

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	203
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-2fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications.

Function	Description
Input Buffer Threshold Selections	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Output Buffer	 "Hot-Swap" Capability (3.3 V PCI is not hot swappable) I/O on an unpowered device does not sink current Can be used for "cold-sparing" Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device V _{CCA} and V _{CCI} can be powered in any order

Table 1-2 • I/O Features

Table 1-3 • I/O Characteristics for All I/O Configurations

	Hot Swappable	Slew Rate Control	Power-Up Resistor
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μs	5 V/ms	2.5 V/ms	0.5 V/ms	0.25 V/ms	0.1 V/ms	0.025 V/ms
Units	μs	μs	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V_{CCI} should be placed on the TMS pin to pull it High by default.**

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-6 •	Boundary-Scan Pin Configurations and
	Functions

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin	Function						
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)						
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up						
Reserve Probe	Keeps pins from being used or regular I/O						

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

SX-A Probe Circuit Control Pins

SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use, integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the

PRA/PRB pins for observation. Figure 1-13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

In order to preserve device probing capabilities, users should avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, the security fuse must not be programmed to preserve probing capabilities. Actel recommends that you use a 70 Ω series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70 Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

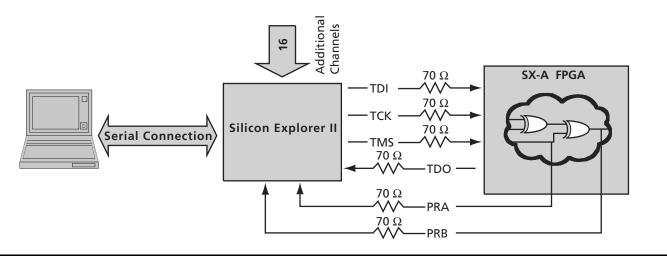


Figure 1-13 • Probe Setup

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Where:

- C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF
- C_{EQSM} = Equivalent capacitance of sequential modules (R-Cells) in pF
- C_{EQI} = Equivalent capacitance of input buffers in pF
- C_{EQO} = Equivalent capacitance of output buffers in pF
- C_{EQCR} = Equivalent capacitance of CLKA/B in pF
- C_{EQHV} = Variable capacitance of HCLK in pF
- C_{EQHF} = Fixed capacitance of HCLK in pF
 - C_{L =} Output lead capacitance in pF
 - f_m = Average logic module switching rate in MHz
 - $f_n =$ Average input buffer switching rate in MHz
 - f_p = Average output buffer switching rate in MHz
 - $f_{a1} =$ Average CLKA rate in MHz
 - $f_{\alpha 2}$ = Average CLKB rate in MHz
 - f_{s1} = Average HCLK rate in MHz
 - m = Number of logic modules switching at fm
 - n = Number of input buffers switching at fn
 - p = Number of output buffers switching at fp
 - q₁ = Number of clock loads on CLKA
 - q₂ = Number of clock loads on CLKB
 - $r_1 =$ Fixed capacitance due to CLKA
 - r₂ = Fixed capacitance due to CLKB
 - s1 = Number of clock loads on HCLK
 - x = Number of I/Os at logic low
 - y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

Guidelines for Estimating Power

The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation:

Logic Modules (m) = 20% of modules Inputs Switching (n) = Number inputs/4 Outputs Switching (p) = Number of outputs/4 CLKA Loads (q1) = 20% of R-cells CLKB Loads (q2) = 20% of R-cells Load Capacitance (CL) = 35 pF Average Logic Module Switching Rate (fm) = f/10 Average Input Switching Rate (fn) = f/5 Average Output Switching Rate (fp) = f/10 Average CLKA Rate (fq1) = f/2 Average CLKB Rate (fq2) = f/2 Average HCLK Rate (fs1) = f HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet.

