

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	249
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (27X27)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx32a-1fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offering

Package	A54SX08A	A54SX16A	A54SX32A	A54SX72A
PQ208	C,I,A,M	C,I,A,M	C,I,A,M	C,I,A,M
TQ100	C,I,A,M	C,I,A,M	C,I,A,M	
TQ144	C,I,A,M	C,I,A,M	C,I,A,M	
TQ176			C,I,M	
BG329			C,I,M	
FG144	C,I,A,M	C,I,A,M	C,I,A,M	
FG256		C,I,A,M	C,I,A,M	C,I,A,M
FG484			C,I,M	C,I,A,M
CQ208			C,M,B	C,M,B
CQ256			C,M,B	C,M,B

Notes:

- 1. C = Commercial
- 2. I = Industrial
- 3. A = Automotive
- 4. M = Military
- 5. B = MIL-STD-883 Class B
- 6. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.
- 7. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Speed Grade and Temperature Grade Matrix

	F	Std	-1	-2	-3
Commercial	✓	✓	✓	1	Discontinued
Industrial		✓	✓	1	Discontinued
Automotive		✓			
Military		✓	✓		
MIL-STD-883B		✓	✓		

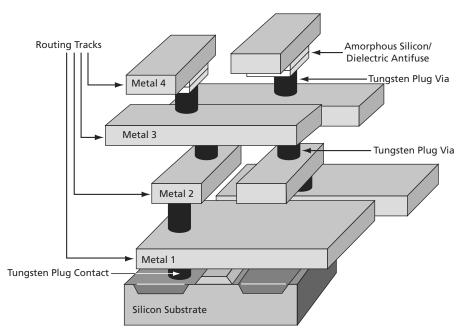
Notes:

- 1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.
- 2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Contact your Actel Sales representative for more information on availability.

v5.3

General Description


Introduction

The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 μm / 0.25 μm CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing time-to-market.

SX-A Family Architecture

The SX-A family's device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

Figure 1-1 • SX-A Family Interconnect Elements

v5.3 1-1

Logic Module Design

The SX-A family architecture is described as a "sea-of-modules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX-A family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable, using the S0 and S1 lines control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen from either the hardwired clock, the routed clocks, or internal logic.

The C-cell implements a range of combinatorial functions of up to five inputs (Figure 1-3). Inclusion of the DB input and its associated inverter function allows up to 4,000

different combinatorial functions to be implemented in a single module. An example of the flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 1.9 ns propagation delays.

Module Organization

All C-cell and R-cell logic modules are arranged into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells.

Clusters are grouped together into SuperClusters (Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide grouping of Type 1 Clusters. SuperCluster 2 is a two-wide group containing one Type 1 Cluster and one Type 2 Cluster. SX-A devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops.

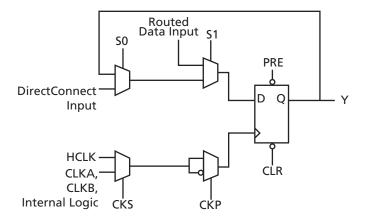


Figure 1-2 • R-Cell

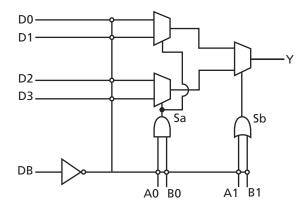


Figure 1-3 • C-Cell

1-2 v5.3

Routing Resources

The routing and interconnect resources of SX-A devices are in the top two metal layers above the logic modules (Figure 1-1 on page 1-1), providing optimal use of silicon, thus enabling the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using the Actel patented metal-to-metal programmable antifuse interconnect elements. The antifuses are normally open circuits and, when programmed, form a permanent low-impedance connection.

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-5 on page 1-4 and Figure 1-6 on page 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance, which is often required in applications such as fast counters, state machines, and data path logic. The interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-Cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable

interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster, and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100% automatic place-and-route software to minimize signal propagation delays.

The general system of routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, most connections typically require three or fewer antifuses, resulting in fast and predictable performance.

The unique local and general routing structure featured in SX-A devices allows 100% pin-locking with full logic utilization, enables concurrent printed circuit board (PCB) development, reduces design time, and allows designers to achieve performance goals with minimum effort.

