E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

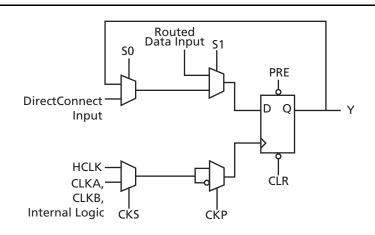
Details	
Product Status	Active
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	175
Number of Gates	24000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx16a-1pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Module Design

The SX-A family architecture is described as a "sea-ofmodules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX-A family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell).


The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable, using the S0 and S1 lines control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-byregister basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen from either the hardwired clock, the routed clocks, or internal logic.

The C-cell implements a range of combinatorial functions of up to five inputs (Figure 1-3). Inclusion of the DB input and its associated inverter function allows up to 4,000 different combinatorial functions to be implemented in a single module. An example of the flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 1.9 ns propagation delays.

Module Organization

All C-cell and R-cell logic modules are arranged into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells.

Clusters are grouped together into SuperClusters (Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide grouping of Type 1 Clusters. SuperCluster 2 is a two-wide group containing one Type 1 Cluster and one Type 2 Cluster. SX-A devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops.

Figure 1-2 • R-Cell

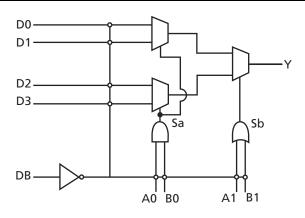


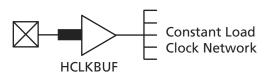
Figure 1-3 • C-Cell

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.


In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks in Actel's Antifuse Devices* and *Using A54SX72A and RT54SX72S Quadrant Clocks* application notes.

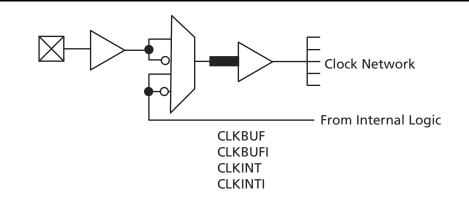

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer

Probing Capabilities

SX-A devices also provide an internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II diagnostic hardware is used to control the TDI, TCK, TMS, and TDO pins to select the desired nets for debugging. The user assigns the selected internal nets in Actel Silicon Explorer II software to the PRA/PRB output pins for observation. Silicon Explorer II automatically places the device into JTAG mode. However, probing functionality is only activated when the TRST pin is driven high or left floating, allowing the internal pull-up resistor to pull TRST High. If the TRST pin is held Low, the TAP controller remains in the Test-Logic-Reset state so no probing can be performed. However, the user must drive the TRST pin High or allow the internal pull-up resistor to pull TRST High. When selecting the **Reserve Probe Pin** box as shown in Figure 1-12 on page 1-9, direct the layout tool to reserve the PRA and PRB pins as dedicated outputs for probing. This **Reserve** option is merely a guideline. If the designer assigns user I/Os to the PRA and PRB pins and selects the **Reserve Probe Pin** option, Designer Layout will override the **Reserve Probe Pin** option and place the user I/Os on those pins.

To allow probing capabilities, the security fuse must not be programmed. Programming the security fuse disables the JTAG and probe circuitry. Table 1-9 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

JTAG Mode	TRST ¹	Security Fuse Programmed	PRA, PRB ²	TDI, TCK, TDO ²
Dedicated	Low	No	User I/O ³	JTAG Disabled
	High	No	Probe Circuit Outputs	JTAG I/O
Flexible	Low	No	User I/O ³	User I/O ³
	High	No	Probe Circuit Outputs	JTAG I/O
		Yes	Probe Circuit Secured	Probe Circuit Secured

Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved)

Notes:

1. If the TRST pin is not reserved, the device behaves according to TRST = High as described in the table.

2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by the Designer software.