Timing Characteristics

Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

 Table 2-13
 Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, V_{CCA} = 2.25 V)

Junction Temperature (T _J)								
V _{CCA}	–55°C	–40°C	70°C	85°C	125°C			
2.250 V	0.79	0.80	0.87	0.89	1.00	1.04	1.14	
2.500 V	0.74	0.75	0.82	0.83	0.94	0.97	1.07	
2.750 V	0.68	0.69	0.75	0.77	0.87	0.90	0.99	

Timing Characteristics

Table 2-14 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std. 9	Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	igation Delays ¹	-		-		-		•		-
t _{PD}	Internal Array Module		0.9		1.1		1.2		1.7	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.6		0.7		0.8		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns
R-Cell Timin	g									
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.7		0.9		1.2	ns
t _{sud}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.2		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.5		1.8		2.5		ns
t _{recasyn}	Asynchronous Recovery Time	0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Pulse Width	1.6		1.8		2.1		2.9		ns
Input Modu	le Propagation Delays					1				1
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		1.0		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.3	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.1		1.3		1.8	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-18 • A54SX08A Timing Characteristics

		-2 S	peed	-1 S	peed	Std. S	Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMC	DS Output Module Timing ^{1,2}	•								
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-20 A54SX08A Timing Characteristics

		-2 S	-2 Speed -1 Speed		Std.	Speed	-F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Outp	out Module Timing ¹	1								1
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH} ²	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^2	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	out Module Timing ³	1								1
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-25 A54SX16A Timing Characteristics

-				
(Worst-Case Commercial	Conditions V	2 2 5 1 / 1	1 2 2 E V	T 70°C)
(worst-case commercial	Conditions v	$r_A = Z.ZO V.V$	$V_{CCI} = Z.ZO V_{C}$	$I_1 = 10^{-1}$
(.CA =-=		- , - <i>-</i> ,

		-3 Speed ¹	-2 S	peed	–1 Sp	beed	Std.	Speed	-F Speed		
Parameter	Description	Min. Max	. Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}	•									
t _{DLH}	Data-to-Pad Low to High	3.4		3.9		4.5		5.2		7.3	ns
t _{DHL}	Data-to-Pad High to Low	2.6		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	11.6		13.4		15.2		17.9		25.0	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.4		3.9		4.5		5.2		7.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.6		3.0		3.3		3.9		5.5	ns
d_{TLH}^{4}	Delta Low to High	0.03		0.037		0.043		0.051		0.071	ns/pF
${\sf d_{THL}}^4$	Delta High to Low	0.01	7	0.017		0.023		0.023		0.037	ns/pF
${\sf d_{THLS}}^4$	Delta High to Low—low slew	0.05	7	0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL]HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-26 • A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	$V_{CCA} = 2.25 \text{ V}, \text{ V}_{CCI} = 3.0 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$
----------------------------------	--

		-3 S	beed ¹	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.0		2.3		2.6		3.1		4.3	ns
t _{DHL}	Data-to-Pad High to Low		2.2		2.5		2.8		3.3		4.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.0		2.3		2.6		3.1		4.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.2		2.5		2.8		3.3		4.6	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{3}	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.8		3.2		3.6		4.3		6.0	ns
t _{DHL}	Data-to-Pad High to Low		2.7		3.1		3.5		4.1		5.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		9.5		10.9		12.4		14.6		20.4	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.8		3.2		3.6		4.3		6.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.7		3.1		3.5		4.1		5.7	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-27 A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	$x = 2.25 \text{ V}, \text{ V}_{\text{CCI}} = 4.75 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$
--	--

		–3 Sj	beed ¹	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.5		2.8		3.3		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^{3}	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.7		7.7		8.7		10.2		14.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d_{TLH}^{3}	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-38 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} :	= 4.75 V, T _J = 70°C)
-----------------------------------	---	----------------------------------

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arr	ay Clock Networks					-						-
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		3.0		3.5		4.9	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.5		2.9		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		3.9		5.5	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.2		3.6		4.1		4.8		6.8	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.9		2.2		2.5		3.0		4.1	ns
Quadrant A	Array Clock Networks	-		-		-		-		-		-
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.4		1.6		1.9		2.7	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.4		1.6		1.8		2.1		3.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.4		1.7		1.9		2.2		3.1	ns

Note: *All –3 speed grades have been discontinued.

