

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

-XF

Details	
Product Status	Obsolete
Number of LABs/CLBs	1452
Number of Logic Elements/Cells	·
Total RAM Bits	·
Number of I/O	81
Number of Gates	24000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx16a-tq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Notes:

1. For more information about the CQFP package options, refer to the HiRel SX-A datasheet.

2. All –3 speed grades have been discontinued.

Device Resources

		User I/Os (Including Clock Buffers)													
Device	208-Pin PQFP	100-Pin TQFP	144-Pin TQFP	176-Pin TQFP	329-Pin PBGA	144-Pin FBGA	256-Pin FBGA	484-Pin FBGA							
A54SX08A	130	81	113	-	-	111	-	-							
A54SX16A	175	81	113	-	-	111	180	_							
A54SX32A	174	81	113	147	249	111	203	249							
A54SX72A	171	-	-	_	-	-	203	360							

Notes: Package Definitions: PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid Array

Table of Contents

General Description

Introduction	1-1
SX-A Family Architecture	1-1
Other Architectural Features	1-7
Programming	1-13
Related Documents	1-14
Pin Description	1-15

Detailed Specifications

Operating Conditions	2-1
Typical SX-A Standby Current	2-1
Electrical Specifications	2-2
PCI Compliance for the SX-A Family	2-3
Thermal Characteristics 2	2-11
SX-A Timing Model 2	2-14
Sample Path Calculations 2	2-14
Output Buffer Delays 2	2-15
AC Test Loads	2-15
Input Buffer Delays 2	2-16
C-Cell Delays 2	2-16
Cell Timing Characteristics 2	2-16
Timing Characteristics 2	2-17
Temperature and Voltage Derating Factors 2	2-17
Timing Characteristics 2	2-18

Package Pin Assignments

208-Pin PQFP	 		 	•								 •	 •					 	3-	·1
100-Pin TQFP	 		 	•								 •	 	•				 	3-	-5
144-Pin TQFP	 		 	•								 •	 	•				 	3-	8
176-Pin TQFP	 		 	•								 •	 	•					3-1	1
329-Pin PBGA	 		 	•								 •	 	•					3-1	4
144-Pin FBGA	 		 	•								 •	 	•					3-1	8
256-Pin FBGA	 		 	•								 •	 	•					3-2	1
484-Pin FBGA	 		 																3-2	6

Datasheet Information

List of Changes	4-1
Datasheet Categories	4-3
International Traffic in Arms Regulations (ITAR) and Export Administration	
Regulations (EAR)	4-3

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.

In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks in Actel's Antifuse Devices* and *Using A54SX72A and RT54SX72S Quadrant Clocks* application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{-1}$	-44	-	mA
		$1.4 \le V_{OUT} < 2.4^{-1, 2}$	(-44 + (V _{OUT} - 1.4)/0.024)	_	mA
		3.1 < V _{OUT} < V _{CCI} ^{1, 3}	-	EQ 2-1 on page 2-5	-
	(Test Point)	V _{OUT} = 3.1 ³	-	-142	mA
I _{OL(AC)}	Switching Current Low	$V_{OUT} \ge 2.2^{-1}$	95	-	mA
		2.2 > V _{OUT} > 0.55 ¹	(V _{OUT} /0.023)	-	mA
		0.71 > V _{OUT} > 0 ^{1, 3}	-	EQ 2-2 on page 2-5	-
	(Test Point)	V _{OUT} = 0.71 ³	-	206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015	-	mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load 4	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load 4	1	5	V/ns

Table 2-8 • AC Specifications (5 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CCI}$ ¹	-12V _{CCI}	-	mA
		$0.3V_{CCI} \le V_{OUT} < 0.9V_{CCI}$ ¹	(–17.1(V _{CCI} – V _{OUT}))	-	mA
		0.7V _{CCI} < V _{OUT} < V _{CCI} ^{1, 2}	-	EQ 2-3 on page 2-7	_
	(Test Point)	$V_{OUT} = 0.7 V_{CC}^2$	_	-32V _{CCI}	mA
I _{OL(AC)}	Switching Current Low	$V_{CCI} > V_{OUT} \ge 0.6 V_{CCI}^{1}$	16V _{CCI}	-	mA
		$0.6V_{CCI} > V_{OUT} > 0.1V_{CCI}^{1}$	(26.7V _{OUT})	-	mA
		0.18V _{CCI} > V _{OUT} > 0 ^{1, 2}	-	EQ 2-4 on page 2-7	_
	(Test Point)	$V_{OUT} = 0.18 V_{CC}^2$	-	38V _{CCI}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	–25 + (V _{IN} + 1)/0.015	-	mA
I _{CH}	High Clamp Current	$V_{CCI} + 4 > V_{IN} \ge V_{CCI} + 1$	25 + (V _{IN} – V _{CCI} – 1)/0.015	-	mA
slew _R	Output Rise Slew Rate	0.2V _{CCI} - 0.6V _{CCI} load ³	1	4	V/ns
slew _F	Output Fall Slew Rate	0.6V _{CCI} - 0.2V _{CCI} load ³	1	4	V/ns

