

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	
Total RAM Bits	-
Number of I/O	113
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-1tqg144m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

SX-A Probe Circuit Control Pins

SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use, integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the

PRA/PRB pins for observation. Figure 1-13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

In order to preserve device probing capabilities, users should avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, the security fuse must not be programmed to preserve probing capabilities. Actel recommends that you use a 70 Ω series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

Figure 1-13 • Probe Setup

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Pin Description

CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption.

For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer builtin programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating).

QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating).

These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only.

GND Ground

Low supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software.

NC No Connection

This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device.

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset Pin** is not selected in Designer.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 2-2 on page 2-1. All V_{CCI} power pins in the device should be connected.

V_{CCA} Supply Voltage

Supply voltage for array. See Table 2-2 on page 2-1. All V_{CCA} power pins in the device should be connected.

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

			Comm	ercial	Indus	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -1 \text{ mA})$	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -8 mA)	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			0.8		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μA
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

			Comn	nercial	Indu	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{DD} = MIN,$	$(I_{OH} = -100 \ \mu A)$	2.1		2.1		V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	$V_{DD} = MIN,$ $V_{I} = V_{UI} \text{ or } V_{U}$	$(I_{OH} = -1 \text{ mA})$	2.0		2.0		V
		(l - 2mA)	17		17		V
	$V_{DD} = V_{IH}$ or V_{IL}	(I _{OH} =2 IIIA)	1.7		1.7		v
V _{OL}	$V_{DD} = MIN,$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	$V_{DD} = MIN,$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$	-					
	$V_{DD} = MIN,$	(I _{OL} = 2 mA)		0.7		0.7	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
V _{IL}	Input Low Voltage, $V_{OUT} \le V_{VOL(max)}$		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, $V_{OUT} \ge V_{VOH(min)}$		1.7	5.75	1.7	5.75	V
$I_{\rm IL}/I_{\rm IH}$	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

To determine the heat sink's thermal performance, use the following equation:

$$\theta_{JA(TOTAL)} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

EQ 2-14

where:

 $\theta_{CS} = 0.37^{\circ}C/W$

 thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = thermal resistance of the heat sink in °C/W

 $\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$ EQ 2-15 $\theta_{SA} = 13.33^{\circ}C/W - 3.20^{\circ}C/W - 0.37^{\circ}C/W$

$$\theta_{SA} = 9.76^{\circ}C/W$$

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

Output Buffer Delays

AC Test Loads

Figure 2-5 • AC Test Loads

Timing Characteristics

Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

 Table 2-13
 Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, V_{CCA} = 2.25 V)

	Junction Temperature (T _J)										
V _{CCA}	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C				
2.250 V	0.79	0.80	0.87	0.89	1.00	1.04	1.14				
2.500 V	0.74	0.75	0.82	0.83	0.94	0.97	1.07				
2.750 V	0.68	0.69	0.75	0.77	0.87	0.90	0.99				

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	tput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL O	Dutput Module Timing ³							-		
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d_{THLS}^2	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-26 • A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	V _{CCA} = 2.25 V, V _{CCI} =	= 3.0 V, T _J = 70°C)
----------------------------------	---	---------------------------------

		-3 Speed ¹	-2 Speed	-1	1 Speed	Std. Speed	-F Speed	
Parameter	Description	Min. Max.	Min. Max	. Mi	in. Max.	Min. Max.	Min. Max.	Units
3.3 V PCI O	utput Module Timing ²							
t _{DLH}	Data-to-Pad Low to High	2.0	2.3		2.6	3.1	4.3	ns
t _{DHL}	Data-to-Pad High to Low	2.2	2.5		2.8	3.3	4.6	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.4	1.7		1.9	2.2	3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.0	2.3		2.6	3.1	4.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.5	2.8		3.2	3.8	5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.2	2.5		2.8	3.3	4.6	ns
d _{TLH} ³	Delta Low to High	0.025	0.0	3	0.03	0.04	0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.01	5	0.015	0.015	0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴						•	
t _{DLH}	Data-to-Pad Low to High	2.8	3.2		3.6	4.3	6.0	ns
t _{DHL}	Data-to-Pad High to Low	2.7	3.1		3.5	4.1	5.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	9.5	10.9	9	12.4	14.6	20.4	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.2	2.6		2.9	3.4	4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	15.8	18.9	9	21.3	25.4	34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.8	3.2		3.6	4.3	6.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.9	3.3		3.7	4.4	6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.7	3.1		3.5	4.1	5.7	ns
d _{TLH} ³	Delta Low to High	0.025	0.0	3	0.03	0.04	0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.01	5	0.015	0.015	0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.053	0.05	3	0.067	0.073	0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-31 A54SX32A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _{CCI} :	= 4.75 V, T _J = 70°C)
----------------------------------	---	----------------------------------

