

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

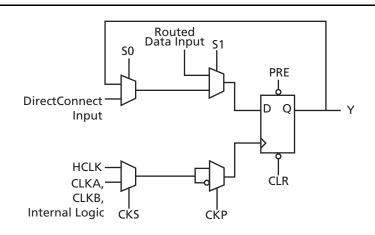
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	249
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (27X27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-1fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Module Design

The SX-A family architecture is described as a "sea-ofmodules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX-A family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell).


The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable, using the S0 and S1 lines control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-byregister basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen from either the hardwired clock, the routed clocks, or internal logic.

The C-cell implements a range of combinatorial functions of up to five inputs (Figure 1-3). Inclusion of the DB input and its associated inverter function allows up to 4,000 different combinatorial functions to be implemented in a single module. An example of the flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 1.9 ns propagation delays.

Module Organization

All C-cell and R-cell logic modules are arranged into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells.

Clusters are grouped together into SuperClusters (Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide grouping of Type 1 Clusters. SuperCluster 2 is a two-wide group containing one Type 1 Cluster and one Type 2 Cluster. SX-A devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops.

Figure 1-2 • R-Cell

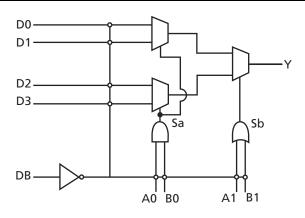


Figure 1-3 • C-Cell

Routing Resources

The routing and interconnect resources of SX-A devices are in the top two metal layers above the logic modules (Figure 1-1 on page 1-1), providing optimal use of silicon, thus enabling the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using the Actel patented metal-to-metal programmable antifuse interconnect elements. The antifuses are normally open circuits and, when programmed, form a permanent low-impedance connection.

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-5 on page 1-4 and Figure 1-6 on page 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance, which is often required in applications such as fast counters, state machines, and data path logic. The interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-Cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster, and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100% automatic place-and-route software to minimize signal propagation delays.

The general system of routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, most connections typically require three or fewer antifuses, resulting in fast and predictable performance.

The unique local and general routing structure featured in SX-A devices allows 100% pin-locking with full logic utilization, enables concurrent printed circuit board (PCB) development, reduces design time, and allows designers to achieve performance goals with minimum effort.

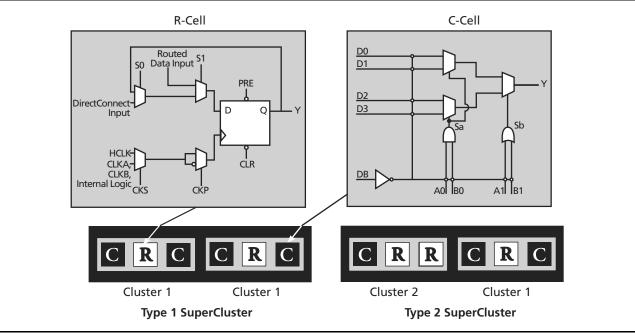
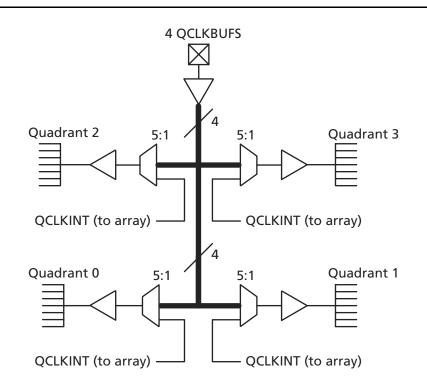
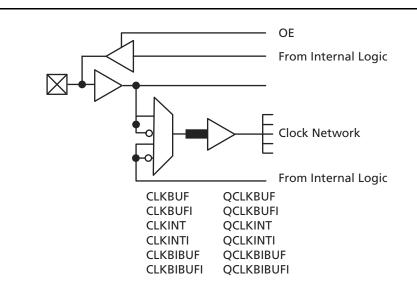
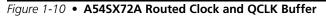





Figure 1-4 • Cluster Organization

Figure 1-9 • SX-A QCLK Architecture

JTAG Instructions

Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.

Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'. Bits 11-1 are always '02F', which is the Actel manufacturer code.

Table 1-7	•	JTAG	Instruction	Code
-----------	---	------	-------------	------

Instructions (IR4:IR0)	Binary Code
EXTEST	00000
SAMPLE/PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HighZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-8 • JTAG Instruction Code

Device	Process	Revision	Bits 31-28	Bits 27-12		
A54SX08A	0.22 µ	0	0 8, 9			
		1	А, В	40B4, 42B4		
A54SX16A	0.22 μ	0	9	40B8, 42B8		
		1	В	40B8, 42B8		
	0.25 μ	1	В	22B8		
A54SX32A	0.2 2µ	0	9	40BD, 42BD		
		1	В	40BD, 42BD		
	0.25 μ	1	В	22BD		
A54SX72A	0.22 μ	0	9	40B2, 42B2		
		1	В	40B2, 42B2		
	0.25 μ	1	В	22B2		

Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units V	
V _{CCI}	DC Supply Voltage for I/Os	-0.3 to +6.0		
V _{CCA}	DC Supply Voltage for Arrays	-0.3 to +3.0	V	
VI	Input Voltage	-0.5 to +5.75	V	
V _O	Output Voltage	–0.5 to + V _{CCI} + 0.5	V	
T _{STG}	Storage Temperature	-65 to +150	°C	

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions".

Table 2-2 Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range	0 to +70	-40 to +85	°C
2.5 V Power Supply Range (V _{CCA} and V _{CCI})	2.25 to 2.75	2.25 to 2.75	V
3.3 V Power Supply Range (V _{CCI})	3.0 to 3.6	3.0 to 3.6	V
5 V Power Supply Range (V _{CCI})	4.75 to 5.25	4.75 to 5.25	V

Typical SX-A Standby Current

Table 2-3 • Typical Standby Current for SX-A at 25°C with $V_{CCA} = 2.5 V$

Product	V _{CCI} = 2.5 V V _{CCI} = 3.3 V		V _{CCI} = 5 V		
A54SX08A	0.8 mA	1.0 mA	2.9 mA		
A54SX16A	0.8 mA	1.0 mA	2.9 mA		
A54SX32A	0.9 mA	1.0 mA	3.0 mA		
A54SX72A	3.6 mA	3.8 mA	4.5 mA		

Table 2-4 • Supply Voltages

V _{CCA}	V _{CCI} *	Maximum Input Tolerance	Maximum Output Drive
2. 5 V	2.5 V	5.75 V	2.7 V
2.5 V	3.3 V	5.75 V	3.6 V
2.5 V	5 V	5.75 V	5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

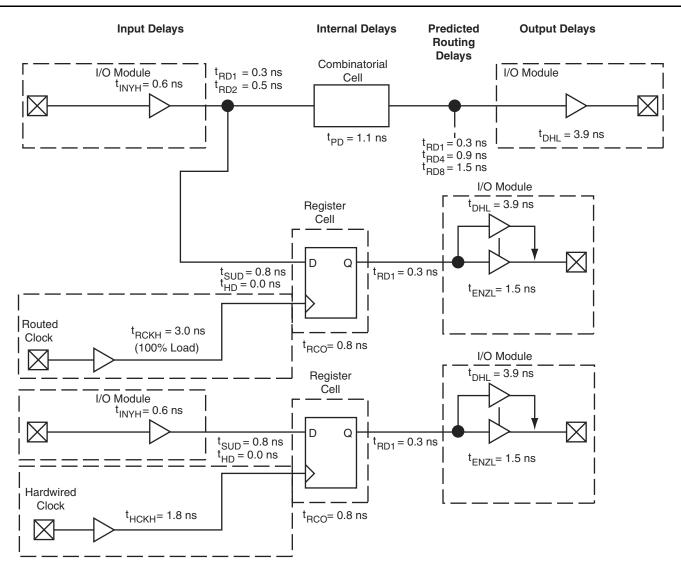
EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$


EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

SX-A Timing Model

Note: *Values shown for A54SX72A, –2, worst-case commercial conditions at 5 V PCI with standard place-and-route. Figure 2-3 • SX-A Timing Model

Sample Path Calculations

Hardwired Clock

External Setup	=	(t _{INYH} + t _{RD1} + t _{SUD}) – t _{HCKH}
	=	0.6 + 0.3 + 0.8 - 1.8 = - 0.1 ns
Clock-to-Out (Pad-to-Pad)	=	t _{HCKH} + t _{RCO} + t _{RD1} + t _{DHL}
	=	1.8 + 0.8 + 0.3 + 3.9 = 6.8 ns

Routed Clock

External Setup	= (t _{INYH} + t _{RD1} + t _{SUD}) – t _{RCKH}
	= 0.6 + 0.3 + 0.8 - 3.0 = -1.3 ns
Clock-to-Out (Pad-to-Pad	$I) = t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$
	= 3.0 + 0.8 + 0.3 + 3.9 = 8.0 ns

Table 2-23 • A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	= 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
--	--

		-3 S	beed*	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Netwo	rks										<u> </u>
t _{НСКН}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.3		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPVVL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.6	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.5		2.1	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.4		1.7		2.3	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.7	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-25 A54SX16A Timing Characteristics

-				
(Worst-Case Commercial	Conditions V	2 2 5 1 / 1	1 2 2 E V	T 70°C)
(worst-case commercial	Conditions v	$r_A = Z.ZO V.V$	$V_{CCI} = Z.ZO V_{C}$	$I_1 = 10^{-1}$
(.CA =-=		- , - <i>-</i> ,

		-3 Speed ¹	-2 S	peed	–1 Sp	beed	Std.	Speed	–F S	peed	
Parameter	Description	Min. Max	. Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}	•									
t _{DLH}	Data-to-Pad Low to High	3.4		3.9		4.5		5.2		7.3	ns
t _{DHL}	Data-to-Pad High to Low	2.6		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	11.6		13.4		15.2		17.9		25.0	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.4		3.9		4.5		5.2		7.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.6		3.0		3.3		3.9		5.5	ns
d_{TLH}^{4}	Delta Low to High	0.03		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^4	Delta High to Low	0.01	7	0.017		0.023		0.023		0.037	ns/pF
${\sf d_{THLS}}^4$	Delta High to Low—low slew	0.05	7	0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL]HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-28 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

			beed ¹	-2 S	peed	-1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ²			- 		-		- 		-		<u> </u>
t _{PD}	Internal Array Module		0.8		0.9		1.1		1.2		1.7	ns
Predicted R	outing Delays ³											
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns
R-Cell Timin	Ig											<u>.</u>
t _{RCO}	Sequential Clock-to-Q		0.6		0.7		0.8		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.6		0.7		0.7		0.9		1.2	ns
t _{sud}	Flip-Flop Data Input Set-Up	0.6		0.7		0.8		0.9		1.2		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.2		1.4		1.5		1.8		2.5		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Removal Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Pulse Width	1.4		1.6		1.8		2.1		2.9		ns
Input Modu	le Propagation Delays											-
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.6		0.7		0.8		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		1.2		1.3		1.5		1.8		2.5	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.5		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.6		0.7		0.8		0.9		1.3	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.8		0.9		1.0		1.2		1.6	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.4		1.6		1.8		2.2		3.0	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-28 A545X32A Timing Characteristics (Continued)

		-3 Sp	beed ¹	-2 S	beed	-1 S	peed	Std. 9	Speed	–F Sp	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}_{CCI} = 3.0 \text{ V}, T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-37 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-39 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 2.3 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-3 Sp	eed ¹	-2 S	peed	-1 S	peed	Std. 9	5peed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}											
t _{DLH}	Data-to-Pad Low to High		3.9		4.5		5.1		6.0		8.4	ns
t _{DHL}	Data-to-Pad High to Low		3.1		3.6		4.1		4.8		6.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		12.7		14.6		16.5		19.4		27.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.5		5.1		6.0		8.4	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.1		3.6		4.1		4.8		6.7	ns
d_{TLH}^{4}	Delta Low to High		0.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^4	Delta High to Low		0.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^4	Delta High to Low—low slew		0.057		0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