Table 2-10 • AC Specifications (3.3 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

Table 2-14 A545X08A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 V$, $V_{CCI} = 3.0 V$, $T_J = 70^{\circ}$ C)

		-2 Sp	peed	–1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.8		0.9		1.1		1.5	ns
Input Modu	le Predicted Routing Delays ²							-		
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-22 A54SX16A Timing Characteristics

		-3 S	beed*	-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Table 2-23 • A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	= 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
--	--

		-3 S	beed*	-2 S	peed	-1 S	peed	Std.	Speed	I –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks										<u> </u>
t _{НСКН}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.3		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPVVL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.6	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.5		2.1	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.4		1.7		2.3	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.7	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Table 2-24 A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} =4.75 V, T _J = 70°C)
-----------------------------------	---

		-3 S	beed*	-2 S	peed	-1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks		1								<u>. </u>
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{rckl}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPVVL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Table 2-26 • A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	$V_{CCA} = 2.25 \text{ V}, \text{ V}_{CCI} = 3.0 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$
----------------------------------	--

		-3 Sp	beed ¹	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.0		2.3		2.6		3.1		4.3	ns
t _{DHL}	Data-to-Pad High to Low		2.2		2.5		2.8		3.3		4.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.0		2.3		2.6		3.1		4.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.2		2.5		2.8		3.3		4.6	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{3}	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.8		3.2		3.6		4.3		6.0	ns
t _{DHL}	Data-to-Pad High to Low		2.7		3.1		3.5		4.1		5.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		9.5		10.9		12.4		14.6		20.4	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.8		3.2		3.6		4.3		6.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.7		3.1		3.5		4.1		5.7	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{3}	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-28 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 S	beed ¹	-2 S	peed	-1 S	peed	Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ²					-				-		<u> </u>
t _{PD}	Internal Array Module		0.8		0.9		1.1		1.2		1.7	ns
Predicted R	outing Delays ³											
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns
R-Cell Timin	Ig											<u>.</u>
t _{RCO}	Sequential Clock-to-Q		0.6		0.7		0.8		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.6		0.7		0.7		0.9		1.2	ns
t _{sud}	Flip-Flop Data Input Set-Up	0.6		0.7		0.8		0.9		1.2		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.2		1.4		1.5		1.8		2.5		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Removal Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Pulse Width	1.4		1.6		1.8		2.1		2.9		ns
Input Modu	le Propagation Delays											-
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.6		0.7		0.8		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		1.2		1.3		1.5		1.8		2.5	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.5		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.6		0.7		0.8		0.9		1.3	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.8		0.9		1.0		1.2		1.6	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.4		1.6		1.8		2.2		3.0	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-35 A545X72A Timing Characteristics (Continued)

		-3 Sp	peed ¹	-2 S	peed	-1 S	peed	Std. 9	5peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.0		1.2		1.6	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.7		0.8		0.9		1.3	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-37 • A54SX72A Timing Characteristics

(Worst-Case Commercial Condition	$V_{CCA} = 2.25 \text{ V}, \text{ V}_{CCI} = 3.0 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$
----------------------------------	--

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.3		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.4		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.1		4.8		6.7	ns
t _{RPVVH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3		4.1	ns
t _{rcksw}	Maximum Skew (50% Load)		1.9		2.1		2.4		2.8		3.9	ns
t _{rcksw}	Maximum Skew (100% Load)		1.9		2.1		2.4		2.8		3.9	ns
Quadrant A	rray Clock Networks					-		-				-
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.3		1.5		1.7		1.9		2.7	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.5		1.7		2		2.8	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.5		1.7		1.9		2.2		3.1	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.5		1.8		2		2.3		3.2	ns

