

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

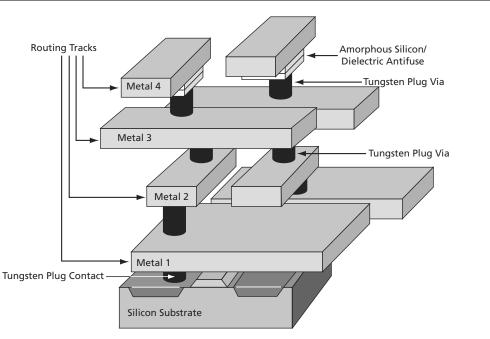
E·XFI

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	180
Number of Gates	24000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx16a-2fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description


Introduction

The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 μm / 0.25 μm CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing time-to-market.

SX-A Family Architecture

The SX-A family's device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

Figure 1-1 • SX-A Family Interconnect Elements

Routing Resources

The routing and interconnect resources of SX-A devices are in the top two metal layers above the logic modules (Figure 1-1 on page 1-1), providing optimal use of silicon, thus enabling the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using the Actel patented metal-to-metal programmable antifuse interconnect elements. The antifuses are normally open circuits and, when programmed, form a permanent low-impedance connection.

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-5 on page 1-4 and Figure 1-6 on page 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance, which is often required in applications such as fast counters, state machines, and data path logic. The interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-Cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster, and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100% automatic place-and-route software to minimize signal propagation delays.

The general system of routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, most connections typically require three or fewer antifuses, resulting in fast and predictable performance.

The unique local and general routing structure featured in SX-A devices allows 100% pin-locking with full logic utilization, enables concurrent printed circuit board (PCB) development, reduces design time, and allows designers to achieve performance goals with minimum effort.

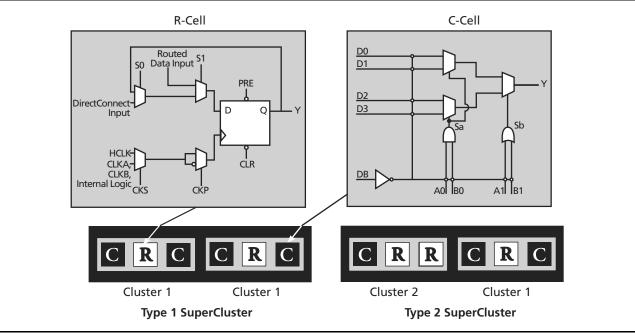


Figure 1-4 • Cluster Organization

SX-A Probe Circuit Control Pins

SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use, integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the

PRA/PRB pins for observation. Figure 1-13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

In order to preserve device probing capabilities, users should avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, the security fuse must not be programmed to preserve probing capabilities. Actel recommends that you use a 70 Ω series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

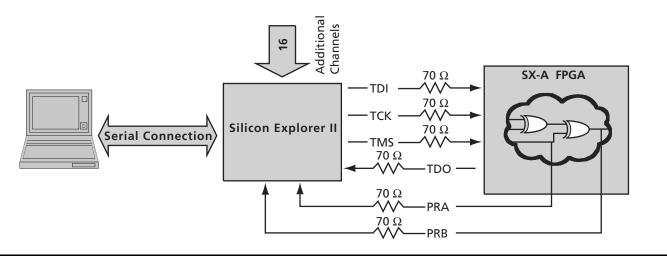


Figure 1-13 • Probe Setup

PCI Compliance for the SX-A Family

The SX-A family supports 3.3 V and 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

Table 2-7 • DC Specifications (5 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V _{CCA}	Supply Voltage for Array		2.25	2.75	V
V _{CCI}	Supply Voltage for I/Os		4.75	5.25	V
V _{IH}	Input High Voltage		2.0	5.75	V
V _{IL}	Input Low Voltage		-0.5	0.8	V
I _{IH}	Input High Leakage Current ¹	V _{IN} = 2.7	-	70	μA
I _{IL}	Input Low Leakage Current ¹	V _{IN} = 0.5	-	-70	μA
V _{OH}	Output High Voltage	I _{OUT} = -2 mA	2.4	-	V
V _{OL}	Output Low Voltage ²	I _{OUT} = 3 mA, 6 mA	-	0.55	V
C _{IN}	Input Pin Capacitance ³		-	10	pF
C _{CLK}	CLK Pin Capacitance		5	12	pF

