

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

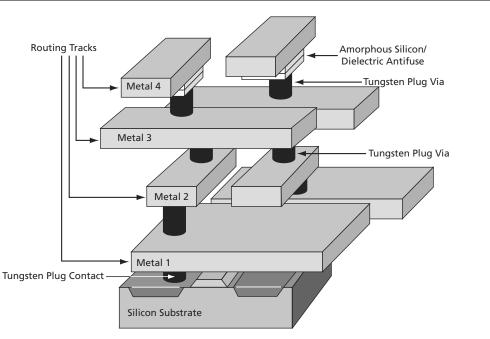
Details

Details	
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	249
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	329-BBGA
Supplier Device Package	329-PBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-2bg329i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description


Introduction

The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 μm / 0.25 μm CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing time-to-market.

SX-A Family Architecture

The SX-A family's device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

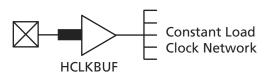
Figure 1-1 • SX-A Family Interconnect Elements

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.


In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks in Actel's Antifuse Devices* and *Using A54SX72A and RT54SX72S Quadrant Clocks* application notes.

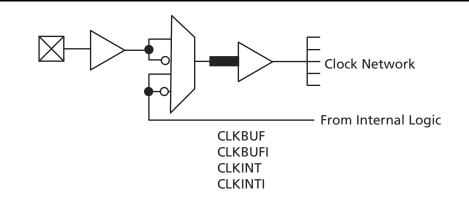

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using $0.22 \,\mu/0.25 \,\mu$ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation of* Security in Actel Antifuse FPGAs application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, *Actel eX, SX-A, and RTSX-S I/Os*.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input.

Each I/O module has an available power-up resistor of approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os.* Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

		Comm	ercial	Indus	strial		
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -8 mA)	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			0.8		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μA
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web	•).			•		

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

		Comn	nercial	Indu	strial		
Symbol	Parameter	ter		Max.	Min.	Max.	Units
V _{OH}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -100 \mu\text{A})$	2.1		2.1		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -1 mA)	2.0		2.0		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} =2 mA)	1.7		1.7		V
V _{OL}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 2 mA)		0.7		0.7	V
V _{IL}	Input Low Voltage, V _{OUT} ≤ V _{VOL(max)}		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, V _{OUT} ≥ V _{VOH(min)}		1.7	5.75	1.7	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

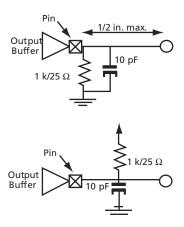

Symbol	Parameter Condition		Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 0.3 V_{CCI}$ ¹	-12V _{CCI}	-	mA
		$0.3V_{CCI} \le V_{OUT} < 0.9V_{CCI}$ ¹	(–17.1(V _{CCI} – V _{OUT}))	-	mA
		0.7V _{CCI} < V _{OUT} < V _{CCI} ^{1, 2}	-	EQ 2-3 on page 2-7	_
	(Test Point)	$V_{OUT} = 0.7 V_{CC}^2$	_	-32V _{CCI}	mA
I _{OL(AC)}	Switching Current Low	$V_{CCI} > V_{OUT} \ge 0.6 V_{CCI}^{1}$	16V _{CCI}	-	mA
		$0.6V_{CCI} > V_{OUT} > 0.1V_{CCI}^{1}$	(26.7V _{OUT})	-	mA
		0.18V _{CCI} > V _{OUT} > 0 ^{1, 2}	-	EQ 2-4 on page 2-7	_
	(Test Point)	$V_{OUT} = 0.18 V_{CC}^2$	-	38V _{CCI}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	–25 + (V _{IN} + 1)/0.015	-	mA
I _{CH}	High Clamp Current	$V_{CCI} + 4 > V_{IN} \ge V_{CCI} + 1$	25 + (V _{IN} – V _{CCI} – 1)/0.015	-	mA
slew _R	Output Rise Slew Rate	0.2V _{CCI} - 0.6V _{CCI} load ³	1	4	V/ns
slew _F	Output Fall Slew Rate	0.6V _{CCI} - 0.2V _{CCI} load ³	1	4	V/ns

Table 2-10 • AC Specifications (3.3 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

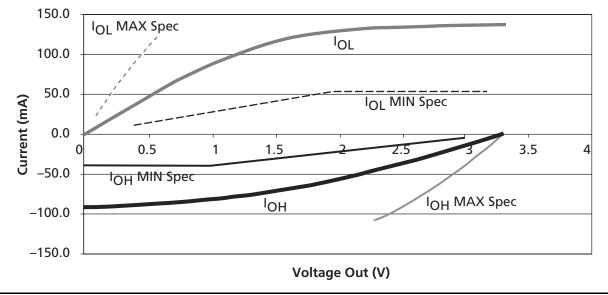


Figure 2-2 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-2 • 3.3 V PCI V/I Curve for SX-A Family

