

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

5

ĿXFI

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	111
Number of Gates	24000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx16a-1fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications.

Function	Description
Input Buffer Threshold Selections	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Output Buffer	 "Hot-Swap" Capability (3.3 V PCI is not hot swappable) I/O on an unpowered device does not sink current Can be used for "cold-sparing" Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device V _{CCA} and V _{CCI} can be powered in any order

Table 1-2 • I/O Features

Table 1-3 • I/O Characteristics for All I/O Configurations

	Hot Swappable	Slew Rate Control	Power-Up Resistor
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μs	5 V/ms	2.5 V/ms	0.5 V/ms	0.25 V/ms	0.1 V/ms	0.025 V/ms
Units	μs	μs	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

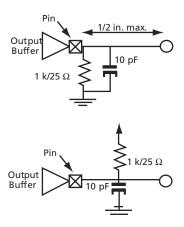
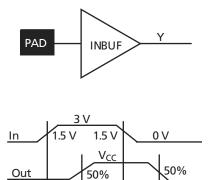

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CCI}$ ¹	-12V _{CCI}	-	mA
		$0.3V_{CCI} \le V_{OUT} < 0.9V_{CCI}$ ¹	(–17.1(V _{CCI} – V _{OUT}))	-	mA
I _{OH(AC)} I _{OL(AC)} I _{CL} I _{CH} slew _R		0.7V _{CCI} < V _{OUT} < V _{CCI} ^{1, 2}	-	EQ 2-3 on page 2-7	_
	(Test Point)	$V_{OUT} = 0.7 V_{CC}^2$	_	-32V _{CCI}	mA
I _{OL(AC)} Swit	Switching Current Low	$V_{CCI} > V_{OUT} \ge 0.6 V_{CCI}^{1}$	16V _{CCI}	-	mA
		$0.6V_{CCI} > V_{OUT} > 0.1V_{CCI}^{1}$	(26.7V _{OUT})	-	mA
		0.18V _{CCI} > V _{OUT} > 0 ^{1, 2}	-	EQ 2-4 on page 2-7	_
	(Test Point)	$0.3V_{CCI} \le V_{OUT} < 0.9V_{CCI}^{1}$ $0.7V_{CCI} < V_{OUT} < V_{CCI}^{1, 2}$ $V_{OUT} = 0.7V_{CC}^{2}$ $V_{CCI} > V_{OUT} \ge 0.6V_{CCI}^{1}$ $0.6V_{CCI} > V_{OUT} > 0.1V_{CCI}^{1}$	-	38V _{CCI}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	–25 + (V _{IN} + 1)/0.015	-	mA
I _{CH}	High Clamp Current	$V_{CCI} + 4 > V_{IN} \ge V_{CCI} + 1$	25 + (V _{IN} – V _{CCI} – 1)/0.015	-	mA
slew _R	Output Rise Slew Rate	0.2V _{CCI} - 0.6V _{CCI} load ³	1	4	V/ns
slew _F	Output Fall Slew Rate	0.6V _{CCI} - 0.2V _{CCI} load ³	1	4	V/ns

Table 2-10 • AC Specifications (3.3 V PCI Operation)


Notes:

1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

Input Buffer Delays

t INY **C-Cell Delays**

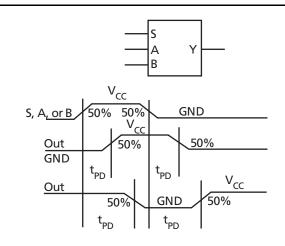


Figure 2-6 • Input Buffer Delays

GND

Figure 2-7 • C-Cell Delays

Cell Timing Characteristics

t_{INY}

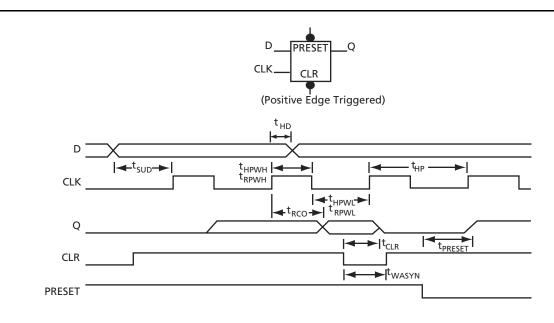


Figure 2-8 • Flip-Flops

Timing Characteristics

Table 2-14 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	igation Delays ¹	-		-		-		•		-
t _{PD}	Internal Array Module		0.9		1.1		1.2		1.7	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.6		0.7		0.8		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns
R-Cell Timin	g									
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.7		0.9		1.2	ns
t _{sud}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.2		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.5		1.8		2.5		ns
t _{recasyn}	Asynchronous Recovery Time	0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Pulse Width	1.6		1.8		2.1		2.9		ns
Input Modu	le Propagation Delays					1				1
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		1.0		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.3	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.1		1.3		1.8	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-18 • A54SX08A Timing Characteristics

