E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	147
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx32a-2tq176

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Module Design

The SX-A family architecture is described as a "sea-ofmodules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX-A family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable, using the S0 and S1 lines control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen from either the hardwired clock, the routed clocks, or internal logic.

The C-cell implements a range of combinatorial functions of up to five inputs (Figure 1-3). Inclusion of the DB input and its associated inverter function allows up to 4,000 different combinatorial functions to be implemented in a single module. An example of the flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 1.9 ns propagation delays.

Module Organization

All C-cell and R-cell logic modules are arranged into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells.

Clusters are grouped together into SuperClusters (Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide grouping of Type 1 Clusters. SuperCluster 2 is a two-wide group containing one Type 1 Cluster and one Type 2 Cluster. SX-A devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops.

Figure 1-2 • R-Cell

Figure 1-3 • C-Cell

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.

In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks in Actel's Antifuse Devices* and *Using A54SX72A and RT54SX72S Quadrant Clocks* application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications.

Function	Description
Input Buffer Threshold Selections	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Output Buffer	 "Hot-Swap" Capability (3.3 V PCI is not hot swappable) I/O on an unpowered device does not sink current Can be used for "cold-sparing" Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device V _{CCA} and V _{CCI} can be powered in any order

Table 1-2 • I/O Features

Table 1-3 • I/O Characteristics for All I/O Configurations

	Hot Swappable	Slew Rate Control	Power-Up Resistor
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μs	5 V/ms	2.5 V/ms	0.5 V/ms	0.25 V/ms	0.1 V/ms	0.025 V/ms
Units	μs	μs	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{-1}$	-44	_	mA
		$1.4 \le V_{OUT} < 2.4^{-1, 2}$	(-44 + (V _{OUT} - 1.4)/0.024)	-	mA
		3.1 < V _{OUT} < V _{CCI} ^{1, 3}	-	EQ 2-1 on page 2-5	_
	(Test Point)	V _{OUT} = 3.1 ³	-	-142	mA
Symbol I _{OH(AC)} Sv (Te I _{OL(AC)} Sv (Te I _{CL} Lc slew _R Ou slew _F Ou	Switching Current Low	$V_{OUT} \ge 2.2^{-1}$	95	_	mA
		2.2 > V _{OUT} > 0.55 ¹	(V _{OUT} /0.023)	-	mA
		0.71 > V _{OUT} > 0 ^{1, 3}	nditionMin.Max. 1.4^{1} -44 $ < 2.4^{1,2}$ $(-44 + (V_{OUT} - 1.4)/0.024)$ $ < V_{CCI}^{1,3}$ $-$ EQ 2-1 or page 2-5 3 $ -142$ 1 95 $ > 0.55^{1}$ $(V_{OUT}/0.023)$ $ _{T} > 0^{1,3}$ $-$ EQ 2-2 or page 2-5 1^{3} $-$ 206 -1 $-25 + (V_{IN} + 1)/0.015$ $ 4 \vee load^{4}$ 15	EQ 2-2 on page 2-5	-
	(Test Point)	V _{OUT} = 0.71 ³	-	206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015	-	mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Table 2-8 • AC Specifications (5 V PCI Operation)

Notes:

1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Table 2-18 A54SX08A Timing Characteristics

		-2 S	peed	-1 S	peed	Std. 9	5peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMOS Output Module Timing ^{1,2}		•								
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std. S	Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	tput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL O	Dutput Module Timing ³							-		
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d_{THLS}^2	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-22 A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V,	V _{CCI} = 2.25 V,	T _J = 70°C)
----------------------------------	------------------------------	----------------------------	------------------------

		-3 Sp	beed*	-2 S	-2 Speed		peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	(Hardwired) Array Clock Networ	'ks										
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks			-		-				-		
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-28 A545X32A Timing Characteristics (Continued)

		-3 S	peed ¹	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}_{CCI} = 3.0 \text{ V}, T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-38 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions V	V _{CCA} = 2.25 V, V _{CCI} = 4.75 V, T _J = 70°C)
-------------------------------------	---	---

		–3 Sp	beed*	-2 S	peed	-1 S	peed	Std. 9	5peed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.5	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{qcksw}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{qcksw}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-40 A54SX72A Timing Characteristics

