

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	180
Number of Gates	24000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx16a-ffgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offering

Package	A54SX08A	A54SX16A	A54SX32A	A54SX72A
PQ208	C,I,A,M	C,I,A,M	C,I,A,M	C,I,A,M
TQ100	C,I,A,M	C,I,A,M	C,I,A,M	
TQ144	C,I,A,M	C,I,A,M	C,I,A,M	
TQ176			C,I,M	
BG329			C,I,M	
FG144	C,I,A,M	C,I,A,M	C,I,A,M	
FG256		C,I,A,M	C,I,A,M	C,I,A,M
FG484			C,I,M	C,I,A,M
CQ208			C,M,B	C,M,B
CQ256			C,M,B	C,M,B

Notes:

1. C = Commercial

- 2. I = Industrial
- 3. A = Automotive
- 4. M = Military
- 5. B = MIL-STD-883 Class B

6. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.

7. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Speed Grade and Temperature Grade Matrix

	F	Std	-1	-2	-3
Commercial	✓	1	1	1	Discontinued
Industrial		1	1	1	Discontinued
Automotive		1			
Military		1	1		
MIL-STD-883B		1	1		

Notes:

1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.

2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Contact your Actel Sales representative for more information on availability.

Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.

In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks in Actel's Antifuse Devices* and *Using A54SX72A and RT54SX72S Quadrant Clocks* application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer

JTAG Instructions

Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.

Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'. Bits 11-1 are always '02F', which is the Actel manufacturer code.

Table 1-7	•	JTAG	Instruction	Code
-----------	---	------	-------------	------

Instructions (IR4:IR0)	Binary Code
EXTEST	00000
SAMPLE/PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HighZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-8 • JTAG Instruction Code

Device	Process	Revision	Bits 31-28	Bits 27-12
A54SX08A	0.22 µ	0	8, 9	40B4, 42B4
		1	А, В	40B4, 42B4
A54SX16A	0.22 μ	0	9	40B8, 42B8
		1	В	40B8, 42B8
	0.25 μ	1	В	22B8
A54SX32A	0.2 2µ	0	9	40BD, 42BD
		1	В	40BD, 42BD
	0.25 μ	1	В	22BD
A54SX72A	0.22 μ	0	9	40B2, 42B2
		1	В	40B2, 42B2
	0.25 μ	1	В	22B2

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Pin Description

CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption.

For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer builtin programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating).

QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating).

These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only.

GND Ground

Low supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software.

NC No Connection

This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device.

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset Pin** is not selected in Designer.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 2-2 on page 2-1. All V_{CCI} power pins in the device should be connected.

V_{CCA} Supply Voltage

Supply voltage for array. See Table 2-2 on page 2-1. All V_{CCA} power pins in the device should be connected.

Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units
V _{CCI}	DC Supply Voltage for I/Os	-0.3 to +6.0	V
V _{CCA}	DC Supply Voltage for Arrays	-0.3 to +3.0	V
VI	Input Voltage	-0.5 to +5.75	V
V _O	Output Voltage	–0.5 to + V _{CCI} + 0.5	V
T _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions".

Table 2-2 Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range	0 to +70	-40 to +85	°C
2.5 V Power Supply Range (V _{CCA} and V _{CCI})	2.25 to 2.75	2.25 to 2.75	V
3.3 V Power Supply Range (V _{CCI})	3.0 to 3.6	3.0 to 3.6	V
5 V Power Supply Range (V _{CCI})	4.75 to 5.25	4.75 to 5.25	V

Typical SX-A Standby Current

Table 2-3 • Typical Standby Current for SX-A at 25°C with $V_{CCA} = 2.5 V$

Product	V _{CCI} = 2.5 V	V _{CCI} = 3.3 V	V _{CCI} = 5 V
A54SX08A	0.8 mA	1.0 mA	2.9 mA
A54SX16A	0.8 mA	1.0 mA	2.9 mA
A54SX32A	0.9 mA	1.0 mA	3.0 mA
A54SX72A	3.6 mA	3.8 mA	4.5 mA

Table 2-4 • Supply Voltages

V _{CCA}	V _{CCI} *	Maximum Input Tolerance	Maximum Output Drive
2. 5 V	2.5 V	5.75 V	2.7 V
2.5 V	3.3 V	5.75 V	3.6 V
2.5 V	5 V	5.75 V	5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

			Comm	ercial	Indus	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -8 mA)	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			0.8		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μA
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web	•).			•		

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

			Comn	nercial	Indu	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -100 \mu\text{A})$	2.1		2.1		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	2.0		2.0		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} =2 mA)	1.7		1.7		V
V _{OL}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 2 mA)		0.7		0.7	V
V _{IL}	Input Low Voltage, V _{OUT} ≤ V _{VOL(max)}		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, V _{OUT} ≥ V _{VOH(min)}		1.7	5.75	1.7	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						•

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Thermal Characteristics

Introduction

The temperature variable in Actel Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction to be higher than the ambient, case, or board temperatures. EQ 2-9 and EQ 2-10 give the relationship between thermal resistance, temperature gradient and power.