Notes:

1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

Table 2-18 A54SX08A Timing Characteristics

		-2 S	peed	-1 S	peed	Std. S	Speed	-F Speed				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units		
2.5 V LVCMOS Output Module Timing ^{1,2}												
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns		
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns		
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns		
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns		
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns		
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns		
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns		
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns		
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF		
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF		
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF		

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 5	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	itput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ²	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-21 A54SX16A Timing Characteristics (Continued)

(Worst-Case Commercial C	Conditions	V	///20// 1	[. — 70°C)
(worst-case commercial c	Lonunuons,	$V C C \Delta = Z Z J V$	v (() – 5.0 v, i	1 = 70 C

		–3 Speed ¹		-2 Speed		–1 S	peed	Std. Speed		-F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.5		0.6		0.7		0.9	ns	
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.7		0.8		0.9		1.1		1.5	ns	
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.5		0.6		0.7		0.9	ns	
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.7		0.8		0.9		1.1		1.5	ns	
Input Modu	le Predicted Routing Delays ²												
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns	
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns	
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns	
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns	
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		0.8		2.5	ns	
t _{IRD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns	

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-22 A54SX16A Timing Characteristics

		-3 Speed*		-2 Speed		–1 Speed		Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-36 • A54SX72A Timing Characteristics (Continued)

		-3 Speed*		-2 S	peed	-1 S	peed	Std. 9	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.9		3.4		3.8		4.5		6.3	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{qcksw}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

	2	08-Pin PQF	P		208-Pin PQFP								
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function				
141	NC	I/O	I/O	I/O	176	NC	I/O	I/O	I/O				
142	I/O	I/O	I/O	I/O	177	I/O	Ι/O	I/O	I/O				
143	NC	I/O	I/O	I/O	178	I/O	I/O	I/O	QCLKD				
144	I/O	I/O	I/O	I/O	179	I/O	I/O	I/O	I/O				
145	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	180	CLKA	CLKA	CLKA	CLKA				
146	GND	GND	GND	GND	181	CLKB	CLKB	CLKB	CLKB				
147	I/O	I/O	I/O	I/O	182	NC	NC	NC	NC				
148	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	183	GND	GND	GND	GND				
149	I/O	I/O	I/O	I/O	184	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}				
150	I/O	I/O	I/O	I/O	185	GND	GND	GND	GND				
151	I/O	I/O	I/O	I/O	186	PRA, I/O	PRA, I/O	PRA, I/O	PRA, I/O				
152	I/O	I/O	I/O	I/O	187	I/O	I/O	I/O	V _{CCI}				
153	I/O	I/O	I/O	I/O	188	I/O	I/O	I/O	I/O				
154	I/O	I/O	I/O	I/O	189	NC	I/O	I/O	I/O				
155	NC	I/O	I/O	I/O	190	I/O	I/O	I/O	QCLKC				
156	NC	I/O	I/O	I/O	191	I/O	I/O	I/O	I/O				
157	GND	GND	GND	GND	192	NC	I/O	I/O	I/O				
158	I/O	I/O	I/O	I/O	193	I/O	I/O	I/O	I/O				
159	I/O	I/O	I/O	I/O	194	I/O	I/O	I/O	I/O				
160	I/O	I/O	I/O	I/O	195	NC	I/O	I/O	I/O				
161	I/O	I/O	I/O	I/O	196	I/O	I/O	I/O	I/O				
162	I/O	I/O	I/O	I/O	197	I/O	I/O	I/O	I/O				
163	I/O	I/O	I/O	I/O	198	NC	I/O	I/O	I/O				
164	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	199	I/O	I/O	I/O	I/O				
165	I/O	I/O	I/O	I/O	200	I/O	I/O	I/O	I/O				
166	I/O	I/O	I/O	I/O	201	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}				
167	NC	I/O	I/O	I/O	202	NC	I/O	I/O	I/O				
168	I/O	I/O	I/O	I/O	203	NC	I/O	I/O	I/O				
169	I/O	I/O	I/O	I/O	204	I/O	I/O	I/O	I/O				
170	NC	I/O	I/O	I/O	205	NC	I/O	I/O	I/O				
171	I/O	I/O	I/O	I/O	206	I/O	I/O	I/O	I/O				
172	I/O	I/O	I/O	I/O	207	I/O	I/O	I/O	I/O				
173	NC	I/O	I/O	I/O	208	TCK, I/O	TCK, I/O	TCK, I/O	TCK, I/O				
174	I/O	I/O	I/O	I/O	<u>I</u>	<u>ı</u>	1	1	1				
175	I/O	I/O	I/O	I/O									