(Worst-Case Commercial	Conditions $V_{CCA} = 2.25$	$V_{V_{CCI}} = 3.0$	$I_{1} = 70^{\circ}C$
(.,.,,

		-3 Speed ¹	–2 Spee	ed	–1 Spee	d	Std. 9	Speed	–F S	peed	
Parameter	Description	Min. Max.	Min. M	ax.	Min. Ma	x.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²		•								
t _{DLH}	Data-to-Pad Low to High	2.3	2	.7	3.	0		3.6		5.0	ns
t _{DHL}	Data-to-Pad High to Low	2.5	2	.9	3.	2		3.8		5.3	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.4	1	.7	1.	9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.3	2	.7	3.	0		3.6		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.5	2	.8	3.	2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.5	2	.9	3.	2		3.8		5.3	ns
d _{TLH} ³	Delta Low to High	0.025	0.	03	0.0)3		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.0	015	0.0	15		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴										
t _{DLH}	Data-to-Pad Low to High	3.2	3	.7	4.	2		5.0		6.9	ns
t _{DHL}	Data-to-Pad High to Low	3.2	3	.7	4.	2		4.9		6.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	10.3	11	1.9	13	.5		15.8		22.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.2	2	.6	2.	9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	15.8	18	3.9	21	.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.2	3	.7	4.	2		5.0		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.9	3	.3	3.	7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z	3.2	3	.7	4.	2		4.9		6.9	ns
d _{TLH} ³	Delta Low to High	0.025	0.	03	0.0)3		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.0	015	0.0	15		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.053	0.0)53	0.0	67		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

	2	08-Pin PQF	Р			208-Pin PQFP									
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function						
71	I/O	I/O	I/O	I/O	106	NC	I/O	I/O	I/O						
72	I/O	I/O	I/O	I/O	107	I/O	I/O	I/O	I/O						
73	NC	I/O	I/O	I/O	108	NC	I/O	I/O	I/O						
74	I/O	I/O	I/O	QCLKA	109	I/O	I/O	I/O	I/O						
75	NC	I/O	I/O	I/O	110	I/O	I/O	I/O	I/O						
76	PRB, I/O	PRB, I/O	PRB, I/O	PRB,I/O	111	I/O	I/O	I/O	I/O						
77	GND	GND	GND	GND	112	I/O	I/O	I/O	I/O						
78	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	113	I/O	I/O	I/O	I/O						
79	GND	GND	GND	GND	114	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}						
80	NC	NC	NC	NC	115	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}						
81	I/O	I/O	I/O	I/O	116	NC	I/O	I/O	GND						
82	HCLK	HCLK	HCLK	HCLK	117	I/O	I/O	I/O	V _{CCA}						
83	I/O	I/O	I/O	V _{CCI}	118	I/O	I/O	I/O	I/O						
84	I/O	I/O	I/O	QCLKB	119	NC	I/O	I/O	I/O						
85	NC	I/O	I/O	I/O	120	I/O	I/O	I/O	I/O						
86	I/O	I/O	I/O	I/O	121	I/O	I/O	I/O	I/O						
87	I/O	I/O	I/O	I/O	122	NC	I/O	I/O	I/O						
88	NC	I/O	I/O	I/O	123	I/O	I/O	I/O	I/O						
89	I/O	I/O	I/O	I/O	124	I/O	I/O	I/O	I/O						
90	I/O	I/O	I/O	I/O	125	NC	I/O	I/O	I/O						
91	NC	I/O	I/O	I/O	126	I/O	I/O	I/O	I/O						
92	I/O	I/O	I/O	I/O	127	I/O	I/O	I/O	I/O						
93	I/O	I/O	I/O	I/O	128	I/O	I/O	I/O	I/O						
94	NC	I/O	I/O	I/O	129	GND	GND	GND	GND						
95	I/O	I/O	I/O	I/O	130	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}						
96	I/O	I/O	I/O	I/O	131	GND	GND	GND	GND						
97	NC	I/O	I/O	I/O	132	NC	NC	NC	I/O						
98	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	133	I/O	I/O	I/O	I/O						
99	I/O	I/O	I/O	I/O	134	I/O	I/O	I/O	I/O						
100	I/O	I/O	I/O	I/O	135	NC	I/O	I/O	I/O						
101	I/O	I/O	I/O	I/O	136	I/O	I/O	I/O	I/O						
102	I/O	I/O	I/O	I/O	137	I/O	I/O	I/O	I/O						
103	TDO, I/O	TDO, I/O	TDO, I/O	TDO, I/O	138	NC	I/O	I/O	I/O						
104	I/O	I/O	I/O	I/O	139	I/O	I/O	I/O	I/O						
105	GND	GND	GND	GND	140	I/O	I/O	I/O	I/O						

