

Welcome to E-XFL.COM

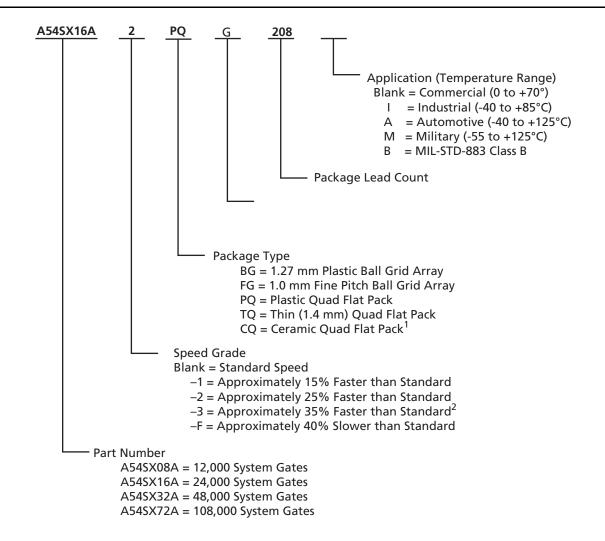
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


E·XFI

Details	
Product Status	Active
Number of LABs/CLBs	768
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	113
Number of Gates	12000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx08a-tqg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Notes:

1. For more information about the CQFP package options, refer to the HiRel SX-A datasheet.

2. All –3 speed grades have been discontinued.

Device Resources

	User I/Os (Including Clock Buffers)										
Device	208-Pin PQFP	100-Pin TQFP	144-Pin TQFP	176-Pin TQFP	329-Pin PBGA	144-Pin FBGA	256-Pin FBGA	484-Pin FBGA			
A54SX08A	130	81	113	-	-	111	-	-			
A54SX16A	175	81	113	-	-	111	180	_			
A54SX32A	174	81	113	147	249	111	203	249			
A54SX72A	171	-	-	_	-	-	203	360			

Notes: Package Definitions: PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid Array

Routing Resources

The routing and interconnect resources of SX-A devices are in the top two metal layers above the logic modules (Figure 1-1 on page 1-1), providing optimal use of silicon, thus enabling the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using the Actel patented metal-to-metal programmable antifuse interconnect elements. The antifuses are normally open circuits and, when programmed, form a permanent low-impedance connection.

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-5 on page 1-4 and Figure 1-6 on page 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance, which is often required in applications such as fast counters, state machines, and data path logic. The interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-Cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster, and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100% automatic place-and-route software to minimize signal propagation delays.

The general system of routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, most connections typically require three or fewer antifuses, resulting in fast and predictable performance.

The unique local and general routing structure featured in SX-A devices allows 100% pin-locking with full logic utilization, enables concurrent printed circuit board (PCB) development, reduces design time, and allows designers to achieve performance goals with minimum effort.

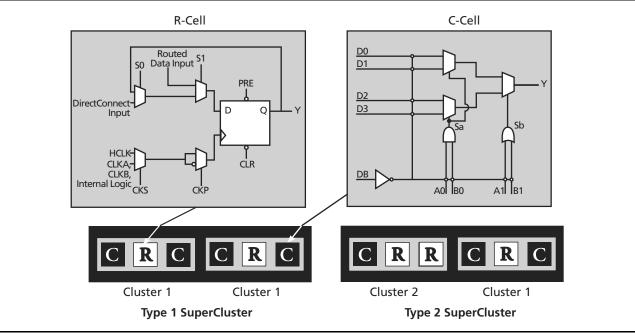


Figure 1-4 • Cluster Organization

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units
V _{CCI}	DC Supply Voltage for I/Os	-0.3 to +6.0	V
V _{CCA}	DC Supply Voltage for Arrays	-0.3 to +3.0	V
VI	Input Voltage	-0.5 to +5.75	V
V _O	Output Voltage	–0.5 to + V _{CCI} + 0.5	V
T _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions".