100-Pin TQFP

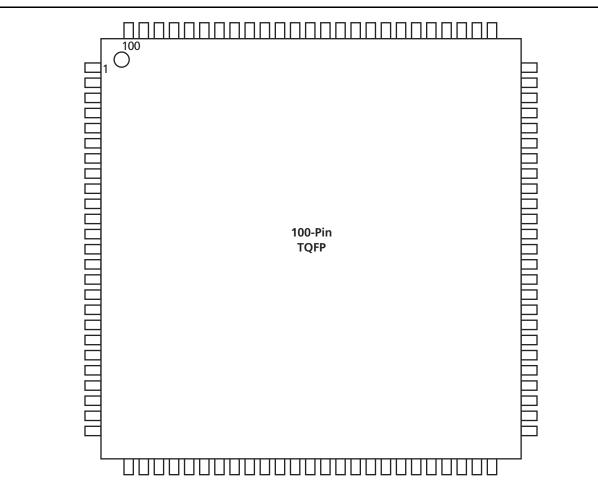


Figure 3-2 • 100-Pin TQFP

Note

100-TQFP								
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function					
71	I/O	I/O	I/O					
72	I/O	I/O	I/O					
73	I/O	I/O	I/O					
74	I/O	I/O	I/O					
75	I/O	I/O	I/O					
76	I/O	I/O	I/O					
77	I/O	I/O	I/O					
78	I/O	I/O	I/O					
79	I/O	I/O	I/O					
80	I/O	I/O	I/O					
81	I/O	I/O	I/O					
82	V _{CCI}	V _{CCI}	V _{CCI}					
83	I/O	I/O	I/O					
84	I/O	I/O	I/O					
85	I/O	I/O	I/O					
86	I/O	I/O	I/O					
87	CLKA CLKA		CLKA					
88	CLKB	CLKB	CLKB					
89	NC	NC	NC					
90	V _{CCA}	V _{CCA}	V _{CCA}					
91	GND	GND	GND					
92	PRA, I/O	pra, I/o	pra, I/o					
93	I/O	I/O	I/O					
94	I/O	I/O	I/O					
95	I/O	I/O	I/O					
96	I/O	I/O	I/O					
97	I/O	I/O	I/O					
98	I/O	I/O	I/O					
99	I/O	I/O	I/O					
100	TCK, I/O	TCK, I/O	TCK, I/O					

144-Pin TQFP

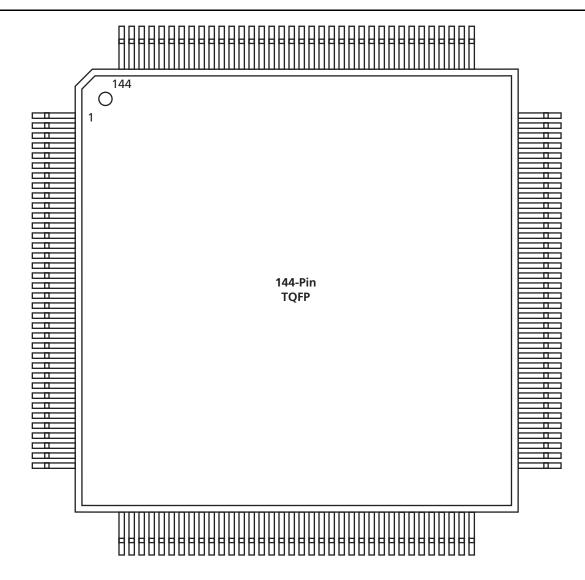


Figure 3-3 • 144-Pin TQFP (Top View)