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std.	Speed	-F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks										
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		1.9		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		0.8		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.5		2.8		3.3		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.8		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.2	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-39 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 2.3 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-3 Speed	-2	Speed	-1 Speed	Std. 9	Speed	–F Sp	beed	
Parameter	Description	Min. Ma	. Mir	. Max.	Min. Max	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}									
t _{DLH}	Data-to-Pad Low to High	3.9		4.5	5.1		6.0		8.4	ns
t _{DHL}	Data-to-Pad High to Low	3.1		3.6	4.1		4.8		6.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	12.	,	14.6	16.5		19.4		27.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.4		2.8	3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	11.	3	13.7	15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.9		4.5	5.1		6.0		8.4	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.1		2.5	2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z	3.1		3.6	4.1		4.8		6.7	ns
d_{TLH}^{4}	Delta Low to High	0.03	1	0.037	0.043		0.051		0.071	ns/pF
${\sf d_{THL}}^4$	Delta High to Low	0.01	7	0.017	0.023		0.023		0.037	ns/pF
d_{THLS}^4	Delta High to Low—low slew	0.05	7	0.06	0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

	100-	TQFP			100-	TQFP	
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function
1	GND	GND	GND	36	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O	37	NC	NC	NC
3	I/O	I/O	I/O	38	I/O	I/O	I/O
4	I/O	I/O	I/O	39	HCLK	HCLK	HCLK
5	I/O	I/O	I/O	40	I/O	I/O	I/O
6	I/O	I/O	I/O	41	I/O	I/O	I/O
7	TMS	TMS	TMS	42	I/O	I/O	I/O
8	V _{CCI}	V _{CCI}	V _{CCI}	43	I/O	I/O	I/O
9	GND	GND	GND	44	V _{CCI}	V _{CCI}	V _{CCI}
10	I/O	I/O	I/O	45	I/O	I/O	I/O
11	I/O	I/O	I/O	46	I/O	I/O	I/O
12	I/O	I/O	I/O	47	I/O	I/O	I/O
13	I/O	I/O	I/O	48	I/O	I/O	I/O
14	I/O	I/O	I/O	49	TDO, I/O	TDO, I/O	TDO, I/O
15	I/O	I/O	I/O	50	I/O	I/O	I/O
16	TRST, I/O	trst, I/O	trst, I/O	51	GND	GND	GND
17	I/O	I/O	I/O	52	I/O	I/O	I/O
18	I/O	I/O	I/O	53	I/O	I/O	I/O
19	I/O	I/O	I/O	54	I/O	I/O	I/O
20	V _{CCI}	V _{CCI}	V _{CCI}	55	I/O	I/O	I/O
21	I/O	I/O	I/O	56	I/O	I/O	I/O
22	I/O	I/O	I/O	57	V _{CCA}	V _{CCA}	V _{CCA}
23	I/O	I/O	I/O	58	V _{CCI}	V _{CCI}	V _{CCI}
24	I/O	I/O	I/O	59	I/O	I/O	I/O
25	I/O	I/O	I/O	60	I/O	I/O	I/O
26	I/O	I/O	I/O	61	I/O	I/O	I/O
27	I/O	I/O	I/O	62	I/O	I/O	I/O
28	I/O	I/O	I/O	63	I/O	I/O	I/O
29	I/O	I/O	I/O	64	I/O	I/O	I/O
30	I/O	I/O	I/O	65	I/O	I/O	I/O
31	I/O	I/O	I/O	66	I/O	I/O	I/O
32	I/O	I/O	I/O	67	V _{CCA}	V _{CCA}	V _{CCA}
33	I/O	I/O	I/O	68	GND	GND	GND
34	PRB, I/O	PRB, I/O	PRB, I/O	69	GND	GND	GND
35	V _{CCA}	V _{CCA}	V _{CCA}	70	I/O	I/O	I/O