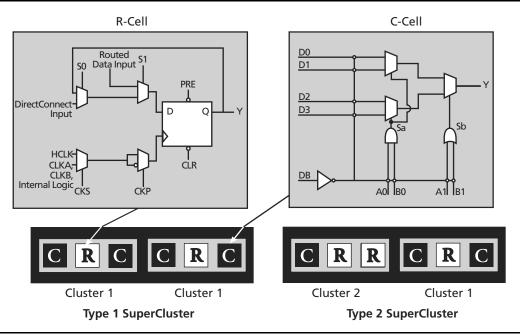


Figure 1-4 • Cluster Organization

v5.3 1-3

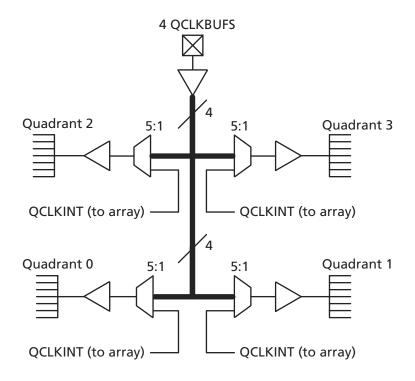


Figure 1-9 • SX-A QCLK Architecture

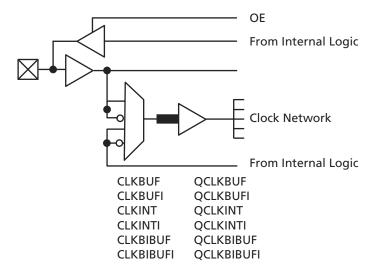


Figure 1-10 • A54SX72A Routed Clock and QCLK Buffer

1-6 v5.3

Figure 2-2 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

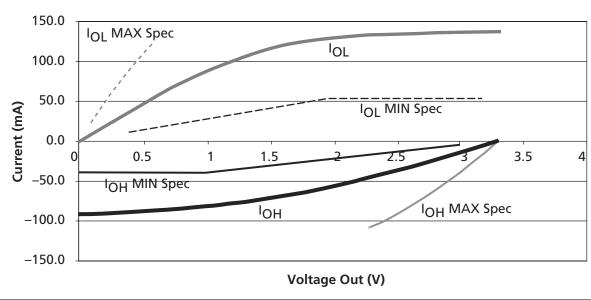


Figure 2-2 • 3.3 V PCI V/I Curve for SX-A Family

$$I_{OH} = (98.0/V_{CCI}) * (V_{OUT} - V_{CCI}) * (V_{OUT} + 0.4V_{CCI})$$

for 0.7 $V_{CCI} < V_{OUT} < V_{CCI}$

$$I_{OL} = (256/V_{CCI}) * V_{OUT} * (V_{CCI} - V_{OUT})$$
 for $0V < V_{OUT} < 0.18 \ V_{CCI}$

EQ 2-3 EQ 2-4

v5.3 2-7

Guidelines for Estimating Power

The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation:

Logic Modules (m) = 20% of modules

Inputs Switching (n) = Number inputs/4

Outputs Switching (p) = Number of outputs/4

CLKA Loads (q1) = 20% of R-cells

CLKB Loads (q2) = 20% of R-cells

Load Capacitance (CL) = 35 pF

Average Logic Module Switching Rate (fm) = f/10

Average Input Switching Rate (fn) = f/5

Average Output Switching Rate (fp) = f/10

Average CLKA Rate (fq1) = f/2

Average CLKB Rate (fq2) = f/2

Average HCLK Rate (fs1) = f

HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet.

2-10 v5.3

Thermal Characteristics

Introduction

The temperature variable in Actel Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction to be higher than the ambient, case, or board temperatures. EQ 2-9 and EQ 2-10 give the relationship between thermal resistance, temperature gradient and power.

$$\theta_{JA} = \frac{T_J - T_A}{P}$$

EQ 2-9

$$\theta_{JA} = \frac{T_C - T_A}{P}$$

EQ 2-10

Where:

 θ_{JA} = Junction-to-air thermal resistance

 θ_{IC} = Junction-to-case thermal resistance

 T_1 = Junction temperature

 T_A = Ambient temperature

 T_C = Ambient temperature

P = total power dissipated by the device

Table 2-12 • Package Thermal Characteristics

Package Type	Pin Count	θις	Still Air	1.0 m/s 200 ft./min.	2.5 m/s 500 ft./min.	Units
Thin Quad Flat Pack (TQFP)	100	14	33.5	27.4	25	°C/W
Thin Quad Flat Pack (TQFP)	144	11	33.5	28	25.7	°C/W
Thin Quad Flat Pack (TQFP)	176	11	24.7	19.9	18	°C/W
Plastic Quad Flat Pack (PQFP) ¹	208	8	26.1	22.5	20.8	°C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader ²	208	3.8	16.2	13.3	11.9	°C/W
Plastic Ball Grid Array (PBGA)	329	3	17.1	13.8	12.8	°C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	26.9	22.9	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.6	22.8	21.5	°C/W
Fine Pitch Ball Grid Array (FBGA)	484	3.2	18	14.7	13.6	°C/W