Note

176-Pin TQFP

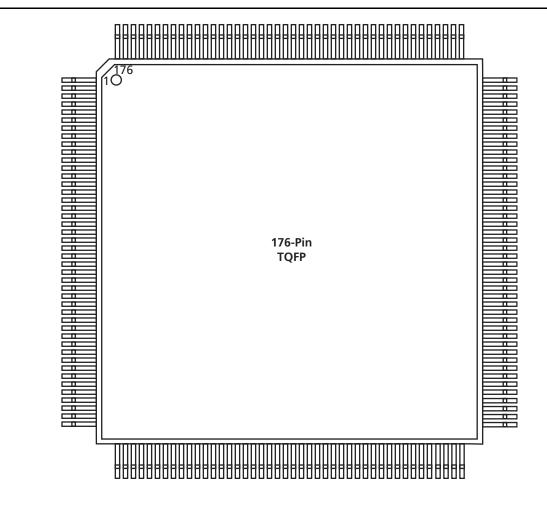


Figure 3-4 • 176-Pin TQFP (Top View)

Note

176-Pin TQFP						
Pin Number	A54SX32A Function					
145	I/O					
146	I/O					
147	I/O					
148	I/O					
149	I/O					
150	I/O					
151	I/O					
152	CLKA					
153	CLKB					
154	NC					
155	GND					
156	V _{CCA}					
157	PRA, I/O					
158	I/O					
159	I/O					
160	I/O					
161	I/O					
162	I/O					
163	I/O					
164	I/O					
165	I/O					
166	I/O					
167	I/O					
168	I/O					
169	V _{CCI}					
170	I/O					
171	I/O					
172	I/O					
173	I/O					
174	I/O					
175	I/O					
176	TCK, I/O					

329-Pin PBGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
в	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0	~	~	~	0	~	0	Õ		0	0		Õ	~	0
D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	~	~	0
E F	0	<u> </u>	0	<u> </u>																	-	0	0
G	0	\sim	0	\sim																	\sim	ž	0
н	ŏ	-	õ	-																~	· ·	õ	0
ſ	Ō	Õ	Õ	Ō																Õ	Õ	Õ	Õ
к	0	Ο	Ο	Ο						Ο	Ο	Ο	Ο	Ο						0	Ο	Ο	0
L	0	0	0	~						-	-	-	0							0	0	0	0
MN	0		~	0						<u> </u>	$\tilde{}$	$\tilde{}$	0	\sim						0	~	~	0
P	0	0	0	0						-	-	-	00	-						~	\sim	$\tilde{}$	\mathbf{O}
R	-	-	õ	<u> </u>						0	0	\cup	0	0						~	-	õ	Ŭ
т	Õ	Õ	Õ	Õ																Õ	õ	õ	Õ
υ	0	0	0	0																0	Ο	0	0
V	0	Ο	Ο	0																Ο	Ο	Ο	0
W	-	0	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	\sim	0	\sim
Y	0	0	0	0	\sim	~	-	-	-	-	-	-	-	_	_	_	-	-	\sim	0	-	~	~
AA AB	0	0	0	0	0	0	-	-	-	-	-	-	-	-	0	-	-	-	0	0		0	0
AC	0	0		~	-	-	-	-	-	-	-	-	-	Ţ.	-	-	-	-	-	0	-	-	-
L	\searrow	_	_	_	_	_	_	_	_	_		$\overline{}$	_	_	_	_	_	_	_	_		\sim	\leq

Figure 3-5 • 329-Pin PBGA (Top View)