	144-Pi	n TQFP		144-Pin TQFP				
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	
1	GND	GND	GND	38	I/O	I/O	I/O	
2	TDI, I/O	TDI, I/O	TDI, I/O	39	I/O	I/O	I/O	
3	I/O	I/O	I/O	40	I/O	I/O	I/O	
4	I/O	I/O	I/O	41	I/O	I/O	I/O	
5	I/O	I/O	I/O	42	I/O	I/O	I/O	
6	I/O	I/O	I/O	43	I/O	I/O	I/O	
7	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}	
8	I/O	I/O	I/O	45	I/O	I/O	I/O	
9	TMS	TMS	TMS	46	I/O	I/O	I/O	
10	V _{CCI}	V _{CCI}	V _{CCI}	47	I/O	I/O	I/O	
11	GND	GND	GND	48	I/O	I/O	I/O	
12	I/O	I/O	I/O	49	I/O	I/O	I/O	
13	I/O	I/O	I/O	50	I/O	I/O	I/O	
14	I/O	I/O	I/O	51	I/O	I/O	I/O	
15	I/O	I/O	I/O	52	I/O	I/O	I/O	
16	I/O	I/O	I/O	53	I/O	I/O	I/O	
17	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O	
18	I/O	I/O	I/O	55	I/O	I/O	I/O	
19	NC	NC	NC	56	V _{CCA}	V _{CCA}	V _{CCA}	
20	V _{CCA}	V _{CCA}	V _{CCA}	57	GND	GND	GND	
21	I/O	I/O	I/O	58	NC	NC	NC	
22	trst, I/O	trst, I/O	TRST, I/O	59	I/O	I/O	I/O	
23	I/O	I/O	I/O	60	HCLK	HCLK	HCLK	
24	I/O	I/O	I/O	61	I/O	I/O	I/O	
25	I/O	I/O	I/O	62	I/O	I/O	I/O	
26	I/O	I/O	I/O	63	I/O	I/O	I/O	
27	I/O	I/O	I/O	64	I/O	I/O	I/O	
28	GND	GND	GND	65	I/O	I/O	I/O	
29	V _{CCI}	V _{CCI}	V _{CCI}	66	I/O	I/O	I/O	
30	V _{CCA}	V _{CCA}	V _{CCA}	67	I/O	I/O	I/O	
31	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}	
32	I/O	I/O	I/O	69	I/O	I/O	I/O	
33	I/O	I/O	I/O	70	I/O	I/O	I/O	
34	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O	
35	I/O	I/O	I/O	72	I/O	I/O	I/O	
36	GND	GND	GND	73	GND	GND	GND	
37	I/O	I/O	I/O	74	I/O	I/O	I/O	

	256-Pi	n FBGA		256-Pin FBGA									
Pin Number Function		A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function						
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O						
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O						
E13	NC	I/O	I/O	H2	I/O	I/O	I/O						
E14	I/O	I/O	I/O	H3	V _{CCA}	V _{CCA}	V _{CCA}						
E15	I/O	I/O	I/O	H4	TRST, I/O	TRST, I/O	TRST, I/O						
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O						
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}						
F2	I/O	I/O	I/O	H7	GND	GND	GND						
F3	I/O	I/O	I/O	H8	GND	GND	GND						
F4	TMS	TMS	TMS	Н9	GND	GND	GND						
F5	I/O	I/O	I/O	H10	GND	GND	GND						
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}						
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O						
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O						
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O						
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O						
F11	I/O	I/O	I/O	H16	NC	I/O	I/O						
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O						
F13	I/O	I/O	I/O	J2	NC	I/O	I/O						
F14	I/O	I/O	I/O	J3	NC	I/O	I/O						
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O						
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O						
G1	NC	I/O	I/O	J6	V _{CCI}	V _{CCI}	V _{CCI}						
G2	I/O	I/O	I/O	J7	GND	GND	GND						
G3	NC	I/O	I/O	J8	GND	GND	GND						
G4	I/O	I/O	I/O	J9	GND	GND	GND						
G5	I/O	I/O	I/O	J10	GND	GND	GND						
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}						
G7	GND	GND	GND	J12	I/O	I/O	I/O						
G8	GND	GND	GND	J13	I/O	I/O	I/O						
G9	GND	GND	GND	J14	I/O	I/O	I/O						
G10	GND	GND	GND	J15	I/O	I/O	I/O						
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O						
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O						
G13	GND	GND	GND	K2	I/O	I/O	I/O						
G14	NC	I/O	I/O	К3	NC	I/O	I/O						
G15	V _{CCA}	V _{CCA}	V _{CCA}	K4	V _{CCA}	V _{CCA}	V _{CCA}						