	100-	TQFP			100-TQFP								
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function						
1	GND	GND	GND	36	GND	GND	GND						
2	TDI, I/O	TDI, I/O	TDI, I/O	37	NC	NC	NC						
3	I/O	I/O	I/O	38	I/O	I/O	I/O						
4	I/O	I/O	I/O	39	HCLK	HCLK	HCLK						
5	I/O	I/O	I/O	40	I/O	I/O	I/O						
6	I/O	I/O	I/O	41	I/O	I/O	I/O						
7	TMS	TMS	TMS	42	I/O	I/O	I/O						
8	V _{CCI}	V _{CCI}	V _{CCI}	43	I/O	I/O	I/O						
9	GND	GND	GND	44	V _{CCI}	V _{CCI}	V _{CCI}						
10	I/O	I/O	I/O	45	I/O	I/O	I/O						
11	I/O	I/O	I/O	46	I/O	I/O	I/O						
12	I/O	I/O	I/O	47	I/O	I/O	I/O						
13	I/O	I/O	I/O	48	I/O	I/O	I/O						
14	I/O	I/O	I/O	49	TDO, I/O	TDO, I/O	TDO, I/O						
15	I/O	I/O	I/O	50	I/O	I/O	I/O						
16	TRST, I/O	trst, I/O	trst, I/O	51	GND	GND	GND						
17	I/O	I/O	I/O	52	I/O	I/O	I/O						
18	I/O	I/O	I/O	53	I/O	I/O	I/O						
19	I/O	I/O	I/O	54	I/O	I/O	I/O						
20	V _{CCI}	V _{CCI}	V _{CCI}	55	I/O	I/O	I/O						
21	I/O	I/O	I/O	56	I/O	I/O	I/O						
22	I/O	I/O	I/O	57	V _{CCA}	V _{CCA}	V _{CCA}						
23	I/O	I/O	I/O	58	V _{CCI}	V _{CCI}	V _{CCI}						
24	I/O	I/O	I/O	59	I/O	I/O	I/O						
25	I/O	I/O	I/O	60	I/O	I/O	I/O						
26	I/O	I/O	I/O	61	I/O	I/O	I/O						
27	I/O	I/O	I/O	62	I/O	I/O	I/O						
28	I/O	I/O	I/O	63	I/O	I/O	I/O						
29	I/O	I/O	I/O	64	I/O	I/O	I/O						
30	I/O	I/O	I/O	65	I/O	I/O	I/O						
31	I/O	I/O	I/O	66	I/O	I/O	I/O						
32	I/O	I/O	I/O	67	V _{CCA}	V _{CCA}	V _{CCA}						
33	I/O	I/O	I/O	68	GND	GND	GND						
34	PRB, I/O	PRB, I/O	PRB, I/O	69	GND	GND	GND						
35	V _{CCA}	V _{CCA}	V _{CCA}	70	I/O	I/O	I/O						