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Where:

- C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF
- C_{EQSM} = Equivalent capacitance of sequential modules (R-Cells) in pF
- C_{EQI} = Equivalent capacitance of input buffers in pF
- C_{EQO} = Equivalent capacitance of output buffers in pF
- C_{EQCR} = Equivalent capacitance of CLKA/B in pF
- C_{EQHV} = Variable capacitance of HCLK in pF
- C_{EQHF} = Fixed capacitance of HCLK in pF
 - C_{L =} Output lead capacitance in pF
 - f_m = Average logic module switching rate in MHz
 - $f_n =$ Average input buffer switching rate in MHz
 - f_p = Average output buffer switching rate in MHz
 - $f_{a1} =$ Average CLKA rate in MHz
 - $f_{\alpha 2}$ = Average CLKB rate in MHz
 - f_{s1} = Average HCLK rate in MHz
 - m = Number of logic modules switching at fm
 - n = Number of input buffers switching at fn
 - p = Number of output buffers switching at fp
 - q₁ = Number of clock loads on CLKA
 - q₂ = Number of clock loads on CLKB
 - $r_1 =$ Fixed capacitance due to CLKA
 - r₂ = Fixed capacitance due to CLKB
 - s1 = Number of clock loads on HCLK
 - x = Number of I/Os at logic low
 - y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JESD-51 series but has little relevance in actual performance of the product in real application. It should be employed with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA package at still air is as follows. i.e.:

$$\theta_{JA} = 17.1^{\circ}$$
C/W is taken from Table 2-12 on page 2-11

 $T_A = 125$ °C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power =
$$\frac{\text{Max Junction Temp - Max. Ambient Temp}}{\theta_{JA}} = \frac{150^{\circ}\text{C} - 125^{\circ}\text{C}}{17.1^{\circ}\text{C/W}} = 1.46 \text{ W}$$

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or the airflow inside the system must be increased.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required.

Calculation for Heat Sink

For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is 3.00 W. The user-dependent data T_J and T_A are given as follows:

$$T_J = 110^{\circ}C$$

 $T_A = 70^{\circ}C$

From the datasheet:

 $\theta_{JA} = 18.0^{\circ}C/W$ $\theta_{JC} = 3.2^{\circ}C/W$

$$P = \frac{\text{Max Junction Temp} - \text{Max. Ambient Temp}}{\theta_{JA}} = \frac{110^{\circ}\text{C} - 70^{\circ}\text{C}}{18.0^{\circ}\text{C/W}} = 2.22 \text{ W}$$

EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated by:

$$\theta_{JA} = \frac{Max Junction Temp - Max. Ambient Temp}{P} = \frac{110^{\circ}C - 70^{\circ}C}{3.00 W} = 13.33^{\circ}C/W$$

EQ 2-13

Table 2-14 A545X08A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 V$, $V_{CCI} = 3.0 V$, $T_J = 70^{\circ}$ C)

		-2 Sp	peed	–1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.8		0.9		1.1		1.5	ns
Input Modu	le Predicted Routing Delays ²							-		
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-24 A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} =4.75 V, T _J = 70°C)
-----------------------------------	---

		-3 S	beed*	-2 Speed		–1 Speed		Std. Speed		I –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks		1								<u>.</u>
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{rckl}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPVVL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Table 2-29 A54SX32A Timing Characteristics

(Worst-Case Commercial Condition	⁵ V _{CCA} = 2.25 V, V _{CCI} = 2.25 V, T _J = 70°C)
----------------------------------	---

			beed*	-2 Speed		–1 Speed		Std. Speed		I –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks										<u>.</u>
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arra	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.9		3.4		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.4		2.7		3.2		4.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.6	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.9		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.0	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.9		1.0		1.2		1.4		1.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.4		1.9	ns

Table 2-30 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
-----------------------------------	---

		-3 S	beed*	-2 Speed		–1 Speed		Std. Speed		d –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks										
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPVVL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.6	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.4		2.7		3.2		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.3		2.7		3.1		3.6		5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.5		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{rckl}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.1	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.9		1.0		1.2		1.4		1.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.4		1.9	ns

Table 2-32 A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions V	/ _{CCA} = 2.25 V, V _{CCI} = 2.3 V, T _J = 70°C)
-------------------------------------	---

		-3 Sp	eed ¹	-2 S	peed	–1 S	peed	Std. S	5peed	–F Sp	beed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	2.5 V LVCMOS Output Module Timing ^{2,3}											
t _{DLH}	Data-to-Pad Low to High		3.3		3.8		4.2		5.0		7.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		11.1		12.8		14.5		17.0		23.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.3		3.8		4.2		5.0		7.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d_{TLH}^{4}	Delta Low to High		0.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^4	Delta High to Low		0.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^4	Delta High to Low—low slew		0.057		0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-38 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4	.75 V, T _J = 70°C)
-----------------------------------	---	-------------------------------