		-2 S	peed	-1 S	peed	Std. S	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMC	DS Output Module Timing ^{1,2}	•								
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-31 A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4.7	′5 V, T _J = 70°C)
-----------------------------------	---	------------------------------

		-3 Speed*		-2 Speed		–1 Speed		Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks		1								1
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.7		1.9		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks	4										<u>.</u>
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.5		2.8		3.3		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.8		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.2	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Table 2-35 • A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		–3 Speed ¹		-2 Speed		-1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ²											4
t _{PD}	Internal Array Module		1.0		1.1		1.3		1.5		2.0	ns
Predicted R	outing Delays ³											-
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.7		0.8		0.9		1.3	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns
R-Cell Timir	ng											4
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.1		1.5	ns
t _{CLR}	Asynchronous Clear-to-Q		0.6		0.7		0.7		0.9		1.2	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.8		1.0		1.4	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.3		1.5		1.7		2.0		2.8		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.5		1.7		2.0		2.3		3.2		ns
Input Modu	le Propagation Delays											•
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.6		0.7		0.8		0.9		1.3	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		0.8		1.0		1.1		1.3		1.7	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.8		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.2		1.3		1.5		2.1	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-37 • A54SX72A Timing Characteristics

(Worst-Case Commercial Condition	$V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_{J} = 70^{\circ}C$
----------------------------------	--

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.3		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.4		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.1		4.8		6.7	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{rcksw}	Maximum Skew (Light Load)		1.9		2.2		2.5		3		4.1	ns
t _{rcksw}	Maximum Skew (50% Load)		1.9		2.1		2.4		2.8		3.9	ns
t _{rcksw}	Maximum Skew (100% Load)		1.9		2.1		2.4		2.8		3.9	ns
Quadrant A	rray Clock Networks											
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.3		1.5		1.7		1.9		2.7	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.5		1.7		2		2.8	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.5		1.7		1.9		2.2		3.1	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.5		1.8		2		2.3		3.2	ns

Table 2-37 • A54SX72A Timing Characteristics (Continued)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Table 2-38 • A54SX72A Timing Characteristics (Continued)

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.4	ns
t _{qchkl}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.5	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{qcksw}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Table 2-39 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 2.3 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-3 Spe	ed ¹	–2 S	peed	–1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min. N	/lax.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}											
t _{DLH}	Data-to-Pad Low to High		3.9		4.5		5.1		6.0		8.4	ns
t _{DHL}	Data-to-Pad High to Low		3.1		3.6		4.1		4.8		6.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	1	12.7		14.6		16.5		19.4		27.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	1	11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.5		5.1		6.0		8.4	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.1		3.6		4.1		4.8		6.7	ns
d_{TLH}^{4}	Delta Low to High	0	.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^4	Delta High to Low	0	.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^4	Delta High to Low—low slew	0	.057		0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