Notes:

1. The A54SX08A PQ208 has no heat spreader.

2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.

v5.3 2-11

Output Buffer Delays

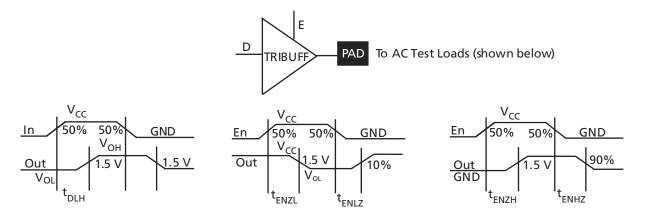


Figure 2-4 • Output Buffer Delays

AC Test Loads

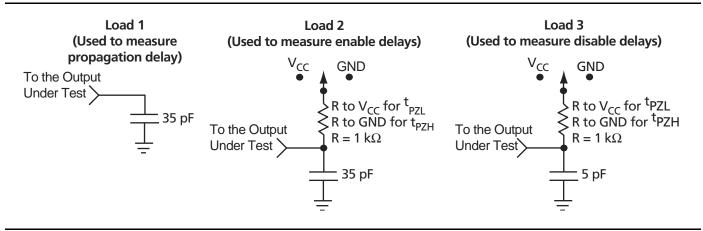


Figure 2-5 • AC Test Loads

v5.3 2-15

Table 2-15 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.25 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std.	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
Dedicated (Hardwired) Array Clock Networks	1								
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.4		1.6		1.8		2.6	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.3		1.5		1.7		2.4	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.4		0.5		0.7	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	ny Clock Networks	•								
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.1		1.3		1.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.0		1.1		1.3		1.8	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.4	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.7		8.0		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.7		8.0		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.7	ns

2-20 v5.3

Table 2-24 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} =4.75 V, T_J = 70°C)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks								•		•
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f_{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

2-30 v5.3

Table 2-28 • A54SX32A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	oeed ¹	-2 S	peed	-1 S	peed	Std. 9	peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		8.0		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

v5.3 2-35

Table 2-35 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	oeed ¹	-2 S	peed	-1 S	peed	Std. 9	Speed	-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Units
C-Cell Propa	ngation Delays ²											
t _{PD}	Internal Array Module		1.0		1.1		1.3		1.5		2.0	ns
Predicted R	outing Delays ³											
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.7		8.0		0.9		1.3	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns
R-Cell Timin	ıg			I		I				I		
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.1		1.5	ns
t_{CLR}	Asynchronous Clear-to-Q		0.6		0.7		0.7		0.9		1.2	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		8.0		1.0		1.4	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.3		1.5		1.7		2.0		2.8		ns
t _{RECASYN}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.5		1.7		2.0		2.3		3.2		ns
Input Modu	le Propagation Delays											
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.6		0.7		8.0		0.9		1.3	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		8.0		1.0		1.1		1.3		1.7	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.8		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.2		1.3		1.5		2.1	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2-42 v5.3

Table 2-39 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.3 V, T_J = 70°C)

		-3 Speed ¹		-2 S	peed	-1 S	peed	Std. 9	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMOS Output Module Timing ^{2, 3}												
t _{DLH}	Data-to-Pad Low to High		3.9		4.5		5.1		6.0		8.4	ns
t _{DHL}	Data-to-Pad High to Low		3.1		3.6		4.1		4.8		6.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		12.7		14.6		16.5		19.4		27.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.5		5.1		6.0		8.4	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.1		3.6		4.1		4.8		6.7	ns
d_{TLH}^{4}	Delta Low to High		0.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^{4}	Delta High to Low		0.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^{4}	Delta High to Low—low slew		0.057		0.06		0.071		0.086		0.117	ns/pF

Note:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 35 pF loading.
- 3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
- 4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/Ins] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load}*d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

