E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	175
Number of Gates	24000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx16a-pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

JTAG Instructions

Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.

Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'. Bits 11-1 are always '02F', which is the Actel manufacturer code.

Table 1-7	•	JTAG	Instruction	Code
-----------	---	------	-------------	------

Instructions (IR4:IR0)	Binary Code
EXTEST	00000
SAMPLE/PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HighZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-8 • JTAG Instruction Code

Device	Process	Revision	Bits 31-28	Bits 27-12
A54SX08A	0.22 µ	0	8, 9	40B4, 42B4
		1	А, В	40B4, 42B4
A54SX16A	0.22 μ	0	9	40B8, 42B8
		1	В	40B8, 42B8
	0.25 μ	1	В	22B8
A54SX32A	0.2 2µ	0	9	40BD, 42BD
		1	В	40BD, 42BD
	0.25 μ	1	В	22BD
A54SX72A	0.22 μ	0	9	40B2, 42B2
		1	В	40B2, 42B2
	0.25 μ	1	В	22B2

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

			Comm	ercial	Indus	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -8 mA)	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			0.8		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μA
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web	•).			•		

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

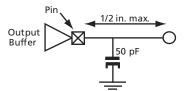
Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

		Comn	nercial	Indu			
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -100 \mu\text{A})$	2.1		2.1		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	2.0		2.0		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} =2 mA)	1.7		1.7		V
V _{OL}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 2 mA)		0.7		0.7	V
V _{IL}	Input Low Voltage, V _{OUT} ≤ V _{VOL(max)}		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, V _{OUT} ≥ V _{VOH(min)}		1.7	5.75	1.7	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Symbol	Parameter	Condition	Min.	Max.	Units		
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{-1}$	-44	-	mA		
		$1.4 \le V_{OUT} < 2.4^{-1, 2}$	(-44 + (V _{OUT} - 1.4)/0.024)	_	mA		
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EQ 2-1 on page 2-5	-			
	(Test Point)	V _{OUT} = 3.1 ³	142				
I _{OL(AC)}	(AC) Switching Current Low $V_{OUT} \ge 2.2^{1}$ $2.2 > V_{OUT} > 0.55^{1}$	$V_{OUT} \ge 2.2^{-1}$	95	-	mA		
		2.2 > V _{OUT} > 0.55 ¹	(V _{OUT} /0.023)	-	mA		
		0.71 > V _{OUT} > 0 ^{1, 3}	-	EQ 2-2 on page 2-5	-		
	(Test Point)	V _{OUT} = 0.71 ³	-	206	mA		
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015	-	mA		
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load 4	1	5	V/ns		
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load 4	1	5	V/ns		

Table 2-8 • AC Specifications (5 V PCI Operation)


Notes:

1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JESD-51 series but has little relevance in actual performance of the product in real application. It should be employed with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA package at still air is as follows. i.e.:

$$\theta_{JA} = 17.1^{\circ}$$
C/W is taken from Table 2-12 on page 2-11

 $T_A = 125$ °C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power =
$$\frac{\text{Max Junction Temp - Max. Ambient Temp}}{\theta_{JA}} = \frac{150^{\circ}\text{C} - 125^{\circ}\text{C}}{17.1^{\circ}\text{C/W}} = 1.46 \text{ W}$$

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or the airflow inside the system must be increased.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required.

Calculation for Heat Sink

For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is 3.00 W. The user-dependent data T_J and T_A are given as follows:

$$T_J = 110^{\circ}C$$

 $T_A = 70^{\circ}C$

From the datasheet:

 $\theta_{JA} = 18.0^{\circ}C/W$ $\theta_{JC} = 3.2^{\circ}C/W$

$$P = \frac{\text{Max Junction Temp} - \text{Max. Ambient Temp}}{\theta_{JA}} = \frac{110^{\circ}\text{C} - 70^{\circ}\text{C}}{18.0^{\circ}\text{C/W}} = 2.22 \text{ W}$$

EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated by:

$$\theta_{JA} = \frac{Max Junction Temp - Max. Ambient Temp}{P} = \frac{110^{\circ}C - 70^{\circ}C}{3.00 W} = 13.33^{\circ}C/W$$

