

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Obsolete
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	113
Number of Gates	12000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx08a-tq144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V_{CCI} should be placed on the TMS pin to pull it High by default.**

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-6	٠	Boundary-Scan Pin Configurations an	d
		Functions	

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin	Function					
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)					
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up					
Reserve Probe	Keeps pins from being used or regular I/O					

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

JTAG Instructions

Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.

Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'. Bits 11-1 are always '02F', which is the Actel manufacturer code.

Table 1-7 •	JTAG	Instruction	Code
-------------	------	-------------	------

Instructions (IR4:IR0)	Binary Code
EXTEST	00000
SAMPLE/PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HighZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-8 JTAG Instruction Code

Device	Process	Revision	Bits 31-28	Bits 27-12
A54SX08A	0.22 µ	0	8, 9	40B4, 42B4
		1	А, В	40B4, 42B4
A54SX16A	0.22 µ	0	9	4088, 4288
		1	В	4088, 4288
	0.25 µ	1	В	22B8
A54SX32A	0.2 2µ	0	9	40BD, 42BD
		1	В	40BD, 42BD
	0.25 µ	1	В	22BD
A54SX72A	0.22 µ	0	9	40B2, 42B2
		1	В	40B2, 42B2
	0.25 µ	1	В	22B2

SX-A Probe Circuit Control Pins

SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use, integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the

PRA/PRB pins for observation. Figure 1-13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

In order to preserve device probing capabilities, users should avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, the security fuse must not be programmed to preserve probing capabilities. Actel recommends that you use a 70 Ω series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

Figure 1-13 • Probe Setup

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{-1}$	-44	_	mA
		$1.4 \le V_{OUT} < 2.4^{-1, 2}$	(-44 + (V _{OUT} - 1.4)/0.024)	-	mA
		3.1 < V _{OUT} < V _{CCI} ^{1, 3}	-	EQ 2-1 on page 2-5	_
	(Test Point)	V _{OUT} = 3.1 ³	-	-142	mA
I _{OL(AC)}	Switching Current Low	$V_{OUT} \ge 2.2^{-1}$	95	_	mA
		2.2 > V _{OUT} > 0.55 ¹	(V _{OUT} /0.023)	-	mA
		0.71 > V _{OUT} > 0 ^{1, 3}	-	EQ 2-2 on page 2-5	-
	(Test Point)	V _{OUT} = 0.71 ³	-	206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015	-	mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Table 2-8 • AC Specifications (5 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-1 • 5 V PCI V/I Curve for SX-A Family

 $I_{OH} = 11.9 * (V_{OUT} - 5.25) * (V_{OUT} + 2.45)$ for $V_{CCI} > V_{OUT} > 3.1V$ $I_{OL} = 78.5 * V_{OUT} * (4.4 - V_{OUT})$ for 0V < V_{OUT} < 0.71V

EQ 2-2

Table 2-9 • DC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V _{CCA}	Supply Voltage for Array		2.25	2.75	V
V _{CCI}	Supply Voltage for I/Os		3.0	3.6	V
V _{IH}	Input High Voltage		0.5V _{CCI}	V _{CCI} + 0.5	V
V _{IL}	Input Low Voltage		-0.5	0.3V _{CCI}	V
I _{IPU}	Input Pull-up Voltage ¹		0.7V _{CCI}	-	V
IIL	Input Leakage Current ²	0 < V _{IN} < V _{CCI}	-10	+10	μΑ
V _{OH}	Output High Voltage	I _{OUT} = -500 μA	0.9V _{CCI}	-	V
V _{OL}	Output Low Voltage	I _{OUT} = 1,500 μA		0.1V _{CCI}	V
C _{IN}	Input Pin Capacitance ³		-	10	pF
C _{CLK}	CLK Pin Capacitance		5	12	pF

EQ 2-1

Notes:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization.

2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Guidelines for Estimating Power

The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation:

Logic Modules (m) = 20% of modules Inputs Switching (n) = Number inputs/4 Outputs Switching (p) = Number of outputs/4 CLKA Loads (q1) = 20% of R-cells CLKB Loads (q2) = 20% of R-cells Load Capacitance (CL) = 35 pF Average Logic Module Switching Rate (fm) = f/10 Average Input Switching Rate (fn) = f/5 Average Output Switching Rate (fp) = f/10 Average CLKA Rate (fq1) = f/2 Average CLKB Rate (fq2) = f/2 Average HCLK Rate (fs1) = f HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet.