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arr	ay Clock Networks					-		-				-
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		3.0		3.5		4.9	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.5		2.9		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		3.9		5.5	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.2		3.6		4.1		4.8		6.8	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.9		2.2		2.5		3.0		4.1	ns
Quadrant A	Array Clock Networks											
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.4		1.6		1.9		2.7	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.4		1.6		1.8		2.1		3.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.4		1.7		1.9		2.2		3.1	ns

	144-Pi	n TQFP		144-Pin TQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function				
1	GND	GND	GND	38	I/O	I/O	I/O				
2	TDI, I/O	TDI, I/O	TDI, I/O	39	I/O	I/O	I/O				
3	I/O	I/O	I/O	40	I/O	I/O	I/O				
4	I/O	I/O	I/O	41	I/O	I/O	I/O				
5	I/O	I/O	I/O	42	I/O	I/O	I/O				
6	I/O	I/O	I/O	43	I/O	I/O	I/O				
7	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}				
8	I/O	I/O	I/O	45	I/O	I/O	I/O				
9	TMS	TMS	TMS	46	I/O	I/O	I/O				
10	V _{CCI}	V _{CCI}	V _{CCI}	47	I/O	I/O	I/O				
11	GND	GND	GND	48	I/O	I/O	I/O				
12	I/O	I/O	I/O	49	I/O	I/O	I/O				
13	I/O	I/O	I/O	50	I/O	I/O	I/O				
14	I/O	I/O	I/O	51	I/O	I/O	I/O				
15	I/O	I/O	I/O	52	I/O	I/O	I/O				
16	I/O	I/O	I/O	53	I/O	I/O	I/O				
17	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O				
18	I/O	I/O	I/O	55	I/O	I/O	I/O				
19	NC	NC	NC	56	V _{CCA}	V _{CCA}	V _{CCA}				
20	V _{CCA}	V _{CCA}	V _{CCA}	57	GND	GND	GND				
21	I/O	I/O	I/O	58	NC	NC	NC				
22	TRST, I/O	TRST, I/O	TRST, I/O	59	I/O	I/O	I/O				
23	I/O	I/O	I/O	60	HCLK	HCLK	HCLK				
24	I/O	I/O	I/O	61	I/O	I/O	I/O				
25	I/O	I/O	I/O	62	I/O	I/O	I/O				
26	I/O	I/O	I/O	63	I/O	I/O	I/O				
27	I/O	I/O	I/O	64	I/O	I/O	I/O				
28	GND	GND	GND	65	I/O	I/O	I/O				
29	V _{CCI}	V _{CCI}	V _{CCI}	66	I/O	I/O	I/O				
30	V _{CCA}	V _{CCA}	V _{CCA}	67	I/O	I/O	I/O				
31	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}				
32	I/O	I/O	I/O	69	I/O	I/O	I/O				
33	I/O	I/O	I/O	70	I/O	I/O	I/O				
34	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O				
35	I/O	I/O	I/O	72	I/O	I/O	I/O				
36	GND	GND	GND	73	GND	GND	GND				
37	I/O	I/O	I/O	74	I/O	I/O	I/O				