256-Pin FBGA

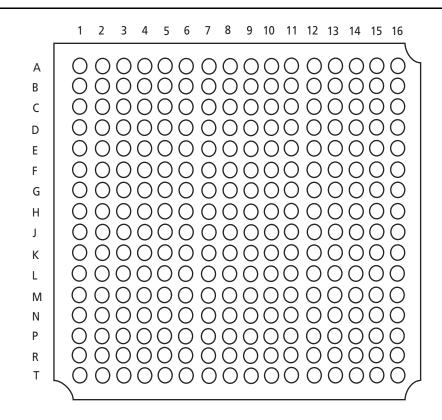


Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
AD18	I/O	I/O
AD19	I/O	I/O
AD20	I/O	I/O
AD21	I/O	I/O
AD22	I/O	I/O
AD23	V _{CCI}	V _{CCI}
AD24	NC*	I/O
AD25	NC*	I/O
AD26	NC*	I/O
AE1	NC*	NC
AE2	I/O	I/O
AE3	NC*	I/O
AE4	NC*	I/O
AE5	NC*	I/O
AE6	NC*	I/O
AE7	I/O	I/O
AE8	I/O	I/O
AE9	I/O	I/O
AE10	I/O	I/O
AE11	NC*	I/O
AE12	I/O	I/O
AE13	I/O	I/O
AE14	I/O	I/O
AE15	NC*	I/O
AE16	NC*	I/O
AE17	I/O	I/O
AE18	I/O	I/O
AE19	I/O	I/O
AE20	I/O	I/O
AE21	NC*	I/O
AE22	NC*	I/O
AE23	NC*	I/O
AE24	NC*	I/O
AE25	NC*	NC
AE26	NC*	NC

484-Pin FBGA								
Pin Number	A54SX32A Function	A54SX72A Function						
AF1	NC*	NC						
AF2	NC*	NC						
AF3	NC	I/O						
AF4	NC*	I/O						
AF5	NC*	I/O						
AF6	NC*	I/O						
AF7	I/O	I/O						
AF8	I/O	I/O						
AF9	I/O	I/O						
AF10	I/O	I/O						
AF11	NC*	I/O						
AF12	NC*	NC						
AF13	HCLK	HCLK						
AF14	I/O	QCLKB						
AF15	NC*	I/O						
AF16	NC*	I/O						
AF17	I/O	I/O						
AF18	I/O	/O /O /O						
AF19	I/O							
AF20	NC*							
AF21	NC*	I/O						
AF22	NC*	I/O						
AF23	NC*	I/O						
AF24	NC*	I/O						
AF25	NC*	NC						
AF26	NC*	NC						
B1	NC*	NC						
B2	NC*	NC						
B3	NC*	I/O						
B4	NC*	I/O						
B5	NC*	I/O						
B6	I/O	I/O						
B7	I/O	I/O						
B8	I/O	I/O						
B9	I/O	I/O						

	484-Pin FBG	A			
Pin Number	A54SX32A Function	A54SX72A Function			
B10	I/O	I/O			
B11	NC*	I/O			
B12	NC*	I/O			
B13	V _{CCI}	V _{CCI}			
B14	CLKA	CLKA			
B15	NC*	I/O			
B16	NC*	I/O			
B17	I/O	I/O			
B18	V _{CCI}	V _{CCI}			
B19	I/O	I/O			
B20	I/O	I/O			
B21	NC*	I/O			
B22	NC*	I/O			
B23	NC*	I/O			
B24	NC*	I/O			
B25	I/O	I/O			
B26	NC*	NC			
C1	NC*	I/O			
C2	NC*	I/O			
C3	NC*	I/O			
C4	NC*	I/O			
C5	I/O	I/O			
C6	V _{CCI}	V _{CCI}			
С7	I/O	I/O			
C8	I/O	I/O			
С9	V _{CCI}	V _{CCI}			
C10	I/O	I/O			
C11	I/O	I/O			
C12	I/O	I/O			
C13	PRA, I/O	PRA, I/O			
C14	I/O	I/O			
C15	I/O	QCLKD			
C16	I/O	I/O			
C17	I/O	I/O			
C18	I/O	I/O			

Note: *These pins must be left floating on the A54SX32A device.