2-50 v5.3

144-Pin TQFP

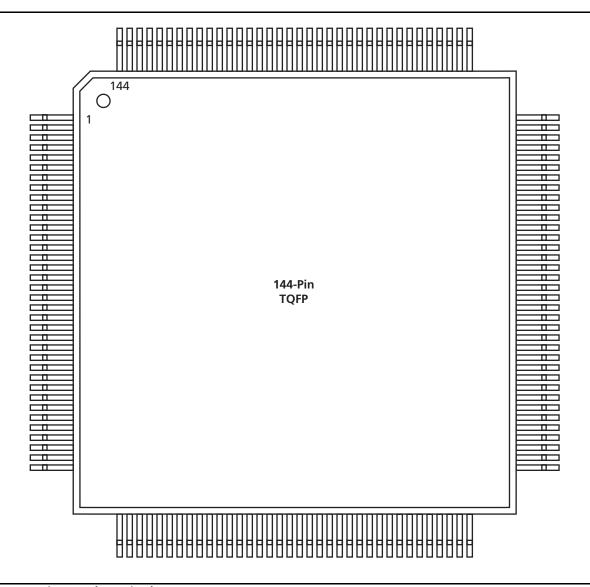


Figure 3-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

3-8 v5.3

329-Pir	n PBGA
Pin Number	A54SX32A Function
A1	GND
A2	GND
А3	V _{CCI}
A4	NC
A5	1/0
A6	1/0
A7	V_{CCI}
A8	NC
A9	1/0
A10	1/0
A11	1/0
A12	1/0
A13	CLKB
A14	1/0
A15	1/0
A16	1/0
A17	1/0
A18	1/0
A19	1/0
A20	1/0
A21	NC
A22	V_{CCI}
A23	GND
AA1	V_{CCI}
AA2	1/0
AA3	GND
AA4	1/0
AA5	1/0
AA6	1/0
AA7	1/0
AA8	1/0
AA9	1/0
AA10	1/0
AA11	I/O
AA12	1/0
AA13	I/O
AA14	I/O

329-Pi	n PBGA
Pin Number	A54SX32A Function
AA15	I/O
AA16	I/O
AA17	I/O
AA18	I/O
AA19	I/O
AA20	TDO, I/O
AA21	V _{CCI}
AA22	I/O
AA23	V _{CCI}
AB1	1/0
AB2	GND
AB3	1/0
AB4	1/0
AB5	1/0
AB6	1/0
AB7	1/0
AB8	1/0
AB9	1/0
AB10	1/0
AB11	PRB, I/O
AB12	I/O
AB13	HCLK
AB14	I/O
AB15	I/O
AB16	1/0
AB17	1/0
AB18	1/0
AB19	I/O
AB20	1/0
AB21	I/O
AB22	GND
AB23	I/O
AC1	GND
AC2	V _{CCI}
AC3	NC
AC4	I/O
AC5	I/O

329-Pin PBGA						
Pin Number	A54SX32A Function					
AC6	I/O					
AC7	I/O					
AC8	I/O					
AC9	V _{CCI}					
AC10	1/0					
AC11	1/0					
AC12	I/O					
AC13	I/O					
AC14	I/O					
AC15	NC					
AC16	I/O					
AC17	I/O					
AC18	1/0					
AC19	1/0					
AC20	1/0					
AC21	NC					
AC22	V _{CCI}					
AC23	GND					
B1	V _{CCI}					
B2	GND					
В3	1/0					
B4	1/0					
B5	1/0					
В6	1/0					
В7	1/0					
В8	1/0					
В9	1/0					
B10	1/0					
B11	1/0					
B12	PRA, I/O					
B13	CLKA					
B14	1/0					
B15	1/0					
B16	1/0					
B17	1/0					
B18	1/0					
B19	1/0					

329-Pin PBGA	
Pin	A54SX32A
Number	Function
B20	1/0
B21	I/O
B22	GND
B23	V_{CCI}
C1	NC
C2	TDI, I/O
C3	GND
C4	1/0
C5	1/0
C6	1/0
C7	I/O
C8	I/O
C9	I/O
C10	I/O
C11	I/O
C12	I/O
C13	I/O
C14	I/O
C15	I/O
C16	I/O
C17	I/O
C18	1/0
C19	1/0
C20	1/0
C21	V _{CCI}
C22	GND
C23	NC
D1	1/0
D2	I/O
D3	1/0
D4	TCK, I/O
D5	1/0
D6	I/O
D7	I/O
D8	I/O
D9	I/O
D10	I/O

v5.3 3-15

329-Pin PBGA		
Pin	A54SX32A	
Number	Function	
V22	1/0	
V23	I/O	
W1	I/O	
W2	1/0	
W3	1/0	
W4	1/0	
W20	1/0	
W21	1/0	
W22	1/0	
W23	NC	
Y1	NC	
Y2	1/0	
Y3	1/0	
Y4	GND	
Y5	1/0	
Y6	1/0	
Y7	1/0	
Y8	1/0	
Y9	1/0	
Y10	1/0	
Y11	I/O	
Y12	V_{CCA}	
Y13	NC	
Y14	1/0	
Y15	1/0	
Y16	1/0	
Y17	1/0	
Y18	I/O	
Y19	I/O	
Y20	GND	
Y21	1/0	
Y22	1/0	
Y23	1/0	