Output Buffer Delays

AC Test Loads

Figure 2-5 • AC Test Loads

Table 2-18 A54SX08A Timing Characteristics

		-2 S	peed	-1 S	1 Speed Std. Speed		-F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMOS Output Module Timing ^{1,2}										
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std. S	Speed	ed –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	tput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL O	Dutput Module Timing ³							-		
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d_{THLS}^2	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-20 A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions	$V_{CCA} = 2.25 V, V_{CCI} = 4$	4.75 V, T _J = 70°C)
-----------------------------------	---------------------------------	--------------------------------

		-2 Speed -1 Speed		Std. S	Speed	–F S	peed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Outp	ut Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}^{2}	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^2	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	ut Module Timing ³	•								
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-21 • A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	beed ¹	-2 S	peed	–1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ²											
t _{PD}	Internal Array Module		0.9		1.0		1.2		1.4		1.9	ns
Predicted R	outing Delays ³											
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns
R-Cell Timin	ng											
t _{RCO}	Sequential Clock-to-Q		0.6		0.7		0.8		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.8		1.0		1.4	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.3		1.5		1.6		1.9		2.7		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Removal Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.4		1.7		1.9		2.2		3.0		ns
Input Modu	le Propagation Delays											
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		0.8		0.9		1.0		1.1		1.6	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.5		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	lnput Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.8		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		0.9		1.1		1.2		1.4		2.0	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-27 A54SX16A Timing Characteristics

		-3 Speed ¹	-2 S	peed	–1 Sp	eed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min. Max	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²										
t _{DLH}	Data-to-Pad Low to High	2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low	2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.2		2.5		2.8		3.3		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.8		3.2		3.6		4.2		5.9	ns
d _{TLH} ³	Delta Low to High	0.016		0.016		0.02		0.022		0.032	ns/pF
d _{THL} ³	Delta High to Low	0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴								-		
t _{DLH}	Data-to-Pad Low to High	2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low	2.8		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	6.7		7.7		8.7		10.2		14.3	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H	1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.5		2.9		3.3		3.9		5.4	ns
d _{TLH} ³	Delta Low to High	0.014		0.017		0.017		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low	0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-28 A545X32A Timing Characteristics (Continued)

		-3 S	peed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}_{CCI} = 3.0 \text{ V}, T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-31 A54SX32A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _{CCI} :	= 4.75 V, T _J = 70°C)
----------------------------------	---	----------------------------------

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std.	Speed	-F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks										
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		1.9		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.5		2.8		3.3		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.8		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.2	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-40 A54SX72A Timing Characteristics

(Worst-Case Commercial	Conditions $V_{CCA} = 2.25$	$V_{V_{CCI}} = 3.0$	$I_{1} = 70^{\circ}C$
(.,.,,

		-3 Speed ¹	–2 Spee	ed	–1 Spee	d	Std. 9	Speed	–F S	peed	
Parameter	Description	Min. Max.	Min. M	ax.	Min. Ma	x.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²		•								
t _{DLH}	Data-to-Pad Low to High	2.3	2	.7	3.	0		3.6		5.0	ns
t _{DHL}	Data-to-Pad High to Low	2.5	2	.9	3.	2		3.8		5.3	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.4	1	.7	1.	9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.3	2	.7	3.	0		3.6		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.5	2	.8	3.	2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.5	2	.9	3.	2		3.8		5.3	ns
d _{TLH} ³	Delta Low to High	0.025	0.	03	0.0)3		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.0	015	0.0	15		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴										
t _{DLH}	Data-to-Pad Low to High	3.2	3	.7	4.	2		5.0		6.9	ns
t _{DHL}	Data-to-Pad High to Low	3.2	3	.7	4.	2		4.9		6.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	10.3	11	1.9	13	.5		15.8		22.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.2	2	.6	2.	9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	15.8	18	3.9	21	.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.2	3	.7	4.	2		5.0		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.9	3	.3	3.	7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z	3.2	3	.7	4.	2		4.9		6.9	ns
d _{TLH} ³	Delta Low to High	0.025	0.	03	0.0)3		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.0	015	0.0	15		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.053	0.0)53	0.0	67		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