Table 2-2 Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range	0 to +70	-40 to +85	°C
2.5 V Power Supply Range (V _{CCA} and V _{CCI})	2.25 to 2.75	2.25 to 2.75	V
3.3 V Power Supply Range (V _{CCI})	3.0 to 3.6	3.0 to 3.6	V
5 V Power Supply Range (V _{CCI})	4.75 to 5.25	4.75 to 5.25	V

Typical SX-A Standby Current

Table 2-3 • Typical Standby Current for SX-A at 25°C with $V_{CCA} = 2.5 V$

Product	V _{CCI} = 2.5 V	V _{CCI} = 3.3 V	V _{CCI} = 5 V
A54SX08A	0.8 mA	1.0 mA	2.9 mA
A54SX16A	0.8 mA	1.0 mA	2.9 mA
A54SX32A	0.9 mA	1.0 mA	3.0 mA
A54SX72A	3.6 mA	3.8 mA	4.5 mA

Table 2-4 • Supply Voltages

V _{CCA}	V _{CCI} *	Maximum Input Tolerance	Maximum Output Drive
2. 5 V	2.5 V	5.75 V	2.7 V
2.5 V	3.3 V	5.75 V	3.6 V
2.5 V	5 V	5.75 V	5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

		Comm	ercial	Indus	strial		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -8 mA)	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			0.8		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μA
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web	•).			•		

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

		Comn	nercial	Indu	strial		
Symbol	Parameter	Min.	Max.	Min.	Max.	Units	
V _{OH}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -100 \mu\text{A})$	2.1		2.1		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	2.0		2.0		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} =2 mA)	1.7		1.7		V
V _{OL}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 2 mA)		0.7		0.7	V
V _{IL}	Input Low Voltage, V _{OUT} ≤ V _{VOL(max)}		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, V _{OUT} ≥ V _{VOH(min)}		1.7	5.75	1.7	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

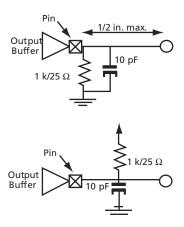

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CCI}$ ¹	-12V _{CCI}	-	mA
		$0.3V_{CCI} \le V_{OUT} < 0.9V_{CCI}$ ¹	(–17.1(V _{CCI} – V _{OUT}))	-	mA
		0.7V _{CCI} < V _{OUT} < V _{CCI} ^{1, 2}	-	EQ 2-3 on page 2-7	_
	(Test Point)	$V_{OUT} = 0.7 V_{CC}^2$	_	-32V _{CCI}	mA
I _{OL(AC)}	Switching Current Low	$V_{CCI} > V_{OUT} \ge 0.6 V_{CCI}^{1}$	16V _{CCI}	-	mA
OL(AC)		$0.6V_{CCI} > V_{OUT} > 0.1V_{CCI}^{1}$	(26.7V _{OUT})	-	mA
		0.18V _{CCI} > V _{OUT} > 0 ^{1, 2}	-	EQ 2-4 on page 2-7	_
	(Test Point)	$V_{OUT} = 0.18 V_{CC}^2$	-	38V _{CCI}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	–25 + (V _{IN} + 1)/0.015	-	mA
I _{CH}	High Clamp Current	$V_{CCI} + 4 > V_{IN} \ge V_{CCI} + 1$	25 + (V _{IN} – V _{CCI} – 1)/0.015	-	mA
slew _R	Output Rise Slew Rate	0.2V _{CCI} - 0.6V _{CCI} load ³	1	4	V/ns
slew _F	Output Fall Slew Rate	0.6V _{CCI} - 0.2V _{CCI} load ³	1	4	V/ns

Table 2-10 • AC Specifications (3.3 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 5	peed	-1 S	peed	Std. Speed		d –F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
3.3 V PCI Ou	itput Module Timing ¹										
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns	
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns	
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns	
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns	
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns	
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns	
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF	
d_{THL}^{2}	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF	
3.3 V LVTTL	Output Module Timing ³										
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns	
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns	
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns	
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns	
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns	
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns	
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns	
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns	
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF	
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF	
d _{THLS} ²	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF	

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-30 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
-----------------------------------	---

		-3 S	beed*	-2 S	peed	-1 Speed		Std. Speed		I –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks										<u> </u>
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPVVL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.6	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.4		2.7		3.2		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.3		2.7		3.1		3.6		5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.5		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{rckl}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.1	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.9		1.0		1.2		1.4		1.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.4		1.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-37 • A54SX72A Timing Characteristics (Continued)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-39 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 2.3 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-3 Spe	ed ¹	–2 S	peed	–1 S	peed	Std. 9	5peed	–F S	peed	
Parameter	Description	Min. N	/lax.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}											
t _{DLH}	Data-to-Pad Low to High		3.9		4.5		5.1		6.0		8.4	ns
t _{DHL}	Data-to-Pad High to Low		3.1		3.6		4.1		4.8		6.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	1	12.7		14.6		16.5		19.4		27.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	1	11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.5		5.1		6.0		8.4	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.1		3.6		4.1		4.8		6.7	ns
d_{TLH}^{4}	Delta Low to High	0	.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^4	Delta High to Low	0	.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^4	Delta High to Low—low slew	0	.057		0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