	100-	TQFP			
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function		
71	I/O	I/O	I/O		
72	I/O	I/O	I/O		
73	I/O	I/O	I/O		
74	I/O	I/O	I/O		
75	I/O	I/O	I/O		
76	I/O	I/O	I/O		
77	I/O	I/O	I/O		
78	I/O	I/O	I/O		
79	I/O	I/O	I/O		
80	I/O	I/O	I/O		
81	I/O	I/O	I/O		
82	V _{CCI}	V _{CCI}	V _{CCI}		
83	I/O	I/O	I/O		
84	I/O	I/O	I/O		
85	I/O	I/O	I/O		
86	I/O	I/O	I/O		
87	CLKA	CLKA	CLKA		
88	CLKB	CLKB	CLKB		
89	NC	NC	NC		
90	V _{CCA}	V _{CCA}	V _{CCA}		
91	GND	GND	GND		
92	PRA, I/O	PRA, I/O	pra, I/o		
93	I/O	I/O	I/O		
94	I/O	I/O	I/O		
95	I/O	I/O	I/O		
96	I/O	I/O	I/O		
97	I/O	I/O	I/O		
98	I/O	I/O	I/O		
99	I/O	I/O	I/O		
100	TCK, I/O	TCK, I/O	TCK, I/O		

	144-Pi	n TQFP		144-Pin TQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function				
75	I/O	I/O	I/O	111	I/O	I/O	I/O				
76	I/O	I/O	I/O	112	I/O	I/O	I/O				
77	I/O	I/O	I/O	113	I/O	I/O	I/O				
78	I/O	I/O	I/O	114	I/O	I/O	I/O				
79	V _{CCA}	V _{CCA}	V _{CCA}	115	V _{CCI}	V _{CCI}	V _{CCI}				
80	V _{CCI}	V _{CCI}	V _{CCI}	116	I/O	I/O	I/O				
81	GND	GND	GND	117	I/O	I/O	I/O				
82	I/O	I/O	I/O	118	I/O	I/O	I/O				
83	I/O	I/O	I/O	119	I/O	I/O	I/O				
84	I/O	I/O	I/O	120	I/O	I/O	I/O				
85	I/O	I/O	I/O	121	I/O	I/O	I/O				
86	I/O	I/O	I/O	122	I/O	I/O	I/O				
87	I/O	I/O	I/O	123	I/O	I/O	I/O				
88	I/O	I/O	I/O	124	I/O	I/O	I/O				
89	V _{CCA}	V _{CCA}	V _{CCA}	125	CLKA	CLKA	CLKA				
90	NC	NC	NC	126	CLKB	CLKB	CLKB				
91	I/O	I/O	I/O	127	NC	NC	NC				
92	I/O	I/O	I/O	128	GND	GND	GND				
93	I/O	I/O	I/O	129	V _{CCA}	V _{CCA}	V _{CCA}				
94	I/O	I/O	I/O	130	I/O	I/O	I/O				
95	I/O	I/O	I/O	131	PRA, I/O	PRA, I/O	PRA, I/O				
96	I/O	I/O	I/O	132	I/O	I/O	I/O				
97	I/O	I/O	I/O	133	I/O	I/O	I/O				
98	V _{CCA}	V _{CCA}	V _{CCA}	134	I/O	I/O	I/O				
99	GND	GND	GND	135	I/O	I/O	I/O				
100	I/O	I/O	I/O	136	I/O	I/O	I/O				
101	GND	GND	GND	137	I/O	I/O	I/O				
102	V _{CCI}	V _{CCI}	V _{CCI}	138	I/O	I/O	I/O				
103	I/O	I/O	I/O	139	I/O	I/O	I/O				
104	I/O	I/O	I/O	140	V _{CCI}	V _{CCI}	V _{CCI}				
105	I/O	I/O	I/O	141	I/O	I/O	I/O				
106	I/O	I/O	I/O	142	I/O	I/O	I/O				
107	I/O	I/O	I/O	143	I/O	I/O	I/O				
108	I/O	I/O	I/O	144	TCK, I/O	TCK, I/O	TCK, I/O				
109	GND	GND	GND	L		1	1				
110	I/O	I/O	I/O								