 $I_{OH} = (98.0/V_{CCI}) * (V_{OUT} - V_{CCI}) * (V_{OUT} + 0.4V_{CCI})$

for 0.7 $V_{CCI} < V_{OUT} < V_{CCI}$

 $I_{OL} = (256/V_{CCI}) * V_{OUT} * (V_{CCI} - V_{OUT})$ for 0V < V_{OUT} < 0.18 V_{CCI}

EQ 2-3

EQ 2-4

Where:

- C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF
- C_{EQSM} = Equivalent capacitance of sequential modules (R-Cells) in pF
- C_{EQI} = Equivalent capacitance of input buffers in pF
- C_{EQO} = Equivalent capacitance of output buffers in pF
- C_{EQCR} = Equivalent capacitance of CLKA/B in pF
- C_{EQHV} = Variable capacitance of HCLK in pF
- C_{EQHF} = Fixed capacitance of HCLK in pF
 - C_{L =} Output lead capacitance in pF
 - f_m = Average logic module switching rate in MHz
 - $f_n =$ Average input buffer switching rate in MHz
 - f_p = Average output buffer switching rate in MHz
 - $f_{a1} =$ Average CLKA rate in MHz
 - $f_{\alpha 2}$ = Average CLKB rate in MHz
 - f_{s1} = Average HCLK rate in MHz
 - m = Number of logic modules switching at fm
 - n = Number of input buffers switching at fn
 - p = Number of output buffers switching at fp
 - q₁ = Number of clock loads on CLKA
 - q₂ = Number of clock loads on CLKB
 - $r_1 =$ Fixed capacitance due to CLKA
 - r₂ = Fixed capacitance due to CLKB
 - s1 = Number of clock loads on HCLK
 - x = Number of I/Os at logic low
 - y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

Guidelines for Estimating Power

The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation:

Logic Modules (m) = 20% of modules Inputs Switching (n) = Number inputs/4 Outputs Switching (p) = Number of outputs/4 CLKA Loads (q1) = 20% of R-cells CLKB Loads (q2) = 20% of R-cells Load Capacitance (CL) = 35 pF Average Logic Module Switching Rate (fm) = f/10 Average Input Switching Rate (fn) = f/5 Average Output Switching Rate (fp) = f/10 Average CLKA Rate (fq1) = f/2 Average CLKB Rate (fq2) = f/2 Average HCLK Rate (fs1) = f HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet.

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JESD-51 series but has little relevance in actual performance of the product in real application. It should be employed with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA package at still air is as follows. i.e.:

$$\theta_{JA} = 17.1^{\circ}$$
C/W is taken from Table 2-12 on page 2-11

 $T_A = 125$ °C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power =
$$\frac{\text{Max Junction Temp - Max. Ambient Temp}}{\theta_{JA}} = \frac{150^{\circ}\text{C} - 125^{\circ}\text{C}}{17.1^{\circ}\text{C/W}} = 1.46 \text{ W}$$

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or the airflow inside the system must be increased.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required.

Calculation for Heat Sink

For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is 3.00 W. The user-dependent data T_J and T_A are given as follows:

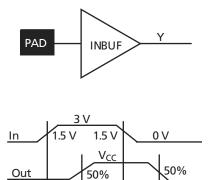
$$T_J = 110^{\circ}C$$

 $T_A = 70^{\circ}C$

From the datasheet:

 $\theta_{JA} = 18.0^{\circ}C/W$ $\theta_{JC} = 3.2^{\circ}C/W$

$$P = \frac{\text{Max Junction Temp} - \text{Max. Ambient Temp}}{\theta_{JA}} = \frac{110^{\circ}\text{C} - 70^{\circ}\text{C}}{18.0^{\circ}\text{C/W}} = 2.22 \text{ W}$$


EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated by:

$$\theta_{JA} = \frac{Max Junction Temp - Max. Ambient Temp}{P} = \frac{110^{\circ}C - 70^{\circ}C}{3.00 W} = 13.33^{\circ}C/W$$

EQ 2-13

Input Buffer Delays

t INY **C-Cell Delays**

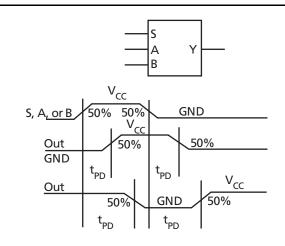


Figure 2-6 • Input Buffer Delays

GND

Figure 2-7 • C-Cell Delays

Cell Timing Characteristics

t_{INY}

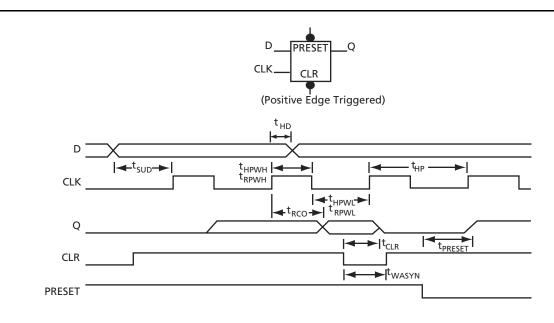


Figure 2-8 • Flip-Flops

Table 2-16 A545X08A Timing Characteristics

(Worst-Case Commercial Condition	5 V _{CCA} = 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
----------------------------------	---