 $\theta_{JA} = \frac{T_J - T_A}{P}$ EQ 2-9 $\theta_{JA} = \frac{T_C - T_A}{P}$

EQ 2-10

Where:

- θ_{JA} = Junction-to-air thermal resistance
- θ_{JC} = Junction-to-case thermal resistance
- T_J = Junction temperature
- T_A = Ambient temperature
- T_C = Ambient temperature
- P = total power dissipated by the device

Table 2-12 • Package Thermal Characteristics

			AL $^{\Theta}$			
Package Type	Pin Count	οι ^θ	Still Air	1.0 m/s 200 ft./min.	2.5 m/s 500 ft./min.	Units
Thin Quad Flat Pack (TQFP)	100	14	33.5	27.4	25	°C/W
Thin Quad Flat Pack (TQFP)	144	11	33.5	28	25.7	°C/W
Thin Quad Flat Pack (TQFP)	176	11	24.7	19.9	18	°C/W
Plastic Quad Flat Pack (PQFP) ¹	208	8	26.1	22.5	20.8	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader ²	208	3.8	16.2	13.3	11.9	°C/W
Plastic Ball Grid Array (PBGA)	329	3	17.1	13.8	12.8	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	26.9	22.9	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	18	14.7	13.6	°C/W

Notes:

1. The A54SX08A PQ208 has no heat spreader.

2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.

Input Buffer Delays

t INY **C-Cell Delays**

Figure 2-6 • Input Buffer Delays

GND

Figure 2-7 • C-Cell Delays

Cell Timing Characteristics

t_{INY}

Figure 2-8 • Flip-Flops

Table 2-40 A54SX72A Timing Characteristics

(Worst-Case Commercial	Conditions Vaca -	- 2 25 V V	$30V T_{1} - 70^{\circ}C$
(worst-case commercial	Conditions VCCA -	- 2.23 v, v _{CCl} –	3.0 v, 1 = 70 C)

		-3 Sp	beed ¹	-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.3		2.7		3.0		3.6		5.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.0		3.6		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		3.2		3.7		4.2		5.0		6.9	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.7		4.2		4.9		6.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.3		11.9		13.5		15.8		22.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.2		3.7		4.2		5.0		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.7		4.2		4.9		6.9	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

176-Pin TQFP		176-Pin TQFP		176-Р	in TQFP	176-Pin TQFP		
Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	
1	GND	37	I/O	73	I/O	109	V _{CCA}	
2	TDI, I/O	38	I/O	74	I/O	110	GND	
3	I/O	39	I/O	75	I/O	111	I/O	
4	I/O	40	I/O	76	I/O	112	I/O	
5	I/O	41	I/O	77	I/O	113	I/O	
6	I/O	42	I/O	78	I/O	114	I/O	
7	I/O	43	I/O	79	I/O	115	I/O	
8	I/O	44	GND	80	I/O	116	I/O	
9	I/O	45	I/O	81	I/O	117	I/O	
10	TMS	46	I/O	82	V _{CCI}	118	I/O	
11	V _{CCI}	47	I/O	83	I/O	119	I/O	
12	I/O	48	I/O	84	I/O	120	I/O	
13	I/O	49	I/O	85	I/O	121	I/O	
14	I/O	50	I/O	86	I/O	122	V _{CCA}	
15	I/O	51	I/O	87	TDO, I/O	123	GND	
16	I/O	52	V _{CCI}	88	I/O	124	V _{CCI}	
17	I/O	53	I/O	89	GND	125	I/O	
18	I/O	54	I/O	90	I/O	126	I/O	
19	I/O	55	I/O	91	I/O	127	I/O	
20	I/O	56	I/O	92	I/O	128	I/O	
21	GND	57	I/O	93	I/O	129	I/O	
22	V _{CCA}	58	I/O	94	I/O	130	I/O	
23	GND	59	I/O	95	I/O	131	I/O	
24	I/O	60	I/O	96	I/O	132	I/O	
25	TRST, I/O	61	I/O	97	I/O	133	GND	
26	I/O	62	I/O	98	V _{CCA}	134	I/O	
27	I/O	63	I/O	99	V _{CCI}	135	I/O	
28	I/O	64	PRB, I/O	100	I/O	136	I/O	
29	I/O	65	GND	101	I/O	137	I/O	
30	I/O	66	V _{CCA}	102	I/O	138	I/O	
31	I/O	67	NC	103	I/O	139	I/O	
32	V _{CCI}	68	I/O	104	I/O	140	V _{CCI}	
33	V _{CCA}	69	HCLK	105	I/O	141	I/O	
34	I/O	70	I/O	106	I/O	142	I/O	
35	I/O	71	I/O	107	I/O	143	I/O	
36	I/O	72	I/O	108	GND	144	I/O	

