 pF 310.00 pF
v5.3 2-9



SX-A Family FPGAs
Thermal Characteristics 

Introduction
The temperature variable in Actel Designer software refers to the junction temperature, not the ambient, case, or
board temperatures. This is an important distinction because dynamic and static power consumption will cause the
chip's junction to be higher than the ambient, case, or board temperatures. EQ 2-9 and EQ 2-10 give the relationship
between thermal resistance, temperature gradient and power.

EQ 2-9

EQ 2-10

Where:  

θJA
TJ TA–

P
----------------=

θJA
TC TA–

P
------------------=

θJA = Junction-to-air thermal resistance

θJC = Junction-to-case thermal resistance

TJ = Junction temperature

TA = Ambient temperature

TC = Ambient temperature

P = total power dissipated by the device

Table 2-12 • Package Thermal Characteristics

Package Type
Pin 

Count θJC

θJA

UnitsStill Air
1.0 m/s

200 ft./min.
2.5 m/s

500 ft./min.

Thin Quad Flat Pack (TQFP) 100 14 33.5 27.4 25 °C/W

Thin Quad Flat Pack (TQFP) 144 11 33.5 28 25.7 °C/W

Thin Quad Flat Pack (TQFP) 176 11 24.7 19.9 18 °C/W

Plastic Quad Flat Pack (PQFP)1 208 8 26.1 22.5 20.8 °C/W

Plastic Quad Flat Pack (PQFP) with Heat Spreader2 208 3.8 16.2 13.3 11.9 °C/W

Plastic Ball Grid Array (PBGA) 329 3 17.1 13.8 12.8 °C/W

Fine Pitch Ball Grid Array (FBGA) 144 3.8 26.9 22.9 21.5 °C/W

Fine Pitch Ball Grid Array (FBGA) 256 3.8 26.6 22.8 21.5 °C/W

Fine Pitch Ball Grid Array (FBGA) 484 3.2 18 14.7 13.6 °C/W

Notes:

1. The A54SX08A PQ208 has no heat spreader.
2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.
v5.3 2-11



SX-A Family FPGAs
Theta-JA
Junction-to-ambient thermal resistance (θJA) is determined under standard conditions specified by JESD-51 series but
has little relevance in actual performance of the product in real application. It should be employed with caution but is
useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA
package at still air is as follows. i.e.: 

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is
higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or
the airflow inside the system must be increased.

Theta-JC
Junction-to-case thermal resistance (θJC) measures the ability of a device to dissipate heat from the surface of the chip
to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only
applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power
consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required. 

Calculation for Heat Sink
For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is
3.00 W. The user-dependent data TJ and TA are given as follows:

From the datasheet:  

EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the
device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated
by:

EQ 2-13

θJA = 17.1°C/W is taken from Table 2-12 on page 2-11

TA = 125°C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power Max Junction Temp Max. Ambient Temp–
θJA

------------------------------------------------------------------------------------------------------------ 150°C 125°C–
17.1°C/W

---------------------------------------- 1.46 W= = =

TJ = 110°C

TA = 70°C

θJA = 18.0°C/W

θJC = 3.2 °C/W

P Max Junction Temp Max. Ambient Temp–
θJA

------------------------------------------------------------------------------------------------------------ 110°C 70°C–
18.0°C/W

------------------------------------ 2.22 W= = =

θJA
Max Junction Temp Max. Ambient Temp–

P
------------------------------------------------------------------------------------------------------------ 110°C 70°C–

3.00 W
------------------------------------ 13.33°C/W= = =
2-12 v5.3



SX-A Family FPGAs
Timing Characteristics
Timing characteristics for SX-A devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer
characteristics are common to all SX-A family members.
Internal routing delays are device-dependent. Design
dependency means actual delays are not determined
until after placement and routing of the user’s design are
complete. The timing characteristics listed in this
datasheet represent sample timing numbers of the SX-A
devices. Design-specific delay values may be determined
by using Timer or performing simulation after successful
place-and-route with the Designer software.

Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most
timing-critical paths. Critical nets are determined by net
property assignment prior to placement and routing. Up
to 6 percent of the nets in a design may be designated as
critical, while 90 percent of the nets in a design are
typical.