Note

A54SX32A
Function
I/O
NC
NC
I/O
I/O
GND
I/O
V _{CCA}
NC
I/O
GND
I/O
I/O
I/O

256-Pin FBGA

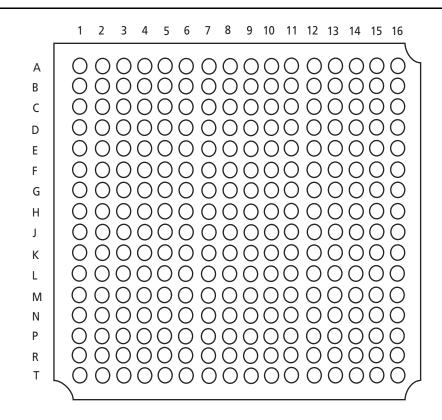


Figure 3-7 • 256-Pin FBGA (Top View)

Note

	484-Pin FBG	Α	
Pin Number	A54SX32A Function	A54SX72A Function	Nu
K10	GND	GND	
K11	GND	GND	Ν
K12	GND	GND	Ν
K13	GND	GND	Ν
K14	GND	GND	Ν
K15	GND	GND	Ν
K16	GND	GND	Ν
K17	GND	GND	Ν
K22	I/O	I/O	Ν
K23	I/O	I/O	Ν
K24	NC*	NC	Ν
K25	NC*	I/O	Ν
K26	NC*	I/O	Ν
L1	NC*	I/O	Ν
L2	NC*	ΙΟ	
L3	I/O	I/O	
L4	I/O	I/O	
L5	I/O	I/O	
L10	GND	GND	
L11	GND	GND	1
L12	GND	GND	1
L13	GND	GND	1
L14	GND	GND	1
L15	GND	GND	1
L16	GND	GND	1
L17	GND	GND	1
L22	I/O	I/O	1
L23	I/O	I/O	1
L24	I/O	I/O	1
L25	I/O	I/O	1
L26	I/O	I/O	1
M1	NC*	NC	1
M2	I/O	I/O	
M3	I/O	I/O	
M4	I/O	I/O	

		484-Pin FBGA							
Pin Number	A54SX32A Function	A54SX72A Function							
M5	I/O	I/O							
M10	GND	GND							
M11	GND	GND							
M12	GND	GND							
M13	GND	GND							
M14	GND	GND							
M15	GND	GND							
M16	GND	GND							
M17	GND	GND							
M22	I/O	I/O							
M23	I/O	I/O							
M24	I/O	I/O							
M25	NC*	I/O							
M26	NC*	I/O							
N1	I/O	I/O							
N2	V _{CCI}	V _{CCI}							
N3	I/O	I/O							
N4	I/O	I/O							
N5	I/O	I/O							
N10	GND	GND							
N11	GND	GND							
N12	GND	GND							
N13	GND	GND							
N14	GND	GND							
N15	GND	GND							
N16	GND	GND							
N17	GND	GND							
N22	V _{CCA}	V _{CCA}							
N23	I/O	I/O							
N24	I/O	I/O							
N25	I/O	I/O							
N26	NC*	NC							
P1	NC*	I/O							
P2	NC*	I/O							
P3	I/O	I/O							

484-Pin FBGA								
Pin Number	A54SX32A Function	A54SX72A Function						
P4	I/O	I/O						
P5	V _{CCA}	V _{CCA}						
P10	GND	GND						
P11	GND	GND						
P12	GND	GND						
P13	GND	GND						
P14	GND	GND						
P15	GND	GND						
P16	GND	GND						
P17	GND	GND						
P22	I/O	ΙΟ						
P23	I/O	I/O						
P24	V _{CCI}	V _{CCI}						
P25	I/O	I/O						
P26	I/O	I/O						
R1	NC*	I/O						
R2	NC*	I/O						
R3	I/O	I/O						
R4	I/O	I/O						
R5	TRST, I/O	TRST, I/O						
R10	GND	GND						
R11	GND	GND						
R12	GND	GND						
R13	GND	GND						
R14	GND	GND						
R15	GND	GND						
R16	GND	GND						
R17	GND	GND						
R22	I/O	I/O						
R23	I/O	I/O						
R24	I/O	I/O						
R25	NC*	I/O						
R26	NC*	I/O						
T1	NC*	I/O						
T2	NC*	I/O						

Note: *These pins must be left floating on the A54SX32A device.