144-Pin FBGA

Figure 3-6 • 144-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	144-Pi	n FBGA		144-Pin FBGA						
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function			
A1	I/O	I/O	I/O	D1	I/O	I/O	I/O			
A2	I/O	I/O	I/O	D2	V _{CCI}	V _{CCI}	V _{CCI}			
A3	I/O	I/O	I/O	D3	TDI, I/O	TDI, I/O	TDI, I/O			
A4	I/O	I/O	I/O	D4	I/O	I/O	I/O			
A5	V _{CCA}	V _{CCA}	V _{CCA}	D5	I/O	I/O	I/O			
A6	GND	GND	GND	D6	I/O	I/O	I/O			
A7	CLKA	CLKA	CLKA	D7	I/O	I/O	I/O			
A8	I/O	I/O	I/O	D8	I/O	I/O	I/O			
A9	I/O	I/O	I/O	D9	I/O	I/O	I/O			
A10	I/O	I/O	I/O	D10	I/O	I/O	I/O			
A11	I/O	I/O	I/O	D11	I/O	I/O	I/O			
A12	I/O	I/O	I/O	D12	I/O	I/O	I/O			
B1	I/O	I/O	I/O	E1	I/O	I/O	I/O			
B2	GND	GND	GND	E2	I/O	I/O	I/O			
B3	I/O	I/O	I/O	E3	I/O	I/O	I/O			
B4	I/O	I/O	I/O	E4	I/O	I/O	I/O			
B5	I/O	I/O	I/O	E5	TMS	TMS	TMS			
B6	I/O	I/O	I/O	E6	V _{CCI}	V _{CCI}	V _{CCI}			
B7	CLKB	CLKB	CLKB	E7	V _{CCI}	V _{CCI}	V _{CCI}			
B8	I/O	I/O	I/O	E8	V _{CCI}	V _{CCI}	V _{CCI}			
B9	I/O	I/O	I/O	E9	V _{CCA}	V _{CCA}	V _{CCA}			
B10	I/O	I/O	I/O	E10	I/O	I/O	I/O			
B11	GND	GND	GND	E11	GND	GND	GND			
B12	I/O	I/O	I/O	E12	I/O	I/O	I/O			
C1	I/O	I/O	I/O	F1	I/O	I/O	I/O			
C2	I/O	I/O	I/O	F2	I/O	I/O	I/O			
С3	TCK, I/O	TCK, I/O	TCK, I/O	F3	NC	NC	NC			
C4	I/O	I/O	I/O	F4	I/O	I/O	I/O			
C5	I/O	I/O	I/O	F5	GND	GND	GND			
C6	pra, I/o	pra, I/o	PRA, I/O	F6	GND	GND	GND			
С7	I/O	I/O	I/O	F7	GND	GND	GND			
C8	I/O	I/O	I/O	F8	V _{CCI}	V _{CCI}	V _{CCI}			
С9	I/O	I/O	I/O	F9	I/O	I/O	I/O			
C10	I/O	I/O	I/O	F10	GND	GND	GND			
C11	I/O	I/O	I/O	F11	I/O	I/O	I/O			
C12	I/O	I/O	I/O	F12	I/O	I/O	I/O			