	T	-2 Speed		–1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (I	Hardwired) Array Clock Networks									
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.3		1.5		1.7		2.6	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.1		1.3		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.5		0.5		0.8	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	y Clock Networks									
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.2		1.4		1.9	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.2		1.3		1.6		2.2	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.7		0.8		0.9		1.3	ns
t _{rcksw}	Maximum Skew (50% Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.8		0.9		1.1		1.5	ns

Table 2-18 • A54SX08A Timing Characteristics

			peed	-1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMC	DS Output Module Timing ^{1,2}									
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-34 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4.75 V, T _J = 70°C)
-----------------------------------	--

		-3 Speed ¹ -2 Speed -		-1 S	peed	Std.	Speed	–F S	peed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	5 V PCI Output Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.1		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.1		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^{3}	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.6		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d_{TLH}^{3}	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d_{THL}^3	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-35 A545X72A Timing Characteristics (Continued)

		-3 Speed ¹		-2 Speed		–1 Speed		Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.0		1.2		1.6	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
Input Modu	nput Module Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.7		0.8		0.9		1.3	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions	V_{CCA} = 2.25 V, V_{CCI} =	2.25 V, T _J = 70°C)
-----------------------------------	---------------------------------	--------------------------------

		-3 Speed*		-2 Speed		-1 Speed		Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.3		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.0		4.7		6.6	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.8		2.1		2.4		2.8		3.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.8		2.1		2.4		2.8		3.9	ns
Quadrant A	rray Clock Networks											
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.6		3.0		3.3		3.9		5.5	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.2		5.9	ns

Note: *All –3 speed grades have been discontinued.

100-Pin TQFP

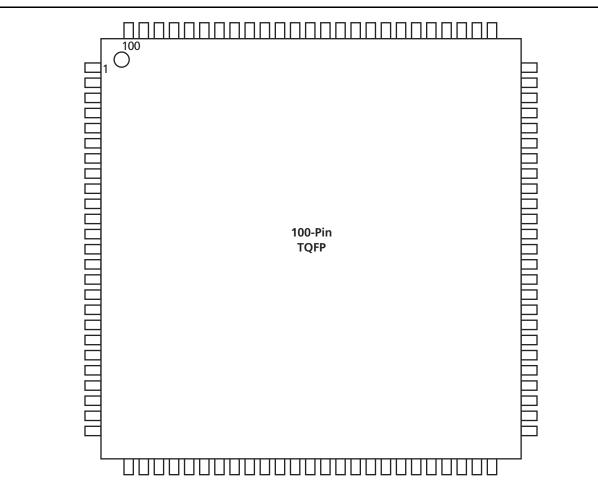


Figure 3-2 • 100-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

176-Pin TQFP					
Pin Number	A54SX32A Function				
145	I/O				
146	I/O				
147	I/O				
148	I/O				
149	I/O				
150	I/O				
151	I/O				
152	CLKA				
153	CLKB				
154	NC				
155	GND				
156	V _{CCA}				
157	PRA, I/O				
158	I/O				
159	I/O				
160	I/O				
161	I/O				
162	I/O				
163	I/O				
164	I/O				
165	I/O				
166	I/O				
167	I/O				
168	I/O				
169	V _{CCI}				
170	I/O				
171	I/O				
172	I/O				
173	I/O				
174	I/O				
175	I/O				
176	TCK, I/O				

A54SX32A
Function
I/O
NC
NC
I/O
I/O
GND
I/O
V _{CCA}
NC
I/O
GND
I/O
I/O
I/O

144-Pin FBGA

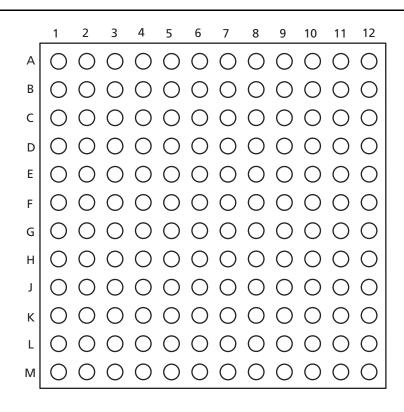


Figure 3-6 • 144-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.