	2	08-Pin PQF	P		208-Pin PQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function			
1	GND	GND	GND	GND	36	I/O	I/O	I/O	I/O			
2	TDI, I/O	TDI, I/O	tdi, I/o	TDI, I/O	37	I/O	I/O	I/O	I/O			
3	I/O	I/O	I/O	I/O	38	I/O	I/O	I/O	I/O			
4	NC	I/O	I/O	I/O	39	NC	ΙΟ	I/O	I/O			
5	I/O	I/O	I/O	I/O	40	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}			
6	NC	I/O	I/O	I/O	41	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}			
7	I/O	I/O	I/O	I/O	42	I/O	I/O	I/O	I/O			
8	I/O	I/O	I/O	I/O	43	I/O	I/O	I/O	I/O			
9	I/O	I/O	I/O	I/O	44	I/O	I/O	I/O	I/O			
10	I/O	I/O	I/O	I/O	45	I/O	I/O	I/O	I/O			
11	TMS	TMS	TMS	TMS	46	I/O	I/O	I/O	I/O			
12	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	47	I/O	I/O	I/O	I/O			
13	I/O	I/O	I/O	I/O	48	NC	I/O	I/O	I/O			
14	NC	I/O	I/O	I/O	49	I/O	I/O	I/O	I/O			
15	I/O	I/O	I/O	I/O	50	NC	ΙΟ	I/O	I/O			
16	I/O	I/O	I/O	I/O	51	I/O	I/O	I/O	I/O			
17	NC	I/O	I/O	I/O	52	GND	GND	GND	GND			
18	I/O	I/O	I/O	GND	53	I/O	I/O	I/O	I/O			
19	I/O	I/O	I/O	V _{CCA}	54	I/O	I/O	I/O	I/O			
20	NC	I/O	I/O	I/O	55	I/O	I/O	I/O	I/O			
21	I/O	I/O	I/O	I/O	56	I/O	I/O	I/O	I/O			
22	I/O	I/O	I/O	I/O	57	I/O	I/O	I/O	I/O			
23	NC	I/O	I/O	I/O	58	I/O	I/O	I/O	I/O			
24	I/O	I/O	I/O	I/O	59	I/O	I/O	I/O	I/O			
25	NC	NC	NC	I/O	60	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}			
26	GND	GND	GND	GND	61	NC	I/O	I/O	I/O			
27	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	62	I/O	I/O	I/O	I/O			
28	GND	GND	GND	GND	63	I/O	I/O	I/O	I/O			
29	I/O	I/O	I/O	I/O	64	NC	I/O	I/O	I/O			
30	TRST, I/O	trst, I/O	trst, I/O	TRST, I/O	65	I/O	I/O	NC	I/O			
31	NC	I/O	I/O	I/O	66	I/O	I/O	I/O	I/O			
32	I/O	I/O	I/O	I/O	67	NC	I/O	I/O	I/O			
33	I/O	I/O	I/O	I/O	68	I/O	I/O	I/O	I/O			
34	I/O	I/O	I/O	I/O	69	I/O	I/O	I/O	I/O			
35	NC	I/O	I/O	I/O	70	NC	I/O	I/O	I/O			