484-Pin FBGA

	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	252	6
ABCDEFGHJKLMNPRTUV	- 0000000000000000000000000000000000000	2 000000000000000000000000000000000000	₃ 000000000000000000000000000000000000	4 0000000000000000000000000000000000000	♪ 000000000000000000000000000000000000	00000	/ 00000	× 00000	9 00000		000000 00000000	000000 00000000	000000 00000000	000000 00000000000000000000000000000000	000000 00000000	000000 00000000	000000 00000000	00000	00000	00000	00000	2 0000000000000000000000000000000000000	2 0000000000000000000000000000000000000	4 000000000000000000000000000000000000		
H J	00	000	00	00	00																	00	00	00		2
K L	00	000	00	00	00					000	00	00	000	00	00	000	00					00	00	0))
M N	00	00	00	00	00					00	00	00	00	00	00	000	00					00	0	0		2
P R	00	00	00	00	00					00	00	00	00	00	00	000	00					00	0	0)
T U	000	000	000	000	000					000	00	00	00	00	00	00	00					000	00	000	0000	
w	000	000	000	000	000																	000	000	000)
AA AR	000	000	000	000	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000	000	000		
AC AD	000	õ	õ	00	000	000	000	000	000	000	000	000	õ	00	õ	õ	000	õ	õ	õ	000	õ	õ	000		$\hat{\mathbf{b}}$
AE AF	000	000	000	000	000	000	000	000	000	0 0	000	000	000	000	000	000	000	000	000	000	000	000	ŏ o	000		5
Ļ																										1

Figure 3-8 • 484-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page						
v5.2	-3 speed grades have been discontinued.							
(June 2006)	The "SX-A Timing Model" was updated with –2 data.							
v5.1	RoHS information was added to the "Ordering Information".							
February 2005	The "Programming" section was updated.							
v5.0	Revised Table 1 and the timing data to reflect the phase out of the –3 speed grade for the A54SX08A device.							
	The "Thermal Characteristics" section was updated.							
	The "176-Pin TQFP" was updated to add pins 81 to 90.							
	The "484-Pin FBGA" was updated to add pins R4 to Y26							
v4.0	The "Temperature Grade Offering" is new.	1-iii						
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii						
	"SX-A Family Architecture" was updated.	1-1						
	"Clock Resources" was updated.	1-5						
	"User Security" was updated.	1-7						
	"Power-Up/Down and Hot Swapping" was updated.	1-7						
	"Dedicated Mode" is new							
	Table 1-5 is new.	1-9						
	"JTAG Instructions" is new	1-10						
	"Design Considerations" was updated.	1-12						
	The "Programming" section is new.	1-13						
	"Design Environment" was updated.	1-13						
	"Pin Description" was updated.	1-15						
	Table 2-1 was updated.	2-1						
	Table 2-2 was updated.	2-1						
	Table 2-3 is new.	2-1						
	Table 2-4 is new.	2-1						
	Table 2-5 was updated.	2-2						
	Table 2-6 was updated.	2-2						
	"Power Dissipation" is new.	2-8						
	Table 2-11 was updated.	2-9						

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

Actel Europe Ltd.

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600 River Court, Meadows Business Park Station Approach, Blackwater Camberley, Surrey GU17 9AB United Kingdom Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 www.jp.actel.com

Actel Hong Kong

Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 www.actel.com.cn