Long Tracks
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows,
columns, or modules.   Long tracks employ three to five
antifuse connections. This increases capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically, up to 6 percent of
nets in a fully utilized device require long tracks. Long
tracks contribute approximately 4 ns to 8.4 ns delay. This
additional delay is represented statistically in higher
fanout routing delays.

Timing Derating
SX-A devices are manufactured with a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process changes. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case
processing. Maximum timing parameters reflect
minimum operating voltage, maximum operating
temperature, and worst-case processing.

Temperature and Voltage Derating Factors
Table 2-13 • Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.25 V)

VCCA

Junction Temperature (TJ)

–55°C –40°C 0°C 25°C 70°C 85°C 125°C

2.250 V 0.79 0.80 0.87 0.89 1.00 1.04 1.14

2.500 V 0.74 0.75 0.82 0.83 0.94 0.97 1.07

2.750 V 0.68 0.69 0.75 0.77 0.87 0.90 0.99
v5.3 2-17



SX-A Family FPGAs
Timing Characteristics
Table 2-14 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays1

tPD Internal Array Module 0.9 1.1 1.2 1.7 ns

Predicted Routing Delays2

tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.4 0.6 ns

tRD1 FO = 1 Routing Delay 0.3 0.4 0.5 0.6 ns

tRD2 FO = 2 Routing Delay 0.5 0.5 0.6 0.8 ns

tRD3 FO = 3 Routing Delay 0.6 0.7 0.8 1.1 ns

tRD4 FO = 4 Routing Delay 0.8 0.9 1 1.4 ns

tRD8 FO = 8 Routing Delay 1.4 1.5 1.8 2.5 ns

tRD12 FO = 12 Routing Delay 2 2.2 2.6 3.6 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.7 0.8 0.9 1.3 ns

tCLR Asynchronous Clear-to-Q 0.6 0.6 0.8 1.0 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.7 0.9 1.2 ns

tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.2 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.4 1.5 1.8 2.5 ns

tRECASYN Asynchronous Recovery Time 0.4 0.4 0.5 0.7 ns

tHASYN Asynchronous Hold Time 0.3 0.3 0.4 0.6 ns

tMPW Clock Pulse Width 1.6 1.8 2.1 2.9 ns

Input Module Propagation Delays

tINYH Input Data Pad to Y High 2.5 V LVCMOS 0.8 0.9 1.0 1.4 ns

tINYL Input Data Pad to Y Low 2.5 V LVCMOS 1.0 1.2 1.4 1.9 ns

tINYH Input Data Pad to Y High 3.3 V PCI 0.6 0.6 0.7 1.0 ns

tINYL Input Data Pad to Y Low 3.3 V PCI 0.7 0.8 0.9 1.3 ns

tINYH Input Data Pad to Y High 3.3 V LVTTL 0.7 0.7 0.9 1.2 ns

tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.0 1.1 1.3 1.8 ns

Notes:

1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance. Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
Table 2-15 • A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

Dedicated (Hardwired) Array Clock Networks

tHCKH Input Low to High
(Pad to R-cell Input)

1.4 1.6 1.8 2.6 ns

tHCKL Input High to Low
(Pad to R-cell Input)

1.3 1.5 1.7 2.4 ns

tHPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns

tHPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns

tHCKSW Maximum Skew 0.4 0.4 0.5 0.7 ns

tHP Minimum Period 3.2 3.6 4.2 5.8 ns

fHMAX Maximum Frequency 313 278 238 172 MHz

Routed Array Clock Networks

tRCKH Input Low to High (Light Load)
(Pad to R-cell Input)

1.0 1.1 1.3 1.8 ns

tRCKL Input High to Low (Light Load)
(Pad to R-cell Input)

1.1 1.2 1.4 2.0 ns

tRCKH Input Low to High (50% Load)
(Pad to R-cell Input)

1.0 1.1 1.3 1.8 ns

tRCKL Input High to Low (50% Load)
(Pad to R-cell Input)

1.1 1.2 1.4 2.0 ns

tRCKH Input Low to High (100% Load)
(Pad to R-cell Input)

1.1 1.2 1.4 2.0 ns

tRCKL Input High to Low (100% Load)
(Pad to R-cell Input)