	2	08-Pin PQF	P		208-Pin PQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function			
71	I/O	I/O	I/O	I/O	106	NC	I/O	I/O	I/O			
72	I/O	I/O	I/O	I/O	107	I/O	ΙΟ	I/O	I/O			
73	NC	I/O	I/O	I/O	108	NC	I/O	I/O	I/O			
74	I/O	I/O	I/O	QCLKA	109	I/O	ΙΟ	I/O	I/O			
75	NC	I/O	I/O	I/O	110	I/O	ΙΟ	I/O	I/O			
76	PRB, I/O	PRB, I/O	PRB, I/O	PRB,I/O	111	I/O	ΙΟ	I/O	I/O			
77	GND	GND	GND	GND	112	I/O	ΙΟ	I/O	I/O			
78	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	113	I/O	ΙΟ	I/O	I/O			
79	GND	GND	GND	GND	114	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}			
80	NC	NC	NC	NC	115	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}			
81	I/O	I/O	I/O	I/O	116	NC	I/O	I/O	GND			
82	HCLK	HCLK	HCLK	HCLK	117	I/O	I/O	I/O	V _{CCA}			
83	I/O	I/O	I/O	V _{CCI}	118	I/O	I/O	I/O	I/O			
84	I/O	I/O	I/O	QCLKB	119	NC	I/O	I/O	I/O			
85	NC	I/O	I/O	I/O	120	I/O	I/O	I/O	I/O			
86	I/O	I/O	I/O	I/O	121	I/O	I/O	I/O	I/O			
87	I/O	I/O	I/O	I/O	122	NC	I/O	I/O	I/O			
88	NC	I/O	I/O	I/O	123	I/O	I/O	I/O	I/O			
89	I/O	I/O	I/O	I/O	124	I/O	I/O	I/O	I/O			
90	I/O	I/O	I/O	I/O	125	NC	I/O	I/O	I/O			
91	NC	I/O	I/O	I/O	126	I/O	I/O	I/O	I/O			
92	I/O	I/O	I/O	I/O	127	I/O	I/O	I/O	I/O			
93	I/O	I/O	I/O	I/O	128	I/O	I/O	I/O	I/O			
94	NC	I/O	I/O	I/O	129	GND	GND	GND	GND			
95	I/O	I/O	I/O	I/O	130	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}			
96	I/O	I/O	I/O	I/O	131	GND	GND	GND	GND			
97	NC	I/O	I/O	I/O	132	NC	NC	NC	I/O			
98	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	133	I/O	I/O	I/O	I/O			
99	I/O	I/O	I/O	I/O	134	I/O	I/O	I/O	I/O			
100	I/O	I/O	I/O	I/O	135	NC	I/O	I/O	I/O			
101	I/O	I/O	I/O	I/O	136	I/O	I/O	I/O	I/O			
102	I/O	I/O	I/O	I/O	137	I/O	I/O	I/O	I/O			
103	TDO, I/O	TDO, I/O	TDO, I/O	TDO, I/O	138	NC	I/O	I/O	I/O			
104	I/O	I/O	I/O	I/O	139	I/O	I/O	I/O	I/O			
105	GND	GND	GND	GND	140	I/O	I/O	I/O	I/O			