	144-Pi	n TQFP		144-Pin TQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function				
75	I/O	I/O	I/O	111	I/O	I/O	I/O				
76	I/O	I/O	I/O	112	I/O	I/O	I/O				
77	I/O	I/O	I/O	113	I/O	I/O	I/O				
78	I/O	I/O	I/O	114	I/O	I/O	I/O				
79	V _{CCA}	V _{CCA}	V _{CCA}	115	V _{CCI}	V _{CCI}	V _{CCI}				
80	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O				
81	GND	GND	GND	117	I/O	I/O	I/O				
82	I/O	I/O	I/O	118	I/O	I/O	I/O				
83	I/O	I/O	I/O	119	I/O	I/O	I/O				
84	I/O	I/O	I/O	120	I/O	I/O	I/O				
85	I/O	I/O	I/O	121	I/O	I/O	I/O				
86	I/O	I/O	I/O	122	I/O	I/O	I/O				
87	I/O	I/O	I/O	123	I/O	I/O	I/O				
88	I/O	I/O	I/O	124	I/O	I/O	I/O				
89	V _{CCA}	V _{CCA}	V _{CCA}	125	CLKA	CLKA	CLKA				
90	NC	NC	NC	126	CLKB	CLKB	CLKB				
91	I/O	I/O	I/O	127	NC	NC	NC				
92	I/O	I/O	I/O	128	GND	GND	GND				
93	I/O	I/O	I/O	129	V _{CCA}	V _{CCA}	V _{CCA}				
94	I/O	I/O	I/O	130	I/O	I/O	I/O				
95	I/O	I/O	I/O	131	PRA, I/O	PRA, I/O	PRA, I/O				
96	I/O	I/O	I/O	132	I/O	I/O	I/O				
97	I/O	I/O	I/O	133	I/O	I/O	I/O				
98	V _{CCA}	V _{CCA}	V _{CCA}	134	I/O	I/O	I/O				
99	GND	GND	GND	135	I/O	I/O	I/O				
100	I/O	I/O	I/O	136	I/O	I/O	I/O				
101	GND	GND	GND	137	I/O	I/O	I/O				
102	V _{CCI}	V _{CCI}	V _{CCI}	138	I/O	I/O	I/O				
103	I/O	I/O	I/O	139	I/O	I/O	I/O				
104	I/O	I/O	I/O	140	V _{CCI}	V _{CCI}	V _{CCI}				
105	I/O	I/O	I/O	141	I/O	I/O	I/O				
106	I/O	I/O	I/O	142	I/O	I/O	I/O				
107	I/O	I/O	I/O	143	I/O	I/O	I/O				
108	I/O	I/O	I/O	144	TCK, I/O	TCK, I/O	TCK, I/O				
109	GND	GND	GND	<u> </u>		•					
110	I/O	I/O	I/O								

176-Pin TQFP

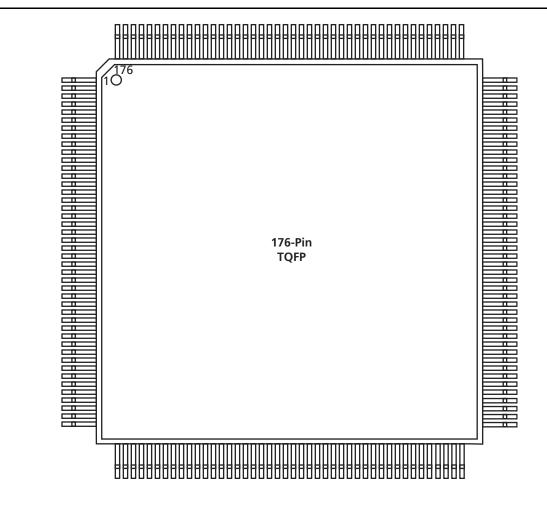


Figure 3-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pin PBGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
в	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0	~	~	~	0	~	0	Õ	0	0	0	0	0	~	0
D	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	~	~	0
E F	0	<u> </u>	0	<u> </u>																0	<u> </u>	0	0
G	0	<u> </u>	0	\sim																0	\sim	ž	0
н	ŏ	-	õ	-																õ	· ·	õ	0
ſ	Ō	Õ	Õ	Ō																Õ	Õ	Õ	Õ
к	0	Ο	Ο	Ο						Ο	Ο	Ο	0	Ο						Ο	Ο	Ο	0
L	0	0	0	~						-	-	-	0	Ξ						0	0	0	0
M N	0		~	0						<u> </u>	$\tilde{}$	$\tilde{}$	O	~						0	~	~	0
P	0	0	0	0						-	-	-		-						\bigcirc	\sim	$\tilde{}$	\mathbf{O}
R	-	-	õ	<u> </u>						0	0	\cup		\cup						õ	-	õ	Ŭ
т	Õ	Õ	Õ	Õ																Õ	õ	õ	Õ
υ	0	0	0	0																0	Ο	0	0
V	0	Ο	Ο	0																Ο	Ο	Ο	0
W	-	-	0	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	\sim	0	\sim
Y	0	0	0	0	\sim	~	-	_	-	-	-	-	-	_	_	_	-	-	\sim	0	-	~	~
AA AB	0	0	0	0	0	0	-	<u> </u>	-	-	-	-		-	<u> </u>	-	-	-	0	0		0	0
AC	0	0		~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-
L	\searrow	_	_	_	_	_	_	_	_	_				\sim	_	_	_	_	_	_		\sim	\leq