Table 2-40 A54SX72A Timing Characteristics

(Worst-Case Commercial	Conditions Vaca -	- 2 25 V V	$30V T_{1} - 70^{\circ}C$
(worst-case commercial	Conditions VCCA -	- 2.23 v, v _{CCl} –	3.0 v, 1 = 70 C)

		-3 Sp	-3 Speed ¹ -2 Speed -1 Speed S				Std.	Speed	–F S	peed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.3		2.7		3.0		3.6		5.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.0		3.6		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		3.2		3.7		4.2		5.0		6.9	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.7		4.2		4.9		6.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.3		11.9		13.5		15.8		22.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.2		3.7		4.2		5.0		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.7		4.2		4.9		6.9	ns
d _{TLH} ³	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

100-TQFP						
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function			
71	I/O	I/O	I/O			
72	I/O	I/O	I/O			
73	I/O	I/O	I/O			
74	I/O	I/O	I/O			
75	I/O	I/O	I/O			
76	I/O	I/O	I/O			
77	I/O	I/O	I/O			
78	I/O	I/O	I/O			
79	I/O	I/O	I/O			
80	I/O	I/O	I/O			
81	I/O	I/O	I/O			
82	V _{CCI}	V _{CCI}	V _{CCI}			
83	I/O	I/O	I/O			
84	I/O	I/O	I/O			
85	I/O	I/O	I/O			
86	I/O	I/O	I/O			
87	CLKA	CLKA	CLKA			
88	CLKB	CLKB	CLKB			
89	NC	NC	NC			
90	V _{CCA}	V _{CCA}	V _{CCA}			
91	GND	GND	GND			
92	PRA, I/O	pra, I/o	pra, I/o			
93	I/O	I/O	I/O			
94	I/O	I/O	I/O			
95	I/O	I/O	I/O			
96	I/O	I/O	I/O			
97	I/O	I/O	I/O			
98	I/O	I/O	I/O			
99	I/O	I/O	I/O			
100	TCK, I/O	TCK, I/O	TCK, I/O			

A54SX32A
Function
I/O
NC
NC
I/O
I/O
GND
I/O
V _{CCA}
NC
I/O
GND
I/O
I/O
I/O

144-Pin FBGA				144-Pin FBGA				
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	
A1	I/O	I/O	I/O	D1	I/O	I/O	I/O	
A2	I/O	I/O	I/O	D2	V _{CCI}	V _{CCI}	V _{CCI}	
A3	I/O	I/O	I/O	D3	TDI, I/O	TDI, I/O	TDI, I/O	
A4	I/O	I/O	I/O	D4	I/O	I/O	I/O	
A5	V _{CCA}	V _{CCA}	V _{CCA}	D5	I/O	I/O	I/O	
A6	GND	GND	GND	D6	I/O	I/O	I/O	
A7	CLKA	CLKA	CLKA	D7	I/O	I/O	I/O	
A8	I/O	I/O	I/O	D8	I/O	I/O	I/O	
A9	I/O	I/O	I/O	D9	I/O	I/O	I/O	
A10	I/O	I/O	I/O	D10	I/O	I/O	I/O	
A11	I/O	I/O	I/O	D11	I/O	I/O	I/O	
A12	I/O	I/O	I/O	D12	I/O	I/O	I/O	
B1	I/O	I/O	I/O	E1	I/O	I/O	I/O	
B2	GND	GND	GND	E2	I/O	I/O	I/O	
B3	I/O	I/O	I/O	E3	I/O	I/O	I/O	
B4	I/O	I/O	I/O	E4	I/O	I/O	I/O	
B5	I/O	I/O	I/O	E5	TMS	TMS	TMS	
B6	I/O	I/O	I/O	E6	V _{CCI}	V _{CCI}	V _{CCI}	
B7	CLKB	CLKB	CLKB	E7	V _{CCI}	V _{CCI}	V _{CCI}	
B8	I/O	I/O	I/O	E8	V _{CCI}	V _{CCI}	V _{CCI}	
B9	I/O	I/O	I/O	E9	V _{CCA}	V _{CCA}	V _{CCA}	
B10	I/O	I/O	I/O	E10	I/O	I/O	I/O	
B11	GND	GND	GND	E11	GND	GND	GND	
B12	I/O	I/O	I/O	E12	I/O	I/O	I/O	
C1	I/O	I/O	I/O	F1	I/O	I/O	I/O	
C2	I/O	I/O	I/O	F2	I/O	I/O	I/O	
C3	TCK, I/O	TCK, I/O	TCK, I/O	F3	NC	NC	NC	
C4	I/O	I/O	I/O	F4	I/O	I/O	I/O	
C5	I/O	I/O	I/O	F5	GND	GND	GND	
C6	PRA, I/O	PRA, I/O	PRA, I/O	F6	GND	GND	GND	
C7	I/O	I/O	I/O	F7	GND	GND	GND	
C8	I/O	I/O	I/O	F8	V _{CCI}	V _{CCI}	V _{CCI}	
С9	I/O	I/O	I/O	F9	I/O	I/O	I/O	
C10	I/O	I/O	I/O	F10	GND	GND	GND	
C11	I/O	I/O	I/O	F11	I/O	I/O	I/O	
C12	I/O	I/O	I/O	F12	I/O	I/O	I/O	