144-Pin TQFP

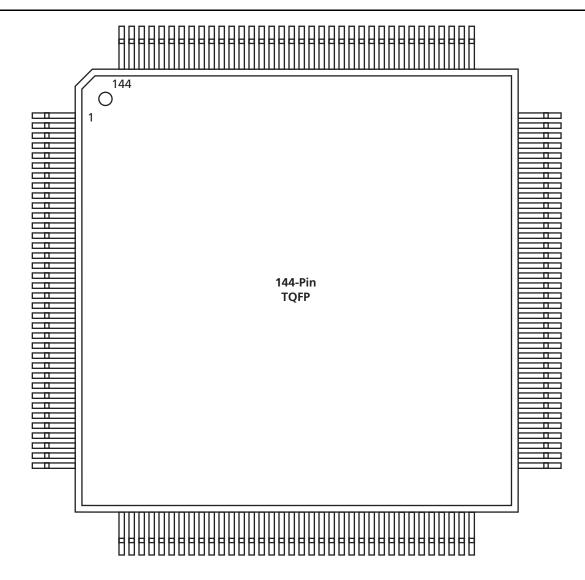


Figure 3-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pin PBGA		329-Pi	n PBGA	329-Pi	in PBGA	329-Pin PBGA		
Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	
D11	V _{CCA}	H1	I/O	L14	GND	P12	GND	
D12	NC	H2	I/O	L20	NC	P13	GND	
D13	I/O	H3	I/O	L21	I/O	P14	GND	
D14	I/O	H4	I/O	L22	I/O	P20	I/O	
D15	I/O	H20	V _{CCA}	L23	NC	P21	I/O	
D16	I/O	H21	I/O	M1	I/O	P22	I/O	
D17	I/O	H22	I/O	M2	I/O	P23	I/O	
D18	I/O	H23	I/O	M3	I/O	R1	I/O	
D19	I/O	J1	NC	M4	V _{CCA}	R2	I/O	
D20	I/O	J2	I/O	M10	GND	R3	I/O	
D21	I/O	J3	I/O	M11	GND	R4	I/O	
D22	I/O	J4	I/O	M12	GND	R20	I/O	
D23	I/O	J20	I/O	M13	GND	R21	I/O	
E1	V _{CCI}	J21	I/O	M14	GND	R22	I/O	
E2	I/O	J22	I/O	M20	V _{CCA}	R23	I/O	
E3	I/O	J23	I/O	M21	I/O	T1	I/O	
E4	I/O	К1	I/O	M22	I/O	T2	I/O	
E20	I/O	К2	I/O	M23	V _{CCI}	Т3	I/O	
E21	I/O	К3	I/O	N1	I/O	T4	I/O	
E22	I/O	К4	I/O	N2	TRST, I/O	T20	I/O	
E23	I/O	K10	GND	N3	I/O	T21	I/O	
F1	I/O	K11	GND	N4	I/O	T22	I/O	
F2	TMS	K12	GND	N10	GND	T23	I/O	
F3	I/O	K13	GND	N11	GND	U1	I/O	
F4	I/O	K14	GND	N12	GND	U2	I/O	
F20	I/O	K20	I/O	N13	GND	U3	V _{CCA}	
F21	I/O	K21	I/O	N14	GND	U4	I/O	
F22	I/O	K22	I/O	N20	NC	U20	I/O	
F23	I/O	K23	I/O	N21	I/O	U21	V _{CCA}	
G1	I/O	L1	I/O	N22	I/O	U22	I/O	
G2	I/O	L2	I/O	N23	I/O	U23	I/O	
G3	I/O	L3	I/O	P1	I/O	V1	V _{CCI}	
G4	I/O	L4	NC	P2	I/O	V2	I/O	
G20	I/O	L10	GND	P3	I/O	V3	I/O	
G21	I/O	L11	GND	P4	I/O	V4	I/O	
G22	I/O	L12	GND	P10	GND	V20	I/O	
G23	GND	L13	GND	P11	GND	V21	I/O	

	256-Pii	n FBGA	
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
P15	I/O	I/O	I/O
P16	I/O	I/O	I/O
R1	I/O	I/O	I/O
R2	GND	GND	GND
R3	I/O	I/O	I/O
R4	NC	I/O	I/O
R5	I/O	I/O	I/O
R6	I/O	I/O	I/O
R7	I/O	I/O	I/O
R8	I/O	I/O	I/O
R9	HCLK	HCLK	HCLK
R10	I/O	I/O	QCLKB
R11	I/O	I/O	I/O
R12	I/O	I/O	I/O
R13	I/O	I/O	I/O
R14	I/O	I/O	I/O
R15	GND	GND	GND
R16	GND	GND	GND
T1	GND	GND	GND
T2	I/O	I/O	I/O
T3	I/O	I/O	I/O
T4	NC	I/O	I/O
T5	I/O	I/O	I/O
T6	I/O	I/O	I/O
T7	I/O	I/O	I/O
T8	I/O	I/O	I/O
Т9	V _{CCA}	V _{CCA}	V _{CCA}
T10	I/O	I/O	I/O
T11	I/O	I/O	I/O
T12	NC	I/O	I/O
T13	I/O	I/O	I/O
T14	I/O	I/O	I/O
T15	TDO, I/O	TDO, I/O	TDO, I/O
T16	GND	GND	GND

484-Pin FBGA								
Pin Number	A54SX32A Function	A54SX72A Function						
AD18	I/O	I/O						
AD19	I/O	I/O						
AD20	I/O	I/O						
AD21	I/O	I/O						
AD22	I/O	I/O						
AD23	V _{CCI}	V _{CCI}						
AD24	NC*	I/O						
AD25	NC*	I/O						
AD26	NC*	I/O						
AE1	NC*	NC						
AE2	I/O	I/O						
AE3	NC*	I/O						
AE4	NC*	I/O						
AE5	NC*	I/O						
AE6	NC*	I/O						
AE7	I/O	I/O						
AE8	I/O	I/O						
AE9	I/O	I/O						
AE10	I/O	I/O						
AE11	NC*	I/O						
AE12	I/O	I/O						
AE13	I/O	I/O						
AE14	I/O	I/O						
AE15	NC*	I/O						
AE16	NC*	I/O						
AE17	I/O	I/O						
AE18	I/O	I/O						
AE19	I/O	I/O						
AE20	I/O	I/O						
AE21	NC*	I/O						
AE22	NC*	I/O						
AE23	NC*	I/O						
AE24	NC*	I/O						
AE25	NC*	NC						
AE26	NC*	NC						