EQ 2-13

Timing Characteristics

Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

 Table 2-13
 Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, V_{CCA} = 2.25 V)

Junction Temperature (T _J)								
V _{CCA}	-55°C -40°C 0°C 25°C 70°C		–40°C 0°C 25°C 70°C				125°C	
2.250 V	0.79	0.80	0.87	0.89	1.00	1.04	1.14	
2.500 V	0.74	0.75	0.82	0.83	0.94	0.97	1.07	
2.750 V	0.68	0.69	0.75	0.77	0.87	0.90	0.99	

Table 2-16 A545X08A Timing Characteristics

(Worst-Case Commercial Condition	5 V _{CCA} = 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
----------------------------------	---

		-2 Speed		-1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (I	Hardwired) Array Clock Networks									
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.3		1.5		1.7		2.6	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.1		1.3		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.5		0.5		0.8	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	y Clock Networks									
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.2		1.4		1.9	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.2		1.3		1.6		2.2	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.7		0.8		0.9		1.3	ns
t _{rcksw}	Maximum Skew (50% Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.8		0.9		1.1		1.5	ns

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

			peed	-1 Speed		Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	itput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ²	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-20 A54SX08A Timing Characteristics

		-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Outp	out Module Timing ¹	1								1
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH} ²	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^2	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	out Module Timing ³	1								1
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-22 A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _{CCI} =	= 2.25 V, T _J = 70°C)
----------------------------------	---	----------------------------------

		-3 Sp	beed*	-2 Speed		-1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											<u>.</u>
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-27 A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	$x = 2.25 \text{ V}, \text{ V}_{\text{CCI}} = 4.75 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$
--	--

		–3 Sj	-3 Speed ¹ -2 Speed -1 Spee				peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.5		2.8		3.3		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^{3}	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.7		7.7		8.7		10.2		14.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d_{TLH}^{3}	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-34 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4.75 V, T _J = 70°C)
-----------------------------------	--

		-3 S			-1 S	peed	Std.	Speed	–F S	peed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.1		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.1		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^{3}	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.6		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d_{TLH}^{3}	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d_{THL}^3	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-35 A545X72A Timing Characteristics (Continued)

		-3 Sp	peed ¹	-2 S	peed	-1 S	peed	Std. 9	5peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.0		1.2		1.6	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.7		0.8		0.9		1.3	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions	$V_{CCA} = 2.25 V, V_{CCI}$	= 2.25 V, T _J = 70°C)
-----------------------------------	-----------------------------	----------------------------------

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{hcksw}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.3		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.0		4.7		6.6	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPVVL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{rcksw}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.8		2.1		2.4		2.8		3.9	ns
t _{rcksw}	Maximum Skew (100% Load)		1.8		2.1		2.4		2.8		3.9	ns
Quadrant A	Array Clock Networks	•		-		-				-		-
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.6		3.0		3.3		3.9		5.5	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.2		5.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-40 A54SX72A Timing Characteristics

(Worst-Case Commercial	Conditions Vaca -	- 2 25 V V	$30V T_{1} - 70^{\circ}C$
(worst-case commercial	Conditions VCCA -	- 2.23 v, v _{CCl} –	3.0 v, 1 = 70 C)

		-3 Sp					Std.	Speed	–F S	peed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.3		2.7		3.0		3.6		5.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.0		3.6		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		3.2		3.7		4.2		5.0		6.9	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.7		4.2		4.9		6.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.3		11.9		13.5		15.8		22.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.2		3.7		4.2		5.0		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.7		4.2		4.9		6.9	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