	144-Pi	n TQFP		144-Pin TQFP									
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function						
1	GND	GND	GND	38	I/O	I/O	I/O						
2	TDI, I/O	TDI, I/O	TDI, I/O	39	I/O	I/O	I/O						
3	I/O	I/O	I/O	40	I/O	I/O	I/O						
4	I/O	I/O	I/O	41	I/O	I/O	I/O						
5	I/O	I/O	I/O	42	I/O	I/O	I/O						
6	I/O	I/O	I/O	43	I/O	I/O	I/O						
7	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}						
8	I/O	I/O	I/O	45	I/O	I/O	I/O						
9	TMS	TMS	TMS	46	I/O	I/O	I/O						
10	V _{CCI}	V _{CCI}	V _{CCI}	47	I/O	I/O	I/O						
11	GND	GND	GND	48	I/O	I/O	I/O						
12	I/O	I/O	I/O	49	I/O	I/O	I/O						
13	I/O	I/O	I/O	50	I/O	I/O	I/O						
14	I/O	I/O	I/O	51	I/O	I/O	I/O						
15	I/O	I/O	I/O	52	I/O	I/O	I/O						
16	I/O	I/O	I/O	53	I/O	I/O	I/O						
17	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O						
18	I/O	I/O	I/O	55	I/O	I/O	I/O						
19	NC	NC	NC	56	V _{CCA}	V _{CCA}	V _{CCA}						
20	V _{CCA}	V _{CCA}	V _{CCA}	57	GND	GND	GND						
21	I/O	I/O	I/O	58	NC	NC	NC						
22	trst, I/O	trst, I/O	TRST, I/O	59	I/O	I/O	I/O						
23	I/O	I/O	I/O	60	HCLK	HCLK	HCLK						
24	I/O	I/O	I/O	61	I/O	I/O	I/O						
25	I/O	I/O	I/O	62	I/O	I/O	I/O						
26	I/O	I/O	I/O	63	I/O	I/O	I/O						
27	I/O	I/O	I/O	64	I/O	I/O	I/O						
28	GND	GND	GND	65	I/O	I/O	I/O						
29	V _{CCI}	V _{CCI}	V _{CCI}	66	I/O	I/O	I/O						
30	V _{CCA}	V _{CCA}	V _{CCA}	67	I/O	I/O	I/O						
31	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}						
32	I/O	I/O	I/O	69	I/O	I/O	I/O						
33	I/O	I/O	I/O	70	I/O	I/O	I/O						
34	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O						
35	I/O	I/O	I/O	72	I/O	I/O	I/O						
36	GND	GND	GND	73	GND	GND	GND						
37	I/O	I/O	I/O	74	I/O	I/O	I/O						

176-Pin TQFP									
Pin Number	A54SX32A Function								
145	I/O								
146	I/O								
147	I/O								
148	I/O								
149	I/O								
150	I/O								
151	I/O								
152	CLKA								
153	CLKB								
154	NC								
155	GND								
156	V _{CCA}								
157	PRA, I/O								
158	I/O								
159	I/O								
160	I/O								
161	I/O								
162	I/O								
163	I/O								
164	I/O								
165	I/O								
166	I/O								
167	I/O								
168	I/O								
169	V _{CCI}								
170	I/O								
171	I/O								
172	I/O								
173	I/O								
174	I/O								
175	I/O								
176	TCK, I/O								

144-Pin FBGA

Figure 3-6 • 144-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pi	n FBGA		256-Pin FBGA									
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function						
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O						
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O						
E13	NC	I/O	I/O	H2	I/O	I/O	I/O						
E14	I/O	I/O	I/O	H3	V _{CCA}	V _{CCA}	V _{CCA}						
E15	I/O	I/O	I/O	H4	TRST, I/O	TRST, I/O	TRST, I/O						
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O						
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}						
F2	I/O	I/O	I/O	H7	GND	GND	GND						
F3	I/O	I/O	I/O	H8	GND	GND	GND						
F4	TMS	TMS	TMS	Н9	GND	GND	GND						
F5	I/O	I/O	I/O	H10	GND	GND	GND						
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}						
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O						
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O						
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O						
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O						
F11	I/O	I/O	I/O	H16	NC	I/O	I/O						
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O						
F13	I/O	I/O	I/O	J2	NC	I/O	I/O						
F14	I/O	I/O	I/O	J3	NC	I/O	I/O						
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O						
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O						
G1	NC	I/O	I/O	J6	V _{CCI}	V _{CCI}	V _{CCI}						
G2	I/O	I/O	I/O	J7	GND	GND	GND						
G3	NC	I/O	I/O	J8	GND	GND	GND						
G4	I/O	I/O	I/O	J9	GND	GND	GND						
G5	I/O	I/O	I/O	J10	GND	GND	GND						
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}						
G7	GND	GND	GND	J12	I/O	I/O	I/O						
G8	GND	GND	GND	J13	I/O	I/O	I/O						
G9	GND	GND	GND	J14	I/O	I/O	I/O						
G10	GND	GND	GND	J15	I/O	I/O	I/O						
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O						
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O						
G13	GND	GND	GND	K2	I/O	I/O	I/O						
G14	NC	I/O	I/O	К3	NC	I/O	I/O						
G15	V _{CCA}	V _{CCA}	V _{CCA}	K4	V _{CCA}	V _{CCA}	V _{CCA}						