329-Pin PBGA		329-Pin PBGA		329-Pi	329-Pin PBGA		329-Pin PBGA	
Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	
D11	V _{CCA}	H1	I/O	L14	GND	P12	GND	
D12	NC	H2	I/O	L20	NC	P13	GND	
D13	I/O	H3	I/O	L21	I/O	P14	GND	
D14	I/O	H4	I/O	L22	I/O	P20	I/O	
D15	I/O	H20	V _{CCA}	L23	NC	P21	I/O	
D16	I/O	H21	I/O	M1	I/O	P22	I/O	
D17	I/O	H22	I/O	M2	I/O	P23	I/O	
D18	I/O	H23	I/O	M3	I/O	R1	I/O	
D19	I/O	J1	NC	M4	V _{CCA}	R2	I/O	
D20	I/O	J2	I/O	M10	GND	R3	I/O	
D21	I/O	J3	I/O	M11	GND	R4	I/O	
D22	I/O	J4	I/O	M12	GND	R20	I/O	
D23	I/O	J20	I/O	M13	GND	R21	I/O	
E1	V _{CCI}	J21	I/O	M14	GND	R22	I/O	
E2	I/O	J22	I/O	M20	V _{CCA}	R23	I/O	
E3	I/O	J23	I/O	M21	I/O	T1	I/O	
E4	I/O	K1	I/O	M22	I/O	T2	I/O	
E20	I/O	К2	I/O	M23	V _{CCI}	T3	I/O	
E21	I/O	К3	I/O	N1	I/O	T4	I/O	
E22	I/O	K4	I/O	N2	TRST, I/O	T20	I/O	
E23	I/O	K10	GND	N3	I/O	T21	I/O	
F1	I/O	K11	GND	N4	I/O	T22	I/O	
F2	TMS	K12	GND	N10	GND	T23	I/O	
F3	I/O	K13	GND	N11	GND	U1	I/O	
F4	I/O	K14	GND	N12	GND	U2	I/O	
F20	I/O	K20	I/O	N13	GND	U3	V _{CCA}	
F21	I/O	K21	I/O	N14	GND	U4	I/O	
F22	I/O	K22	I/O	N20	NC	U20	I/O	
F23	I/O	K23	I/O	N21	I/O	U21	V _{CCA}	
G1	I/O	L1	I/O	N22	I/O	U22	I/O	
G2	I/O	L2	I/O	N23	I/O	U23	I/O	
G3	I/O	L3	I/O	P1	I/O	V1	V _{CCI}	
G4	I/O	L4	NC	P2	I/O	V2	I/O	
G20	I/O	L10	GND	РЗ	I/O	V3	I/O	
G21	I/O	L11	GND	P4	I/O	V4	I/O	
G22	I/O	L12	GND	P10	GND	V20	I/O	
G23	GND	L13	GND	P11	GND	V21	I/O	

256-Pin FBGA

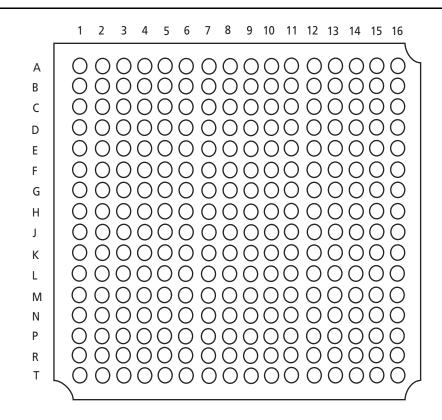


Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

256-Pin FBGA				256-Pin FBGA			
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O
E13	NC	I/O	I/O	H2	I/O	I/O	I/O
E14	I/O	I/O	I/O	H3	V _{CCA}	V _{CCA}	V _{CCA}
E15	I/O	I/O	I/O	H4	TRST, I/O	TRST, I/O	TRST, I/O
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}
F2	I/O	I/O	I/O	H7	GND	GND	GND
F3	I/O	I/O	I/O	H8	GND	GND	GND
F4	TMS	TMS	TMS	Н9	GND	GND	GND
F5	I/O	I/O	I/O	H10	GND	GND	GND
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O
F11	I/O	I/O	I/O	H16	NC	I/O	I/O
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O
F13	I/O	I/O	I/O	J2	NC	I/O	I/O
F14	I/O	I/O	I/O	J3	NC	I/O	I/O
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O
G1	NC	I/O	I/O	J6	V _{CCI}	V _{CCI}	V _{CCI}
G2	I/O	I/O	I/O	J7	GND	GND	GND
G3	NC	I/O	I/O	J8	GND	GND	GND
G4	I/O	I/O	I/O	J9	GND	GND	GND
G5	I/O	I/O	I/O	J10	GND	GND	GND
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}
G7	GND	GND	GND	J12	I/O	I/O	I/O
G8	GND	GND	GND	J13	I/O	I/O	I/O
G9	GND	GND	GND	J14	I/O	I/O	I/O
G10	GND	GND	GND	J15	I/O	I/O	I/O
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O
G13	GND	GND	GND	К2	I/O	I/O	I/O
G14	NC	I/O	I/O	К3	NC	I/O	I/O
G15	V _{CCA}	V _{CCA}	V _{CCA}	К4	V _{CCA}	V _{CCA}	V _{CCA}