	144-Pi	n FBGA		144-Pin FBGA					
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function		
G1	I/O	I/O	I/O	K1	I/O	I/O	I/O		
G2	GND	GND	GND	К2	I/O	I/O	I/O		
G3	I/O	I/O	I/O	К3	I/O	I/O	I/O		
G4	I/O	I/O	I/O	К4	I/O	I/O	I/O		
G5	GND	GND	GND	K5	I/O	I/O	I/O		
G6	GND	GND	GND	K6	I/O	I/O	I/O		
G7	GND	GND	GND	К7	GND	GND	GND		
G8	V _{CCI}	V _{CCI}	V _{CCI}	K8	I/O	I/O	I/O		
G9	I/O	I/O	I/O	К9	I/O	I/O	I/O		
G10	I/O	I/O	I/O	K10	GND	GND	GND		
G11	I/O	I/O	I/O	K11	I/O	I/O	I/O		
G12	I/O	I/O	I/O	K12	I/O	I/O	I/O		
H1	TRST, I/O	TRST, I/O	TRST, I/O	L1	GND	GND	GND		
H2	I/O	I/O	I/O	L2	I/O	I/O	I/O		
H3	I/O	I/O	I/O	L3	I/O	I/O	I/O		
H4	I/O	I/O	I/O	L4	I/O	I/O	I/O		
H5	V _{CCA}	V _{CCA}	V _{CCA}	L5	I/O	I/O	I/O		
H6	V _{CCA}	V _{CCA}	V _{CCA}	L6	I/O	I/O	I/O		
H7	V _{CCI}	V _{CCI}	V _{CCI}	L7	HCLK	HCLK	HCLK		
H8	V _{CCI}	V _{CCI}	V _{CCI}	L8	I/O	I/O	I/O		
H9	V _{CCA}	V _{CCA}	V _{CCA}	L9	I/O	I/O	I/O		
H10	I/O	I/O	I/O	L10	I/O	I/O	I/O		
H11	I/O	I/O	I/O	L11	I/O	I/O	I/O		
H12	NC	NC	NC	L12	I/O	I/O	I/O		
J1	I/O	I/O	I/O	M1	I/O	I/O	I/O		
J2	I/O	I/O	I/O	M2	I/O	I/O	I/O		
J3	I/O	I/O	I/O	M3	I/O	I/O	I/O		
J4	I/O	I/O	I/O	M4	I/O	I/O	I/O		
J5	I/O	I/O	I/O	M5	I/O	I/O	I/O		
J6	PRB, I/O	PRB, I/O	PRB, I/O	M6	I/O	I/O	I/O		
J7	I/O	I/O	I/O	M7	V _{CCA}	V _{CCA}	V _{CCA}		
J8	I/O	I/O	I/O	M8	I/O	I/O	I/O		
J9	I/O	I/O	I/O	M9	I/O	I/O	I/O		
J10	I/O	I/O	I/O	M10	I/O	I/O	I/O		
J11	I/O	I/O	I/O	M11	TDO, I/O	TDO, I/O	TDO, I/O		
J12	V _{CCA}	V _{CCA}	V _{CCA}	M12	I/O	I/O	I/O		

256-Pin FBGA

Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pi	n FBGA		256-Pin FBGA					
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function		
A1	GND	GND	GND	C6	I/O	I/O	I/O		
A2	TCK, I/O	TCK, I/O	TCK, I/O	C7	I/O	I/O	I/O		
A3	I/O	I/O	I/O	C8	I/O	I/O	I/O		
A4	I/O	I/O	I/O	С9	CLKA	CLKA	CLKA		
A5	I/O	I/O	I/O	C10	I/O	I/O	I/O		
A6	I/O	I/O	I/O	C11	I/O	I/O	I/O		
A7	I/O	I/O	I/O	C12	I/O	I/O	I/O		
A8	I/O	I/O	I/O	C13	I/O	I/O	I/O		
A9	CLKB	CLKB	CLKB	C14	I/O	I/O	I/O		
A10	I/O	I/O	I/O	C15	I/O	I/O	I/O		
A11	I/O	I/O	I/O	C16	I/O	I/O	I/O		
A12	NC	I/O	I/O	D1	I/O	I/O	I/O		
A13	I/O	I/O	I/O	D2	I/O	I/O	I/O		
A14	I/O	I/O	I/O	D3	I/O	I/O	I/O		
A15	GND	GND	GND	D4	I/O	I/O	I/O		
A16	GND	GND	GND	D5	I/O	I/O	I/O		
B1	I/O	I/O	I/O	D6	I/O	I/O	I/O		
B2	GND	GND	GND	D7	I/O	I/O	I/O		
B3	I/O	I/O	I/O	D8	PRA, I/O	PRA, I/O	PRA, I/O		
B4	I/O	I/O	I/O	D9	I/O	I/O	QCLKD		
B5	I/O	I/O	I/O	D10	I/O	I/O	I/O		
B6	NC	I/O	I/O	D11	NC	I/O	I/O		
B7	I/O	I/O	I/O	D12	I/O	I/O	I/O		
B8	V _{CCA}	V _{CCA}	V _{CCA}	D13	I/O	I/O	I/O		
B9	I/O	I/O	I/O	D14	I/O	I/O	I/O		
B10	I/O	I/O	I/O	D15	I/O	I/O	I/O		
B11	NC	I/O	I/O	D16	I/O	I/O	I/O		
B12	I/O	I/O	I/O	E1	I/O	I/O	I/O		
B13	I/O	I/O	I/O	E2	I/O	I/O	I/O		
B14	I/O	I/O	I/O	E3	I/O	I/O	I/O		
B15	GND	GND	GND	E4	I/O	I/O	I/O		
B16	I/O	I/O	I/O	E5	I/O	I/O	I/O		
C1	I/O	I/O	I/O	E6	I/O	I/O	I/O		
C2	TDI, I/O	TDI, I/O	TDI, I/O	E7	I/O	I/O	QCLKC		
C3	GND	GND	GND	E8	I/O	I/O	I/O		
C4	I/O	I/O	I/O	E9	I/O	I/O	I/O		
C5	NC	I/O	I/O	E10	I/O	I/O	Ι/O		