484-Pin FBGA

	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	252	6
ABCDEFGHJKLMNPRTUV	- 0000000000000000000000000000000000000	2 000000000000000000000000000000000000	₃ 000000000000000000000000000000000000	4 0000000000000000000000000000000000000	♪ 000000000000000000000000000000000000	00000	/ 00000	× 00000	9 00000		000000 00000000	000000 00000000	000000 00000000	000000 00000000000000000000000000000000	000000 00000000	000000 00000000	000000 00000000	00000	00000	00000	00000	2 0000000000000000000000000000000000000	2 0000000000000000000000000000000000000	4 000000000000000000000000000000000000		
H J	00	000	00	00	00																	00	00	00		2
K L	00	000	00	00	00					000	00	00	000	00	00	000	00					00	00	0))
M N	00	000	00	00	000					00	00	00	00	00	00	000	00					00	0	0		2
P R	00	00	00	00	00					00	00	00	00	00	00	000	00					00	0	0)
T U	000	000	000	000	000					000	00	00	00	00	00	00	00					000	000	000	0000	
w	000	000	000	000	000																	000	000	000)
AA AR	000	000	000	000	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000	000	000		
AC AD	000	õ	õ	00	000	000	000	000	000	000	000	000	õ	00	õ	õ	000	õ	õ	õ	000	õ	õ	000		$\hat{\mathbf{b}}$
AE AF	000	000	000	000	000	000	000	000	000	0 0	000	000	000	000	000	000	000	000	000	000	000	000	ŏ o	000		5
Ļ																										1

Figure 3-8 • 484-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	Actel	
SX-A Fa	amily FPGAs	

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
T3	I/O	I/O
T4	I/O	I/O
T5	I/O	I/O
T10	GND	GND
T11	GND	GND
T12	GND	GND
T13	GND	GND
T14	GND	GND
T15	GND	GND
T16	GND	GND
T17	GND	GND
T22	I/O	I/O
T23	I/O	I/O
T24	I/O	I/O
T25	NC*	I/O
T26	NC*	I/O
U1	I/O	I/O
U2	V _{CCI}	V _{CCI}
U3	I/O	I/O
U4	I/O	I/O
U5	I/O	I/O
U10	GND	GND
U11	GND	GND
U12	GND	GND
U13	GND	GND
U14	GND	GND
U15	GND	GND
U16	GND	GND
U17	GND	GND
U22	I/O	I/O
U23	I/O	I/O
U24	I/O	I/O
U25	V _{CCI}	V _{CCI}
U26	I/O	I/O
V1	NC*	I/O

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
V2	NC*	I/O	
V3	I/O	I/O	
V4	I/O	I/O	
V5	I/O	I/O	
V22	V _{CCA}	V _{CCA}	
V23	I/O	I/O	
V24	I/O	I/O	
V25	NC*	I/O	
V26	NC*	I/O	
W1	I/O	I/O	
W2	I/O	I/O	
W3	I/O	I/O	
W4	I/O	I/O	
W5	I/O	I/O	
W22	I/O	I/O	
W23	V _{CCA}	V _{CCA}	
W24	I/O	I/O	
W25	NC*	I/O	
W26	NC*	I/O	
Y1	NC*	I/O	
Y2	NC*	I/O	
Y3	I/O	I/O	
Y4	I/O	I/O	
Y5	NC*	I/O	
Y22	I/O	I/O	
Y23	I/O	I/O	
Y24	V _{CCI}	V _{CCI}	
Y25	I/O	I/O	
Y26	I/O	I/O	

Note: *These pins must be left floating on the A54SX32A device.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	-3 speed grades have been discontinued.	
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9