100-TQFP				100-TQFP			
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function
1	GND	GND	GND	36	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O	37	NC	NC	NC
3	I/O	I/O	I/O	38	I/O	I/O	I/O
4	I/O	I/O	I/O	39	HCLK	HCLK	HCLK
5	I/O	I/O	I/O	40	I/O	I/O	I/O
6	I/O	I/O	I/O	41	I/O	I/O	I/O
7	TMS	TMS	TMS	42	I/O	I/O	I/O
8	V _{CCI}	V _{CCI}	V _{CCI}	43	I/O	I/O	I/O
9	GND	GND	GND	44	V _{CCI}	V _{CCI}	V _{CCI}
10	I/O	I/O	I/O	45	I/O	I/O	I/O
11	I/O	I/O	I/O	46	I/O	I/O	I/O
12	I/O	I/O	I/O	47	I/O	I/O	I/O
13	I/O	I/O	I/O	48	I/O	I/O	I/O
14	I/O	I/O	I/O	49	TDO, I/O	TDO, I/O	TDO, I/O
15	I/O	I/O	I/O	50	I/O	I/O	I/O
16	TRST, I/O	TRST, I/O	TRST, I/O	51	GND	GND	GND
17	I/O	I/O	I/O	52	I/O	I/O	I/O
18	I/O	I/O	I/O	53	I/O	I/O	I/O
19	I/O	I/O	I/O	54	I/O	I/O	I/O
20	V _{CCI}	V _{CCI}	V _{CCI}	55	I/O	I/O	I/O
21	I/O	I/O	I/O	56	I/O	I/O	I/O
22	I/O	I/O	I/O	57	V _{CCA}	V _{CCA}	V _{CCA}
23	I/O	I/O	I/O	58	V _{CCI}	V _{CCI}	V _{CCI}
24	I/O	I/O	I/O	59	I/O	I/O	I/O
25	I/O	I/O	I/O	60	I/O	I/O	I/O
26	I/O	I/O	I/O	61	I/O	I/O	I/O
27	I/O	I/O	I/O	62	I/O	I/O	I/O
28	I/O	I/O	I/O	63	I/O	I/O	I/O
29	I/O	I/O	I/O	64	I/O	I/O	I/O
30	I/O	I/O	I/O	65	I/O	I/O	I/O
31	I/O	I/O	I/O	66	I/O	I/O	I/O
32	I/O	I/O	I/O	67	V _{CCA}	V _{CCA}	V _{CCA}
33	I/O	I/O	I/O	68	GND	GND	GND
34	PRB, I/O	PRB, I/O	PRB, I/O	69	GND	GND	GND
35	V _{CCA}	V _{CCA}	V _{CCA}	70	I/O	I/O	I/O

256-Pin FBGA							
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function				
P15	I/O	I/O	I/O				
P16	I/O	I/O	I/O				
R1	I/O	I/O	I/O				
R2	GND	GND	GND				
R3	I/O	I/O	I/O				
R4	NC	I/O	I/O				
R5	I/O	I/O	I/O				
R6	I/O	I/O	I/O				
R7	I/O	I/O	I/O				
R8	I/O	I/O	I/O				
R9	HCLK	HCLK	HCLK				
R10	I/O	I/O	QCLKB				
R11	I/O	I/O	I/O				
R12	I/O	I/O	I/O				
R13	I/O	I/O	I/O				
R14	I/O	I/O	I/O				
R15	GND	GND	GND				
R16	GND	GND	GND				
T1	GND	GND	GND				
T2	I/O	I/O	I/O				
T3	I/O	I/O	I/O				
T4	NC	I/O	I/O				
T5	I/O	I/O	I/O				
T6	I/O	I/O	I/O				
T7	I/O	I/O	I/O				
T8	I/O	I/O	I/O				
Т9	V _{CCA}	V _{CCA}	V _{CCA}				
T10	I/O	I/O	I/O				
T11	I/O	I/O	I/O				
T12	NC	I/O	I/O				
T13	I/O	I/O	I/O				
T14	I/O	I/O	I/O				
T15	TDO, I/O	TDO, I/O	TDO, I/O				
T16	GND	GND	GND				

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	
(continued)	The was updated.	
	The "Sample Path Calculations" were updated.	
	Table 2-13 was updated.	
	Table 2-13 was updated.	
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	
	The Table 1-2 • I/O Features was updated.	
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	
	The "Boundary-Scan Pin Configurations and Functions" section is new.	
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	
	The "SX-A Probe Circuit Control Pins" section was updated.	
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	
	The Figure 1-13 • Design Flow is new.	
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23