	144-Pi	n FBGA		144-Pin FBGA						
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function			
G1	I/O	I/O	I/O	K1	I/O	I/O	I/O			
G2	GND	GND	GND	К2	I/O	I/O	I/O			
G3	I/O	I/O	I/O	К3	I/O	I/O	I/O			
G4	I/O	I/O	I/O	К4	I/O	I/O	I/O			
G5	GND	GND	GND	K5	I/O	I/O	I/O			
G6	GND	GND	GND	K6	I/O	I/O	I/O			
G7	GND	GND	GND	К7	GND	GND	GND			
G8	V _{CCI}	V _{CCI}	V _{CCI}	K8	I/O	I/O	I/O			
G9	I/O	I/O	I/O	К9	I/O	I/O	I/O			
G10	I/O	I/O	I/O	K10	GND	GND	GND			
G11	I/O	I/O	I/O	K11	I/O	I/O	I/O			
G12	I/O	I/O	I/O	K12	I/O	I/O	I/O			
H1	TRST, I/O	TRST, I/O	TRST, I/O	L1	GND	GND	GND			
H2	I/O	I/O	I/O	L2	I/O	I/O	I/O			
H3	I/O	I/O	I/O	L3	I/O	I/O	I/O			
H4	I/O	I/O	I/O	L4	I/O	I/O	I/O			
H5	V _{CCA}	V _{CCA}	V _{CCA}	L5	I/O	I/O	I/O			
H6	V _{CCA}	V _{CCA}	V _{CCA}	L6	I/O	I/O	I/O			
H7	V _{CCI}	V _{CCI}	V _{CCI}	L7	HCLK	HCLK	HCLK			
H8	V _{CCI}	V _{CCI}	V _{CCI}	L8	I/O	I/O	I/O			
H9	V _{CCA}	V _{CCA}	V _{CCA}	L9	I/O	I/O	I/O			
H10	I/O	I/O	I/O	L10	I/O	I/O	I/O			
H11	I/O	I/O	I/O	L11	I/O	I/O	I/O			
H12	NC	NC	NC	L12	I/O	I/O	I/O			
J1	I/O	I/O	I/O	M1	I/O	I/O	I/O			
J2	I/O	I/O	I/O	M2	I/O	I/O	I/O			
J3	I/O	I/O	I/O	M3	I/O	I/O	I/O			
J4	I/O	I/O	I/O	M4	I/O	I/O	I/O			
J5	I/O	I/O	I/O	M5	I/O	I/O	I/O			
J6	PRB, I/O	PRB, I/O	PRB, I/O	M6	I/O	I/O	I/O			
J7	I/O	I/O	I/O	M7	V _{CCA}	V _{CCA}	V _{CCA}			
J8	I/O	I/O	I/O	M8	I/O	I/O	I/O			
J9	I/O	I/O	I/O	M9	I/O	I/O	I/O			
J10	I/O	I/O	I/O	M10	I/O	I/O	I/O			
J11	I/O	I/O	I/O	M11	TDO, I/O	TDO, I/O	TDO, I/O			
J12	V _{CCA}	V _{CCA}	V _{CCA}	M12	I/O	I/O	I/O			

256-Pin FBGA

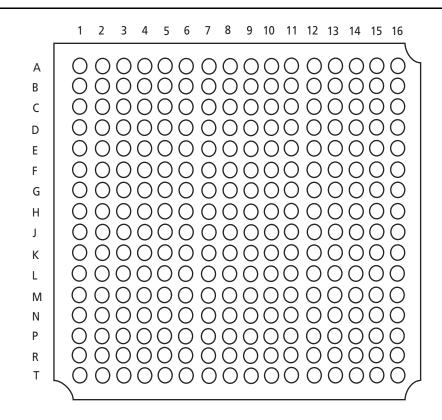


Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pi	n FBGA		256-Pin FBGA						
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function			
A1	GND	GND	GND	C6	I/O	I/O	I/O			
A2	TCK, I/O	TCK, I/O	TCK, I/O	C7	I/O	I/O	I/O			
A3	I/O	I/O	I/O	C8	I/O	I/O	I/O			
A4	I/O	I/O	I/O	С9	CLKA	CLKA	CLKA			
A5	I/O	I/O	I/O	C10	I/O	I/O	I/O			
A6	I/O	I/O	I/O	C11	I/O	I/O	I/O			
A7	I/O	I/O	I/O	C12	I/O	I/O	I/O			
A8	I/O	I/O	I/O	C13	I/O	I/O	I/O			
A9	CLKB	CLKB	CLKB	C14	I/O	I/O	I/O			
A10	I/O	I/O	I/O	C15	I/O	I/O	I/O			
A11	I/O	I/O	I/O	C16	I/O	I/O	I/O			
A12	NC	I/O	I/O	D1	I/O	I/O	I/O			
A13	I/O	I/O	I/O	D2	I/O	I/O	I/O			
A14	I/O	I/O	I/O	D3	I/O	I/O	I/O			
A15	GND	GND	GND	D4	I/O	I/O	I/O			
A16	GND	GND	GND	D5	I/O	I/O	I/O			
B1	I/O	I/O	I/O	D6	I/O	I/O	I/O			
B2	GND	GND	GND	D7	I/O	I/O	I/O			
B3	I/O	I/O	I/O	D8	PRA, I/O	PRA, I/O	PRA, I/O			
B4	I/O	I/O	I/O	D9	I/O	I/O	QCLKD			
B5	I/O	I/O	I/O	D10	I/O	I/O	I/O			
B6	NC	I/O	I/O	D11	NC	I/O	I/O			
B7	I/O	I/O	I/O	D12	I/O	I/O	I/O			
B8	V _{CCA}	V _{CCA}	V _{CCA}	D13	I/O	I/O	I/O			
B9	I/O	I/O	I/O	D14	I/O	I/O	I/O			
B10	I/O	I/O	I/O	D15	I/O	I/O	I/O			
B11	NC	I/O	I/O	D16	I/O	I/O	I/O			
B12	I/O	I/O	I/O	E1	I/O	I/O	I/O			
B13	I/O	I/O	I/O	E2	I/O	I/O	I/O			
B14	I/O	I/O	I/O	E3	I/O	I/O	I/O			
B15	GND	GND	GND	E4	I/O	I/O	I/O			
B16	I/O	I/O	I/O	E5	I/O	I/O	I/O			
C1	I/O	I/O	I/O	E6	I/O	I/O	I/O			
C2	TDI, I/O	TDI, I/O	TDI, I/O	E7	I/O	I/O	QCLKC			
C3	GND	GND	GND	E8	I/O	I/O	I/O			
C4	I/O	I/O	I/O	E9	I/O	I/O	I/O			
C5	NC	I/O	I/O	E10	I/O	I/O	Ι/O			