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
AD18	I/O	I/O
AD19	I/O	I/O
AD20	I/O	I/O
AD21	I/O	I/O
AD22	I/O	I/O
AD23	V _{CCI}	V _{CCI}
AD24	NC*	I/O
AD25	NC*	I/O
AD26	NC*	I/O
AE1	NC*	NC
AE2	I/O	I/O
AE3	NC*	I/O
AE4	NC*	I/O
AE5	NC*	I/O
AE6	NC*	I/O
AE7	I/O	I/O
AE8	I/O	I/O
AE9	I/O	I/O
AE10	I/O	I/O
AE11	NC*	I/O
AE12	I/O	I/O
AE13	I/O	I/O
AE14	I/O	I/O
AE15	NC*	I/O
AE16	NC*	I/O
AE17	I/O	I/O
AE18	I/O	I/O
AE19	I/O	I/O
AE20	I/O	I/O
AE21	NC*	I/O
AE22	NC*	I/O
AE23	NC*	I/O
AE24	NC*	I/O
AE25	NC*	NC
AE26	NC*	NC

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
AF1	NC*	NC				
AF2	NC*	NC				
AF3	NC	I/O				
AF4	NC*	I/O				
AF5	NC*	I/O				
AF6	NC*	I/O				
AF7	I/O	I/O				
AF8	I/O	I/O				
AF9	I/O	I/O				
AF10	I/O	I/O				
AF11	NC*	I/O				
AF12	NC*	NC				
AF13	HCLK	HCLK				
AF14	I/O	QCLKB				
AF15	NC*	I/O				
AF16	NC*	I/O				
AF17	I/O	I/O				
AF18	I/O	I/O				
AF19	I/O	I/O				
AF20	NC*	I/O				
AF21	NC*	I/O				
AF22	NC*	I/O				
AF23	NC*	I/O				
AF24	NC*	I/O				
AF25	NC*	NC				
AF26	NC*	NC				
B1	NC*	NC				
B2	NC*	NC				
B3	NC*	I/O				
B4	NC*	I/O				
B5	NC*	I/O				
B6	I/O	I/O				
B7	I/O	I/O				
B8	I/O	I/O				
B9	I/O	I/O				

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
B10	I/O	I/O
B11	NC*	I/O
B12	NC*	I/O
B13	V _{CCI}	V _{CCI}
B14	CLKA	CLKA
B15	NC*	I/O
B16	NC*	I/O
B17	I/O	I/O
B18	V _{CCI}	V _{CCI}
B19	I/O	I/O
B20	I/O	I/O
B21	NC*	I/O
B22	NC*	I/O
B23	NC*	I/O
B24	NC*	I/O
B25	I/O	I/O
B26	NC*	NC
C1	NC*	I/O
C2	NC*	I/O
C3	NC*	I/O
C4	NC*	I/O
C5	I/O	I/O
C6	V _{CCI}	V _{CCI}
С7	I/O	I/O
C8	I/O	I/O
С9	V _{CCI}	V _{CCI}
C10	I/O	I/O
C11	I/O	I/O
C12	I/O	I/O
C13	PRA, I/O	PRA, I/O
C14	I/O	I/O
C15	I/O	QCLKD
C16	I/O	I/O
C17	I/O	I/O
C18	I/O	I/O

Note: *These pins must be left floating on the A54SX32A device.

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23