484-Pin FBGA							
Pin Number	A54SX32A Function	A54SX72A Function					
AF1	NC*	NC					
AF2	NC*	NC					
AF3	NC	I/O					
AF4	NC*	I/O					
AF5	NC*	I/O					
AF6	NC*	I/O					
AF7	I/O	I/O					
AF8	I/O	I/O					
AF9	I/O	I/O					
AF10	I/O	I/O					
AF11	NC*	I/O					
AF12	NC*	NC					
AF13	HCLK	HCLK					
AF14	I/O	QCLKB					
AF15	NC*	I/O					
AF16	NC*	I/O					
AF17	I/O	I/O					
AF18	I/O	I/O					
AF19	I/O	I/O					
AF20	NC*	I/O					
AF21	NC*	I/O					
AF22	NC*	I/O					
AF23	NC*	I/O					
AF24	NC*	I/O					
AF25	NC*	NC					
AF26	NC*	NC					
B1	NC*	NC					
B2	NC*	NC					
B3	NC*	I/O					
B4	NC*	I/O					
B5	NC*	I/O					
B6	I/O	I/O					
B7	I/O	I/O					
B8	I/O	I/O					
B9	I/O	I/O					

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
B10	I/O	I/O
B11	NC*	I/O
B12	NC*	I/O
B13	V _{CCI}	V _{CCI}
B14	CLKA	CLKA
B15	NC*	I/O
B16	NC*	I/O
B17	I/O	I/O
B18	V _{CCI}	V _{CCI}
B19	I/O	I/O
B20	I/O	I/O
B21	NC*	I/O
B22	NC*	I/O
B23	NC*	I/O
B24	NC*	I/O
B25	I/O	I/O
B26	NC*	NC
C1	NC*	I/O
C2	NC*	I/O
C3	NC*	I/O
C4	NC*	I/O
C5	I/O	I/O
C6	V _{CCI}	V _{CCI}
С7	I/O	I/O
C8	I/O	I/O
С9	V _{CCI}	V _{CCI}
C10	I/O	I/O
C11	I/O	I/O
C12	I/O	I/O
C13	PRA, I/O	PRA, I/O
C14	I/O	I/O
C15	I/O	QCLKD
C16	I/O	I/O
C17	I/O	I/O
C18	I/O	I/O

Note: *These pins must be left floating on the A54SX32A device.

Actel [®]	
SX-A Family FPGAs	

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
T3	I/O	I/O				
T4	I/O	I/O				
T5	I/O	I/O				
T10	GND	GND				
T11	GND	GND				
T12	GND	GND				
T13	GND	GND				
T14	GND	GND				
T15	GND	GND				
T16	GND	GND				
T17	GND	GND				
T22	I/O	I/O				
T23	I/O	I/O				
T24	I/O	I/O				
T25	NC*	I/O				
T26	NC*	I/O				
U1	I/O	I/O				
U2	V _{CCI}	V _{CCI}				
U3	I/O	I/O				
U4	I/O	I/O				
U5	I/O	I/O				
U10	GND	GND				
U11	GND	GND				
U12	GND	GND				
U13	GND	GND				
U14	GND	GND				
U15	GND	GND				
U16	GND	GND				
U17	GND	GND				
U22	I/O	I/O				
U23	I/O	I/O				
U24	I/O	I/O				
U25	V _{CCI}	V _{CCI}				
U26	I/O	I/O				
V1	NC*	I/O				

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
V2	NC*	I/O	
V3	I/O	I/O	
V4	I/O	I/O	
V5	I/O	I/O	
V22	V _{CCA}	V _{CCA}	
V23	I/O	I/O	
V24	I/O	I/O	
V25	NC*	I/O	
V26	NC*	I/O	
W1	I/O	I/O	
W2	I/O	I/O	
W3	I/O	I/O	
W4	I/O	I/O	
W5	I/O	I/O	
W22	I/O	I/O	
W23	V _{CCA}	V _{CCA}	
W24	I/O	I/O	
W25	NC*	I/O	
W26	NC*	I/O	
Y1	NC*	I/O	
Y2	NC*	I/O	
Y3	I/O	I/O	
Y4	I/O	I/O	
Y5	NC*	I/O	
Y22	I/O	I/O	
Y23	I/O	I/O	
Y24	V _{CCI}	V _{CCI}	
Y25	I/O	I/O	
Y26	I/O	I/O	

Note: *These pins must be left floating on the A54SX32A device.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	-3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9