256-Pin FBGA

Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

256-Pin FBGA				256-Pin FBGA				
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	
K5	I/O	I/O	I/O	M10	I/O	I/O	I/O	
K6	V _{CCI}	V _{CCI}	V _{CCI}	M11	I/O	I/O	I/O	
K7	GND	GND	GND	M12	NC	I/O	I/O	
K8	GND	GND	GND	M13	I/O	I/O	I/O	
К9	GND	GND	GND	M14	NC	I/O	I/O	
K10	GND	GND	GND	M15	I/O	I/O	I/O	
K11	V _{CCI}	V _{CCI}	V _{CCI}	M16	I/O	I/O	I/O	
K12	I/O	I/O	I/O	N1	I/O	I/O	I/O	
K13	I/O	I/O	I/O	N2	I/O	I/O	I/O	
K14	I/O	I/O	I/O	N3	I/O	I/O	I/O	
K15	NC	I/O	I/O	N4	I/O	I/O	I/O	
K16	I/O	I/O	I/O	N5	I/O	I/O	I/O	
L1	I/O	I/O	I/O	N6	I/O	I/O	I/O	
L2	I/O	I/O	I/O	N7	I/O	I/O	I/O	
L3	I/O	I/O	I/O	N8	I/O	I/O	I/O	
L4	I/O	I/O	I/O	N9	I/O	I/O	I/O	
L5	I/O	I/O	I/O	N10	I/O	I/O	I/O	
L6	I/O	I/O	I/O	N11	I/O	I/O	I/O	
L7	V _{CCI}	V _{CCI}	V _{CCI}	N12	I/O	I/O	I/O	
L8	V _{CCI}	V _{CCI}	V _{CCI}	N13	I/O	I/O	I/O	
L9	V _{CCI}	V _{CCI}	V _{CCI}	N14	I/O	I/O	I/O	
L10	V _{CCI}	V _{CCI}	V _{CCI}	N15	I/O	I/O	I/O	
L11	I/O	I/O	I/O	N16	I/O	I/O	I/O	
L12	I/O	I/O	I/O	P1	I/O	I/O	I/O	
L13	I/O	I/O	I/O	P2	GND	GND	GND	
L14	I/O	I/O	I/O	P3	I/O	I/O	I/O	
L15	I/O	I/O	I/O	P4	I/O	I/O	I/O	
L16	NC	I/O	I/O	P5	NC	I/O	I/O	
M1	I/O	I/O	I/O	P6	I/O	I/O	I/O	
M2	I/O	I/O	I/O	P7	I/O	I/O	I/O	
M3	I/O	I/O	I/O	P8	I/O	I/O	I/O	
M4	I/O	I/O	I/O	P9	I/O	I/O	I/O	
M5	I/O	I/O	I/O	P10	NC	I/O	I/O	
M6	I/O	I/O	I/O	P11	I/O	I/O	I/O	
M7	I/O	I/O	QCLKA	P12	I/O	I/O	I/O	
M8	PRB, I/O	PRB, I/O	PRB, I/O	P13	V _{CCA}	V _{CCA}	V _{CCA}	
M9	I/O	I/O	I/O	P14	I/O	I/O	Ι/O	

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	–3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9