484-Pin FBGA				
Nu	A54SX72A Function	A54SX32A Function	Pin Number	
	I/O	I/O	C19	
	V _{CCI}	V _{CCI}	C20	
	I/O	I/O	C21	
	I/O	I/O	C22	
	I/O	I/O	C23	
	I/O	I/O	C24	
	I/O	NC*	C25	
	I/O	NC*	C26	
	I/O	NC*	D1	
	TMS	TMS	D2	
	I/O	I/O	D3	
	V _{CCI}	V _{CCI}	D4	
	I/O	NC*	D5	
	TCK, I/O	TCK, I/O	D6	
	I/O	I/O	D7	
	I/O	I/O	D8	
	I/O	I/O	D9	
	I/O	I/O	D10	
	I/O	I/O	D11	
	QCLKC	I/O	D12	
	I/O	I/O	D13	
	I/O	I/O	D14	
	I/O	I/O	D15	
	I/O	I/O	D16	
	I/O	I/O	D17	
	I/O	I/O	D18	
	I/O	I/O	D19	
	I/O	I/O	D20	
	V _{CCI}	V _{CCI}	D21	
	GND	GND	D22	
	I/O	I/O	D23	
	I/O	I/O	D24	
	I/O	NC*	D25	
	I/O	NC*	D26	
	I/O	NC*	E1	

484-Pin FBGA					
Pin Number	A54SX32A Function	A54SX72A Function			
E2	NC*	I/O			
E3	I/O	I/O			
E4	I/O	I/O			
E5	GND	GND			
E6	TDI, IO	TDI, IO			
E7	I/O	I/O			
E8	I/O	I/O			
E9	I/O	I/O			
E10	I/O	I/O			
E11	I/O	I/O			
E12	I/O	I/O			
E13	V _{CCA}	V _{CCA}			
E14	CLKB	CLKB			
E15	I/O	I/O			
E16	I/O	I/O			
E17	I/O	I/O			
E18	I/O	I/O			
E19	I/O	I/O			
E20	I/O	I/O			
E21	I/O	I/O			
E22	I/O	I/O			
E23	I/O	I/O			
E24	I/O	I/O			
E25	V _{CCI}	V _{CCI}			
E26	GND	GND			
F1	V _{CCI}	V _{CCI}			
F2	NC*	I/O			
F3	NC*	I/O			
F4	I/O	I/O			
F5	I/O	I/O			
F22	I/O	I/O			
F23	I/O	I/O			
F24	I/O	I/O			
F25	I/O	I/O			
F26	NC*	I/O			

484-Pin FBGA					
Pin Number	A54SX32A Function	A54SX72A Function			
G1	NC*	I/O			
G2	NC*	I/O			
G3	NC*	I/O			
G4	I/O	I/O			
G5	I/O	I/O			
G22	I/O	I/O			
G23	V _{CCA}	V _{CCA}			
G24	I/O	I/O			
G25	NC*	I/O			
G26	NC*	I/O			
H1	NC*	I/O			
H2	NC*	I/O			
H3	I/O	I/O			
H4	I/O	I/O			
H5	I/O	I/O			
H22	I/O	I/O			
H23	I/O	I/O			
H24	I/O	I/O			
H25	NC*	I/O			
H26	NC*	I/O			
J1	NC*	I/O			
J2	NC*	I/O			
J3	I/O	I/O			
J4	I/O	I/O			
J5	I/O	I/O			
J22	I/O	I/O			
J23	I/O	I/O			
J24	I/O	I/O			
J25	V _{CCI}	V _{CCI}			
J26	NC*	I/O			
K1	I/O	I/O			
K2	V _{CCI}	V _{CCI}			
К3	I/O	I/O			
K4	I/O	I/O			
K5	V _{CCA}	V _{CCA}			

Actel°

SX-A Family FPGAs

Note: *These pins must be left floating on the A54SX32A device.