	484-Pin FBG	Α	
Pin Number	A54SX32A Function	A54SX72A Function	P Nur
A1	NC*	NC	AA
A2	NC*	NC	А
A3	NC*	I/O	А
A4	NC*	I/O	А
A5	NC*	I/O	A
A6	I/O	I/O	A
A7	I/O	I/O	A
A8	I/O	I/O	A
A9	I/O	I/O	A
A10	I/O	I/O	A
A11	NC*	I/O	AE
A12	NC*	I/O	AE
A13	I/O	I/O	A
A14	NC*	NC	AE
A15	NC*	I/O	AE
A16	NC*	I/O	AE
A17	I/O	I/O	AE
A18	I/O	I/O	AE
A19	I/O	I/O	AE
A20	I/O	I/O	AE
A21	NC*	I/O	AE
A22	NC*	I/O	A
A23	NC*	I/O	A
A24	NC*	I/O	AE
A25	NC*	NC	AE
A26	NC*	NC	A
AA1	NC*	I/O	A
AA2	NC*	I/O	А
AA3	V _{CCA}	V _{CCA}	A
AA4	I/O	I/O	А
AA5	I/O	I/O	А
AA22	I/O	I/O	А
AA23	I/O	I/O	A
AA24	I/O	I/O	A
AA25	NC*	I/O	A

	484-Pin FBG	Α
Pin Number	A54SX32A Function	A54SX72A Function
AA26	NC*	I/O
AB1	NC*	NC
AB2	V _{CCI}	V _{CCI}
AB3	I/O	I/O
AB4	I/O	I/O
AB5	NC*	I/O
AB6	I/O	I/O
AB7	I/O	I/O
AB8	I/O	I/O
AB9	I/O	I/O
AB10	I/O	I/O
AB11	I/O	I/O
AB12	PRB, I/O	PRB, I/O
AB13	V _{CCA}	V _{CCA}
AB14	I/O	I/O
AB15	I/O	I/O
AB16	I/O	I/O
AB17	I/O	I/O
AB18	I/O	I/O
AB19	I/O	I/O
AB20	TDO, I/O	TDO, I/O
AB21	GND	GND
AB22	NC*	I/O
AB23	I/O	I/O
AB24	I/O	I/O
AB25	NC*	I/O
AB26	NC*	I/O
AC1	I/O	I/O
AC2	I/O	I/O
AC3	I/O	I/O
AC4	NC*	I/O
AC5	V _{CCI}	V _{CCI}
AC6	I/O	I/O
AC7	V _{CCI}	V _{CCI}
AC8	I/O	I/O