v5.3 3-17

256-Pin FBGA

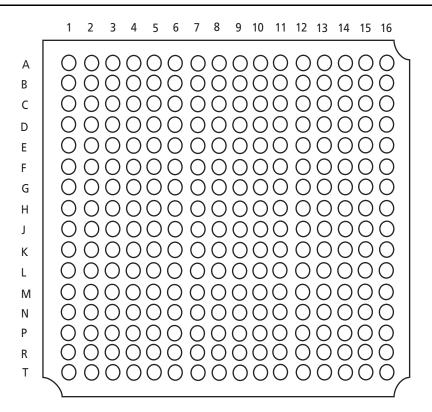


Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

v5.3 3-21

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
AD18	I/O	I/O
AD19	I/O	I/O
AD20	I/O	I/O
AD21	I/O	I/O
AD22	1/0	I/O
AD23	V _{CCI}	V _{CCI}
AD24	NC*	I/O
AD25	NC*	I/O
AD26	NC*	I/O
AE1	NC*	NC
AE2	I/O	I/O
AE3	NC*	I/O
AE4	NC*	I/O
AE5	NC*	I/O
AE6	NC*	I/O
AE7	1/0	I/O
AE8	I/O	I/O
AE9	1/0	1/0
AE10	I/O	I/O
AE11	NC*	I/O
AE12	I/O	I/O
AE13	1/0	I/O
AE14	I/O	I/O
AE15	NC*	I/O
AE16	NC*	I/O
AE17	I/O	I/O
AE18	I/O	I/O
AE19	I/O	I/O
AE20	I/O	I/O
AE21	NC*	I/O
AE22	NC*	I/O
AE23	NC*	I/O
AE24	NC*	I/O
AE25	NC*	NC
AE26	NC*	NC

	484-Pin FBG	Α
Pin Number	A54SX32A Function	A54SX72A Function
AF1	NC*	NC
AF2	NC*	NC
AF3	NC	I/O
AF4	NC*	I/O
AF5	NC*	I/O
AF6	NC*	I/O
AF7	I/O	I/O
AF8	I/O	I/O
AF9	I/O	I/O
AF10	I/O	I/O
AF11	NC*	1/0
AF12	NC*	NC
AF13	HCLK	HCLK
AF14	I/O	QCLKB
AF15	NC*	I/O
AF16	NC*	I/O
AF17	I/O	I/O
AF18	I/O	I/O
AF19	I/O	I/O
AF20	NC*	I/O
AF21	NC*	I/O
AF22	NC*	I/O
AF23	NC*	I/O
AF24	NC*	I/O
AF25	NC*	NC
AF26	NC*	NC
B1	NC*	NC
B2	NC*	NC
В3	NC*	I/O
В4	NC*	I/O
B5	NC*	I/O
В6	I/O	I/O
В7	I/O	I/O
B8	I/O	I/O
В9	I/O	I/O

484-Pin FBGA		
Pin Number	A54SX32A Function	A54SX72A Function
B10	I/O	I/O
B11	NC*	I/O
B12	NC*	I/O
B13	V _{CCI}	V _{CCI}
B14	CLKA	CLKA
B15	NC*	I/O
B16	NC*	I/O
B17	1/0	1/0
B18	V _{CCI}	V _{CCI}
B19	1/0	1/0
B20	1/0	1/0
B21	NC*	I/O
B22	NC*	I/O
B23	NC*	I/O
B24	NC*	I/O
B25	I/O	I/O
B26	NC*	NC
C1	NC*	I/O
C2	NC*	I/O
C3	NC*	I/O
C4	NC*	I/O
C5	I/O	I/O
C6	V _{CCI}	V _{CCI}
C7	I/O	I/O
C8	I/O	I/O
С9	V _{CCI}	V _{CCI}
C10	I/O	I/O
C11	I/O	I/O
C12	I/O	I/O
C13	PRA, I/O	PRA, I/O
C14	I/O	I/O
C15	I/O	QCLKD
C16	I/O	I/O
C17	I/O	I/O
C18	I/O	I/O

Note: *These pins must be left floating on the A54SX32A device.

3-28 v5.3

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section"was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

4-2 v5.3