	2	08-Pin PQF	P		208-Pin PQFP								
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function				
1	GND	GND	GND	GND	36	I/O	I/O	I/O	I/O				
2	TDI, I/O	tdi, I/o	tdi, I/o	tdi, I/o	37	I/O	I/O	I/O	I/O				
3	I/O	I/O	I/O	I/O	38	I/O	I/O	I/O	I/O				
4	NC	I/O	I/O	I/O	39	NC	I/O	I/O	I/O				
5	I/O	I/O	I/O	I/O	40	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}				
6	NC	I/O	I/O	I/O	41	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}				
7	I/O	I/O	I/O	I/O	42	I/O	I/O	I/O	I/O				
8	I/O	I/O	I/O	I/O	43	I/O	I/O	I/O	I/O				
9	I/O	I/O	I/O	I/O	44	I/O	I/O	I/O	I/O				
10	I/O	I/O	I/O	I/O	45	I/O	I/O	I/O	I/O				
11	TMS	TMS	TMS	TMS	46	I/O	I/O	I/O	I/O				
12	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	47	I/O	I/O	I/O	I/O				
13	I/O	I/O	I/O	I/O	48	NC	I/O	I/O	I/O				
14	NC	I/O	I/O	I/O	49	I/O	I/O	I/O	I/O				
15	I/O	I/O	I/O	I/O	50	NC	I/O	I/O	I/O				
16	I/O	I/O	I/O	I/O	51	I/O	I/O	I/O	I/O				
17	NC	I/O	I/O	I/O	52	GND	GND	GND	GND				
18	I/O	I/O	I/O	GND	53	I/O	I/O	I/O	I/O				
19	I/O	I/O	I/O	V _{CCA}	54	I/O	I/O	I/O	I/O				
20	NC	I/O	I/O	I/O	55	I/O	I/O	I/O	I/O				
21	I/O	I/O	I/O	I/O	56	I/O	I/O	I/O	I/O				
22	I/O	I/O	I/O	I/O	57	I/O	I/O	I/O	I/O				
23	NC	I/O	I/O	I/O	58	I/O	I/O	I/O	I/O				
24	I/O	I/O	I/O	I/O	59	I/O	I/O	I/O	I/O				
25	NC	NC	NC	I/O	60	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}				
26	GND	GND	GND	GND	61	NC	I/O	I/O	I/O				
27	V _{CCA}	V_{CCA}	V_{CCA}	V _{CCA}	62	I/O	I/O	I/O	I/O				
28	GND	GND	GND	GND	63	I/O	I/O	I/O	I/O				
29	I/O	I/O	I/O	I/O	64	NC	I/O	I/O	I/O				
30	trst, I/O	TRST, I/O	TRST, I/O	trst, I/O	65	I/O	I/O	NC	I/O				
31	NC	I/O	I/O	I/O	66	I/O	I/O	I/O	I/O				
32	I/O	I/O	I/O	I/O	67	NC	I/O	I/O	I/O				
33	I/O	I/O	I/O	I/O	68	I/O	I/O	I/O	I/O				
34	I/O	I/O	I/O	I/O	69	I/O	I/O	I/O	I/O				
35	NC	I/O	I/O	I/O	70	NC	I/O	I/O	I/O				