<u> </u>		484-Pin FBG	
Nu	A54SX72A Function	A54SX32A Function	Pin Number
	I/O	I/O	C19
	V _{CCI}	V _{CCI}	C20
	I/O	I/O	C21
	I/O	I/O	C22
	I/O	I/O	C23
	I/O	I/O	C24
	I/O	NC*	C25
	I/O	NC*	C26
	I/O	NC*	D1
	TMS	TMS	D2
	I/O	I/O	D3
	V _{CCI}	V _{CCI}	D4
	I/O	NC*	D5
	TCK, I/O	TCK, I/O	D6
	I/O	I/O	D7
	I/O	I/O	D8
	I/O	I/O	D9
	I/O	I/O	D10
	I/O	I/O	D11
	QCLKC	I/O	D12
	I/O	I/O	D13
	I/O	I/O	D14
	I/O	I/O	D15
	I/O	I/O	D16
	I/O	I/O	D17
	I/O	I/O	D18
	I/O	I/O	D19
	I/O	I/O	D20
	V _{CCI}	V _{CCI}	D21
	GND	GND	D22
	I/O	I/O	D23
	I/O	I/O	D24
	I/O	NC*	D25
	I/O	NC*	D26
	I/O	NC*	E1

	484-Pin FBG	A			
Pin Number	A54SX32A Function	A54SX72A Function			
E2	NC*	I/O			
E3	I/O	I/O			
E4	I/O	I/O			
E5	GND	GND			
E6	TDI, IO	TDI, IO			
E7	I/O	I/O			
E8	I/O	I/O			
E9	I/O	I/O			
E10	I/O	I/O			
E11	I/O	I/O			
E12	I/O	I/O			
E13	V _{CCA}	V _{CCA}			
E14	CLKB	CLKB			
E15	I/O	I/O			
E16	I/O	I/O			
E17	I/O	I/O			
E18	I/O	I/O			
E19	I/O	I/O			
E20	I/O	I/O			
E21	I/O	I/O			
E22	I/O	I/O			
E23	I/O	I/O			
E24	I/O	I/O			
E25	V _{CCI}	V _{CCI}			
E26	GND	GND			
F1	V _{CCI}	V _{CCI}			
F2	NC*	I/O			
F3	NC*	I/O			
F4	I/O	I/O			
F5	I/O	I/O			
F22	I/O	I/O			
F23	I/O	I/O			
F24	I/O	I/O			
F25	I/O	I/O			
F26	NC*	I/O			

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
G1	NC*	I/O	
G2	NC*	I/O	
G3	NC*	I/O	
G4	I/O	I/O	
G5	I/O	I/O	
G22	I/O	I/O	
G23	V _{CCA}	V _{CCA}	
G24	I/O	I/O	
G25	NC*	I/O	
G26	NC*	I/O	
H1	NC*	I/O	
H2	NC*	I/O	
H3	I/O	I/O	
H4	I/O	I/O	
H5	I/O	I/O	
H22	I/O	I/O	
H23	I/O	I/O	
H24	I/O	I/O	
H25	NC*	I/O	
H26	NC*	I/O	
J1	NC*	I/O	
J2	NC*	I/O	
J3	I/O	I/O	
J4	I/O	I/O	
J5	I/O	I/O	
J22	I/O	I/O	
J23	I/O	I/O	
J24	I/O	I/O	
J25	V _{CCI}	V _{CCI}	
J26	NC*	I/O	
K1	I/O	I/O	
K2	V _{CCI}	V _{CCI}	
К3	I/O	I/O	
K4	I/O	I/O	
K5	V _{CCA}	V _{CCA}	

Actel°

SX-A Family FPGAs

Note: *These pins must be left floating on the A54SX32A device.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	–3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23