Figure 3-5 • 329-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

144-Pin FBGA

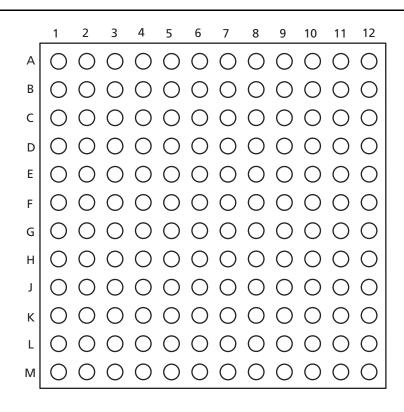


Figure 3-6 • 144-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	484-Pin FBG	Α	
Pin Number	A54SX32A Function	A54SX72A Function	Nu
K10	GND	GND	
K11	GND	GND	Ν
K12	GND	GND	Ν
K13	GND	GND	Ν
K14	GND	GND	Ν
K15	GND	GND	Ν
K16	GND	GND	Ν
K17	GND	GND	Ν
K22	I/O	I/O	Ν
K23	I/O	I/O	Ν
K24	NC*	NC	Ν
K25	NC*	I/O	Ν
K26	NC*	I/O	Ν
L1	NC*	I/O	Ν
L2	NC*	ΙΟ	
L3	I/O	I/O	
L4	I/O	I/O	
L5	I/O	I/O	
L10	GND	GND	
L11	GND	GND	1
L12	GND	GND	1
L13	GND	GND	1
L14	GND	GND	1
L15	GND	GND	1
L16	GND	GND	1
L17	GND	GND	1
L22	I/O	I/O	1
L23	I/O	I/O	1
L24	I/O	I/O	1
L25	I/O	I/O	1
L26	I/O	I/O	1
M1	NC*	NC	1
M2	I/O	I/O	
M3	I/O	I/O	
M4	I/O	I/O	

	484-Pin FBGA								
Pin Number	A54SX32A Function	A54SX72A Function							
M5	I/O	I/O							
M10	GND	GND							
M11	GND	GND							
M12	GND	GND							
M13	GND	GND							
M14	GND	GND							
M15	GND	GND							
M16	GND	GND							
M17	GND	GND							
M22	I/O	I/O							
M23	I/O	I/O							
M24	I/O	I/O							
M25	NC*	I/O							
M26	NC*	I/O							
N1	I/O	I/O							
N2	V _{CCI}	V _{CCI}							
N3	I/O	I/O							
N4	I/O	I/O							
N5	I/O	I/O							
N10	GND	GND							
N11	GND	GND							
N12	GND	GND							
N13	GND	GND							
N14	GND	GND							
N15	GND	GND							
N16	GND	GND							
N17	GND	GND							
N22	V _{CCA}	V _{CCA}							
N23	I/O	I/O							
N24	I/O	I/O							
N25	I/O	I/O							
N26	NC*	NC							
P1	NC*	I/O							
P2	NC*	I/O							
P3	I/O	I/O							

484-Pin FBGA									
Pin Number	A54SX32A Function	A54SX72A Function							
P4	I/O	I/O							
P5	V _{CCA}	V _{CCA}							
P10	GND	GND							
P11	GND	GND							
P12	GND	GND							
P13	GND	GND							
P14	GND	GND							
P15	GND	GND							
P16	GND	GND							
P17	GND	GND							
P22	I/O	ΙΟ							
P23	I/O	ΙΟ							
P24	V _{CCI}	V _{CCI}							
P25	I/O	I/O							
P26	I/O	I/O							
R1	NC*	I/O							
R2	NC*	I/O							
R3	I/O	I/O							
R4	I/O	I/O							
R5	TRST, I/O	TRST, I/O							
R10	GND	GND							
R11	GND	GND							
R12	GND	GND							
R13	GND	GND							
R14	GND	GND							
R15	GND	GND							
R16	GND	GND							
R17	GND	GND							
R22	I/O	I/O							
R23	I/O	I/O							
R24	I/O	I/O							
R25	NC*	I/O							
R26	NC*	I/O							
T1	NC*	I/O							
T2	NC*	I/O							

Note: *These pins must be left floating on the A54SX32A device.

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

Actel Europe Ltd.

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600 River Court, Meadows Business Park Station Approach, Blackwater Camberley, Surrey GU17 9AB United Kingdom Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 www.jp.actel.com

Actel Hong Kong

Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 www.actel.com.cn