	2	08-Pin PQF	Р		208-Pin PQFP						
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function		
141	NC	I/O	I/O	I/O	176	NC	I/O	I/O	I/O		
142	I/O	I/O	I/O	I/O	177	I/O	I/O	I/O	I/O		
143	NC	I/O	I/O	I/O	178	I/O	I/O	I/O	QCLKD		
144	I/O	I/O	I/O	I/O	179	I/O	I/O	I/O	I/O		
145	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	180	CLKA	CLKA	CLKA	CLKA		
146	GND	GND	GND	GND	181	CLKB	CLKB	CLKB	CLKB		
147	I/O	I/O	I/O	I/O	182	NC	NC	NC	NC		
148	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	183	GND	GND	GND	GND		
149	I/O	I/O	I/O	I/O	184	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}		
150	I/O	I/O	I/O	I/O	185	GND	GND	GND	GND		
151	I/O	I/O	I/O	I/O	186	PRA, I/O	PRA, I/O	PRA, I/O	PRA, I/O		
152	I/O	I/O	I/O	I/O	187	I/O	I/O	I/O	V _{CCI}		
153	I/O	I/O	I/O	I/O	188	I/O	I/O	I/O	I/O		
154	I/O	I/O	I/O	I/O	189	NC	I/O	I/O	I/O		
155	NC	I/O	I/O	I/O	190	I/O	I/O	I/O	QCLKC		
156	NC	I/O	I/O	I/O	191	I/O	I/O	I/O	I/O		
157	GND	GND	GND	GND	192	NC	I/O	I/O	I/O		
158	I/O	I/O	I/O	I/O	193	I/O	I/O	I/O	I/O		
159	I/O	I/O	I/O	I/O	194	I/O	I/O	I/O	I/O		
160	I/O	I/O	I/O	I/O	195	NC	I/O	I/O	I/O		
161	I/O	I/O	I/O	I/O	196	I/O	I/O	I/O	I/O		
162	I/O	I/O	I/O	I/O	197	I/O	I/O	I/O	I/O		
163	I/O	I/O	I/O	I/O	198	NC	I/O	I/O	I/O		
164	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	199	I/O	I/O	I/O	I/O		
165	I/O	I/O	I/O	I/O	200	I/O	I/O	I/O	I/O		
166	I/O	I/O	I/O	I/O	201	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}		
167	NC	I/O	I/O	I/O	202	NC	I/O	I/O	I/O		
168	I/O	I/O	I/O	I/O	203	NC	I/O	I/O	I/O		
169	I/O	I/O	I/O	I/O	204	I/O	I/O	I/O	I/O		
170	NC	I/O	I/O	I/O	205	NC	I/O	I/O	I/O		
171	I/O	I/O	I/O	I/O	206	I/O	I/O	I/O	I/O		
172	I/O	I/O	I/O	I/O	207	I/O	I/O	I/O	I/O		
173	NC	I/O	I/O	I/O	208	TCK, I/O	TCK, I/O	TCK, I/O	TCK, I/O		
174	I/O	I/O	I/O	I/O		-			-		
175	I/O	I/O	I/O	I/O							

144-Pin TQFP				144-Pin TQFP			
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function
1	GND	GND	GND	38	I/O	I/O	I/O
2	TDI, I/O	TDI, I/O	TDI, I/O	39	I/O	I/O	I/O
3	I/O	I/O	I/O	40	I/O	I/O	I/O
4	I/O	I/O	I/O	41	I/O	I/O	I/O
5	I/O	I/O	I/O	42	I/O	I/O	I/O
6	I/O	I/O	I/O	43	I/O	I/O	I/O
7	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}
8	I/O	I/O	I/O	45	I/O	I/O	I/O
9	TMS	TMS	TMS	46	I/O	I/O	I/O
10	V _{CCI}	V _{CCI}	V _{CCI}	47	I/O	I/O	I/O
11	GND	GND	GND	48	I/O	I/O	I/O
12	I/O	I/O	I/O	49	I/O	I/O	I/O
13	I/O	I/O	I/O	50	I/O	I/O	I/O
14	I/O	I/O	I/O	51	I/O	I/O	I/O
15	I/O	I/O	I/O	52	I/O	I/O	I/O
16	I/O	I/O	I/O	53	I/O	I/O	I/O
17	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O
18	I/O	I/O	I/O	55	I/O	I/O	I/O
19	NC	NC	NC	56	V _{CCA}	V _{CCA}	V _{CCA}
20	V _{CCA}	V _{CCA}	V _{CCA}	57	GND	GND	GND
21	I/O	I/O	I/O	58	NC	NC	NC
22	trst, I/O	trst, I/O	TRST, I/O	59	I/O	I/O	I/O
23	I/O	I/O	I/O	60	HCLK	HCLK	HCLK
24	I/O	I/O	I/O	61	I/O	I/O	I/O
25	I/O	I/O	I/O	62	I/O	I/O	I/O
26	I/O	I/O	I/O	63	I/O	I/O	I/O
27	I/O	I/O	I/O	64	I/O	I/O	I/O
28	GND	GND	GND	65	I/O	I/O	I/O
29	V _{CCI}	V _{CCI}	V _{CCI}	66	I/O	I/O	I/O
30	V _{CCA}	V _{CCA}	V _{CCA}	67	I/O	I/O	I/O
31	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}
32	I/O	I/O	I/O	69	I/O	I/O	I/O
33	I/O	I/O	I/O	70	I/O	I/O	I/O
34	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O
35	I/O	I/O	I/O	72	I/O	I/O	I/O
36	GND	GND	GND	73	GND	GND	GND
37	I/O	I/O	I/O	74	I/O	I/O	I/O