1.3 1.5 1.7 2.4 ns

tRPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns

tRPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns

tRCKSW Maximum Skew (Light Load) 0.7 0.8 0.9 1.3 ns

tRCKSW Maximum Skew (50% Load) 0.7 0.8 0.9 1.3 ns

tRCKSW Maximum Skew (100% Load) 0.9 1.0 1.2 1.7 ns
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SX-A Family FPGAs
Table 2-17 • A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

Dedicated (Hardwired) Array Clock Networks

tHCKH Input Low to High
(Pad to R-cell Input)

1.2 1.3 1.5 2.3 ns

tHCKL Input High to Low
(Pad to R-cell Input)

1.0 1.2 1.4 2.0 ns

tHPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns

tHPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns

tHCKSW Maximum Skew 0.4 0.4 0.5 0.8 ns

tHP Minimum Period 3.2 3.6 4.2 5.8 ns

fHMAX Maximum Frequency 313 278 238 172 MHz

Routed Array Clock Networks

tRCKH Input Low to High (Light Load)
(Pad to R-cell Input)

0.9 1.0 1.2 1.7 ns

tRCKL Input High to Low (Light Load)
(Pad to R-cell Input)

1.5 1.7 2.0 2.7 ns

tRCKH Input Low to High (50% Load)
(Pad to R-cell Input)

0.9 1.0 1.2 1.7 ns

tRCKL Input High to Low (50% Load)
(Pad to R-cell Input)

1.5 1.7 2.0 2.7 ns

tRCKH Input Low to High (100% Load)
(Pad to R-cell Input)

1.1 1.3 1.5 2.1 ns

tRCKL Input High to Low (100% Load)
(Pad to R-cell Input)

1.6 1.8 2.1 2.9 ns

tRPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns

tRPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns

tRCKSW Maximum Skew (Light Load) 0.8 0.9 1.1 1.5 ns

tRCKSW Maximum Skew (50% Load) 0.8 1.0 1.1 1.5 ns

tRCKSW Maximum Skew (100% Load) 0.9 1.0 1.2 1.7 ns
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SX-A Family FPGAs
Table 2-21 • A54SX16A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays2

tPD Internal Array Module 0.9 1.0 1.2 1.4 1.9 ns

Predicted Routing Delays3

tDC FO = 1 Routing Delay, Direct
Connect

0.1 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns

tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns

tRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns

tRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns

tRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1 1.4 ns

tRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns

tRD12 FO = 12 Routing Delay 1.7 2 2.2 2.6 3.6 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns

tCLR Asynchronous Clear-to-Q 0.5 0.6 0.6 0.8 1.0 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.8 1.0 1.4 ns

tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.0 1.4 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.3 1.5 1.6 1.9 2.7 ns

tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns

tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns

tMPW Clock Minimum Pulse Width 1.4 1.7 1.9 2.2 3.0 ns

Input Module Propagation Delays

tINYH Input Data Pad to Y High 2.5 V
LVCMOS

0.5 0.6 0.7 0.8 1.1 ns

tINYL Input Data Pad to Y Low 2.5 V
LVCMOS

0.8 0.9 1.0 1.1 1.6 ns

tINYH Input Data Pad to Y High 3.3 V PCI 0.5 0.6 0.6 0.7 1.0 ns

tINYL Input Data Pad to Y Low 3.3 V PCI 0.7 0.8 0.9 1.0 1.4 ns

tINYH Input Data Pad to Y High 3.3 V
LVTTL

0.7 0.7 0.8 1.0 1.4 ns

tINYL Input Data Pad to Y Low 3.3 V LVTTL 0.9 1.1 1.2 1.4 2.0 ns

Notes:

1. All –3 speed grades have been discontinued.
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance.   Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
Table 2-28 • A54SX32A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays2

tPD Internal Array Module 0.8 0.9 1.1 1.2 1.7 ns

Predicted Routing Delays3

tDC FO = 1 Routing Delay, Direct
Connect

0.1 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns

tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns

tRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns

tRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns

tRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns

tRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns

tRD12 FO = 12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns

tCLR Asynchronous Clear-to-Q 0.5 0.6 0.6 0.8 1.0 ns

tPRESET Asynchronous Preset-to-Q 0.6 0.7 0.7 0.9 1.2 ns

tSUD Flip-Flop Data Input Set-Up 0.6 0.7 0.8 0.9 1.2 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.2 1.4 1.5 1.8 2.5 ns

tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns

tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns

tMPW Clock Pulse Width 1.4 1.6 1.8 2.1 2.9 ns

Input Module Propagation Delays

tINYH Input Data Pad to Y High 2.5 V
LVCMOS

0.6 0.7 0.8 0.9 1.2 ns

tINYL Input Data Pad to Y Low 2.5 V
LVCMOS

1.2 1.3 1.5 1.8 2.5 ns

tINYH Input Data Pad to Y High 3.3 V PCI 0.5 0.6 0.6 0.7 1.0 ns

tINYL Input Data Pad to Y Low 3.3 V PCI 0.6 0.7 0.8 0.9 1.3 ns

tINYH Input Data Pad to Y High 3.3 V
LVTTL

0.8 0.9 1.0 1.2 1.6 ns

tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.4 1.6 1.8 2.2 3.0 ns

Notes:

1. All –3 speed grades have been discontinued.
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance.   Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
Table 2-41 • A54SX72A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

5 V PCI Output Module Timing2

tDLH Data-to-Pad Low to High 2.7 3.1 3.5 4.1 5.7 ns

tDHL Data-to-Pad High to Low 3.4 3.9 4.4 5.1 7.2 ns

tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns

tENZH Enable-to-Pad, Z to H 2.7 3.1 3.5 4.1 5.7 ns

tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns

tENHZ Enable-to-Pad, H to Z 3.4 3.9 4.4 5.1 7.2 ns

dTLH
3 Delta Low to High 0.016 0.016 0.02 0.022 0.032 ns/pF

dTHL
3 Delta High to Low 0.026 0.03 0.032 0.04 0.052 ns/pF

5 V TTL Output Module Timing4

tDLH Data-to-Pad Low to High 2.4 2.8 3.1 3.7 5.1 ns

tDHL Data-to-Pad High to Low 3.1 3.5 4.0 4.7 6.6 ns

tDHLS Data-to-Pad High to Low—low slew 7.4 8.5 9.7 11.4 15.9 ns

tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns

tENZLS Enable-to-Pad, Z to L—low slew 7.4 8.4 9.5 11.0 15.4 ns

tENZH Enable-to-Pad, Z to H 2.4 2.8 3.1 3.7 5.1 ns

tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns

tENHZ Enable-to-Pad, H to Z 3.1 3.5 4.0 4.7 6.6 ns

dTLH
3 Delta Low to High 0.014 0.017 0.017 0.023 0.031 ns/pF

dTHL
3 Delta High to Low 0.023 0.029 0.031 0.037 0.051 ns/pF

dTHLS
3 Delta High to Low—low slew 0.043 0.046 0.057 0.066 0.089 ns/pF

Notes:

1. All –3 speed grades have been discontinued.
2. Delays based on 50 pF loading.
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
4. Delays based on 35 pF loading.
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SX-A Family FPGAs
D11 VCCA