	484-Pin FBG	Α
Pin Number	A54SX32A Function	A54SX72A Function
AC9	I/O	I/O
AC10	I/O	I/O
AC11	I/O	I/O
AC12	I/O	QCLKA
AC13	I/O	I/O
AC14	I/O	I/O
AC15	I/O	I/O
AC16	I/O	I/O
AC17	I/O	I/O
AC18	I/O	I/O
AC19	I/O	I/O
AC20	V _{CCI}	V _{CCI}
AC21	I/O	I/O
AC22	I/O	I/O
AC23	NC*	I/O
AC24	I/O	I/O
AC25	NC*	I/O
AC26	NC*	I/O
AD1	I/O	I/O
AD2	I/O	I/O
AD3	GND	GND
AD4	I/O	I/O
AD5	I/O	I/O
AD6	I/O	I/O
AD7	I/O	I/O
AD8	I/O	I/O
AD9	V _{CCI}	V _{CCI}
AD10	I/O	I/O
AD11	I/O	I/O
AD12	I/O	I/O
AD13	V _{CCI}	V _{CCI}
AD14	I/O	I/O
AD15	I/O	I/O
AD16	I/O	I/O
AD17	V _{CCI}	V _{CCI}

Actel°

SX-A Family FPGAs

Note: *These pins must be left floating on the A54SX32A device.

	484-Pin FBG	Α	
Pin Number	A54SX32A Function	A54SX72A Function	Nu
K10	GND	GND	
K11	GND	GND	Ν
K12	GND	GND	Ν
K13	GND	GND	Ν
K14	GND	GND	Ν
K15	GND	GND	Ν
K16	GND	GND	Ν
K17	GND	GND	Ν
K22	I/O	I/O	Ν
K23	I/O	I/O	Ν
K24	NC*	NC	Ν
K25	NC*	I/O	Ν
K26	NC*	I/O	Ν
L1	NC*	I/O	Ν
L2	NC*	ΙΟ	
L3	I/O	I/O	
L4	I/O	I/O	
L5	I/O	I/O	
L10	GND	GND	
L11	GND	GND	1
L12	GND	GND	1
L13	GND	GND	1
L14	GND	GND	1
L15	GND	GND	1
L16	GND	GND	1
L17	GND	GND	1
L22	I/O	I/O	1
L23	I/O	I/O	1
L24	I/O	I/O	1
L25	I/O	I/O	1
L26	I/O	I/O	1
M1	NC*	NC	1
M2	I/O	I/O	
M3	I/O	I/O	
M4	I/O	I/O	

		Α
Pin Number	A54SX32A Function	A54SX72A Function
M5	I/O	I/O
M10	GND	GND
M11	GND	GND
M12	GND	GND
M13	GND	GND
M14	GND	GND
M15	GND	GND
M16	GND	GND
M17	GND	GND
M22	I/O	I/O
M23	I/O	I/O
M24	I/O	I/O
M25	NC*	I/O
M26	NC*	I/O
N1	I/O	I/O
N2	V _{CCI}	V _{CCI}
N3	I/O	I/O
N4	I/O	I/O
N5	I/O	I/O
N10	GND	GND
N11	GND	GND
N12	GND	GND
N13	GND	GND
N14	GND	GND
N15	GND	GND
N16	GND	GND
N17	GND	GND
N22	V _{CCA}	V _{CCA}
N23	I/O	I/O
N24	I/O	I/O
N25	I/O	I/O
N26	NC*	NC
P1	NC*	I/O
P2	NC*	I/O
P3	I/O	I/O

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
P4	I/O	I/O		
P5	V _{CCA}	V _{CCA}		
P10	GND	GND		
P11	GND	GND		
P12	GND	GND		
P13	GND	GND		
P14	GND	GND		
P15	GND	GND		
P16	GND	GND		
P17	GND	GND		
P22	I/O	ΙΟ		
P23	I/O	I/O		
P24	V _{CCI}	V _{CCI}		
P25	I/O	I/O		
P26	I/O	I/O		
R1	NC*	I/O		
R2	NC*	I/O		
R3	I/O	I/O		
R4	I/O	I/O		
R5	TRST, I/O	TRST, I/O		
R10	GND	GND		
R11	GND	GND		
R12	GND	GND		
R13	GND	GND		
R14	GND	GND		
R15	GND	GND		
R16	GND	GND		
R17	GND	GND		
R22	I/O	I/O		
R23	I/O	I/O		
R24	I/O	I/O		
R25	NC*	I/O		
R26	NC*	I/O		
T1	NC*	I/O		
T2	NC*	I/O		

Note: *These pins must be left floating on the A54SX32A device.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	–3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.