D12 NC

D13 I/O

D14 I/O

D15 I/O

D16 I/O

D17 I/O

D18 I/O

D19 I/O

D20 I/O

D21 I/O

D22 I/O

D23 I/O

E1 VCCI

E2 I/O

E3 I/O

E4 I/O

E20 I/O

E21 I/O

E22 I/O

E23 I/O

F1 I/O

F2 TMS

F3 I/O

F4 I/O

F20 I/O

F21 I/O

F22 I/O

F23 I/O

G1 I/O

G2 I/O

G3 I/O

G4 I/O

G20 I/O

G21 I/O

G22 I/O

G23 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

H1 I/O

H2 I/O

H3 I/O

H4 I/O

H20 VCCA

H21 I/O

H22 I/O

H23 I/O

J1 NC

J2 I/O

J3 I/O

J4 I/O

J20 I/O

J21 I/O

J22 I/O

J23 I/O

K1 I/O

K2 I/O

K3 I/O

K4 I/O

K10 GND

K11 GND

K12 GND

K13 GND

K14 GND

K20 I/O

K21 I/O

K22 I/O

K23 I/O

L1 I/O

L2 I/O

L3 I/O

L4 NC

L10 GND

L11 GND

L12 GND

L13 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

L14 GND

L20 NC

L21 I/O

L22 I/O

L23 NC

M1 I/O

M2 I/O

M3 I/O

M4 VCCA

M10 GND

M11 GND

M12 GND

M13 GND

M14 GND

M20 VCCA

M21 I/O

M22 I/O

M23 VCCI

N1 I/O

N2 TRST, I/O

N3 I/O

N4 I/O

N10 GND

N11 GND

N12 GND

N13 GND

N14 GND

N20 NC

N21 I/O

N22 I/O

N23 I/O

P1 I/O

P2 I/O

P3 I/O

P4 I/O

P10 GND

P11 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

P12 GND

P13 GND

P14 GND

P20 I/O

P21 I/O

P22 I/O

P23 I/O

R1 I/O

R2 I/O

R3 I/O

R4 I/O

R20 I/O

R21 I/O

R22 I/O

R23 I/O

T1 I/O

T2 I/O

T3 I/O

T4 I/O

T20 I/O

T21 I/O

T22 I/O

T23 I/O

U1 I/O

U2 I/O

U3 VCCA

U4 I/O

U20 I/O

U21 VCCA

U22 I/O

U23 I/O

V1 VCCI

V2 I/O

V3 I/O

V4 I/O

V20 I/O

V21 I/O

329-Pin PBGA

Pin 
Number

A54SX32A 
Function
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SX-A Family FPGAs
K5 I/O I/O I/O

K6 VCCI VCCI VCCI

K7 GND GND GND

K8 GND GND GND

K9 GND GND GND

K10 GND GND GND

K11 VCCI VCCI VCCI

K12 I/O I/O I/O

K13 I/O I/O I/O

K14 I/O I/O I/O

K15 NC I/O I/O

K16 I/O I/O I/O

L1 I/O I/O I/O

L2 I/O I/O I/O

L3 I/O I/O I/O

L4 I/O I/O I/O

L5 I/O I/O I/O

L6 I/O I/O I/O

L7 VCCI VCCI VCCI

L8 VCCI VCCI VCCI

L9 VCCI VCCI VCCI

L10 VCCI VCCI VCCI

L11 I/O I/O I/O

L12 I/O I/O I/O

L13 I/O I/O I/O

L14 I/O I/O I/O

L15 I/O I/O I/O

L16 NC I/O I/O

M1 I/O I/O I/O

M2 I/O I/O I/O

M3 I/O I/O I/O

M4 I/O I/O I/O

M5 I/O I/O I/O

M6 I/O I/O I/O

M7 I/O I/O QCLKA

M8 PRB, I/O PRB, I/O PRB, I/O

M9 I/O I/O I/O

256-Pin FBGA

Pin Number
A54SX16A 
Function 

A54SX32A 
Function 

A54SX72A 
Function 

M10 I/O I/O I/O

M11 I/O I/O I/O

M12 NC I/O I/O

M13 I/O I/O I/O

M14 NC I/O I/O

M15 I/O I/O I/O

M16 I/O I/O I/O

N1 I/O I/O I/O

N2 I/O I/O I/O

N3 I/O I/O I/O

N4 I/O I/O I/O

N5 I/O I/O I/O

N6 I/O I/O I/O

N7 I/O I/O I/O

N8 I/O I/O I/O

N9 I/O I/O I/O

N10 I/O I/O I/O

N11 I/O I/O I/O

N12 I/O I/O I/O

N13 I/O I/O I/O

N14 I/O I/O I/O

N15 I/O I/O I/O

N16 I/O I/O I/O

P1 I/O I/O I/O

P2 GND GND GND

P3 I/O I/O I/O

P4 I/O I/O I/O

P5 NC I/O I/O

P6 I/O I/O I/O

P7 I/O I/O I/O

P8 I/O I/O I/O

P9 I/O I/O I/O

P10 NC I/O I/O

P11 I/O I/O I/O

P12 I/O I/O I/O

P13 VCCA VCCA VCCA

P14 I/O I/O I/O

256-Pin FBGA

Pin Number
A54SX16A 
Function 

A54SX32A 
Function 

A54SX72A 
Function 
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SX-A Family FPGAs
484-Pin FBGA 

Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.

Figure 3-8 • 484-Pin FBGA (Top View)
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