

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	81
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-2tqg100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using 0.22 μ / 0.25 μ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation of Security in Actel Antifuse FPGAs* application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, Actel eX, SX-A, and RTSX-S I/Os.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input. Each I/O module has an available power-up resistor of

approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os*. Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

v5.3 1-7

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin	Function
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up
Reserve Probe	Keeps pins from being used or regular I/O

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V**_{CCI} **should be placed on the TMS pin to pull it High by default.**

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-6 • Boundary-Scan Pin Configurations and Functions

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

v5.3 1-9

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero® Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics®, ModelSim® HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

v5.3 1-13

PCI Compliance for the SX-A Family

The SX-A family supports 3.3 V and 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

Table 2-7 • DC Specifications (5 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V_{CCA}	Supply Voltage for Array		2.25	2.75	V
V_{CCI}	Supply Voltage for I/Os		4.75	5.25	V
V_{IH}	Input High Voltage		2.0	5.75	V
V_{IL}	Input Low Voltage		-0.5	0.8	V
I _{IH}	Input High Leakage Current ¹	$V_{IN} = 2.7$	-	70	μΑ
I _{IL}	Input Low Leakage Current ¹	$V_{IN} = 0.5$	_	-70	μΑ
V _{OH}	Output High Voltage	$I_{OUT} = -2 \text{ mA}$	2.4	_	V
V _{OL}	Output Low Voltage ²	I _{OUT} = 3 mA, 6 mA	-	0.55	V
C _{IN}	Input Pin Capacitance ³		_	10	рF
C _{CLK}	CLK Pin Capacitance		5	12	pF

Notes:

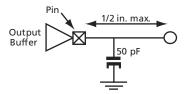

- 1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

Table 2-8 • AC Specifications (5 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{-1}$	-44	_	mA
		$1.4 \le V_{OUT} < 2.4^{-1, 2}$	(-44 + (V _{OUT} - 1.4)/0.024)	_	mA
		3.1 < V _{OUT} < V _{CCI} ^{1, 3}	-	EQ 2-1 on page 2-5	-
	(Test Point)	$V_{OUT} = 3.1^{-3}$	-	-142	mA
I _{OL(AC)}	Switching Current Low	V _{OUT} ≥ 2.2 ¹	95	_	mA
		2.2 > V _{OUT} > 0.55 ¹	(V _{OUT} /0.023)	_	mA
		$0.71 > V_{OUT} > 0^{-1, 3}$	-	EQ 2-2 on page 2-5	_
	(Test Point)	$V_{OUT} = 0.71^{3}$	-	206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015	_	mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
- 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

2-4 v5.3

EQ 2-2

Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

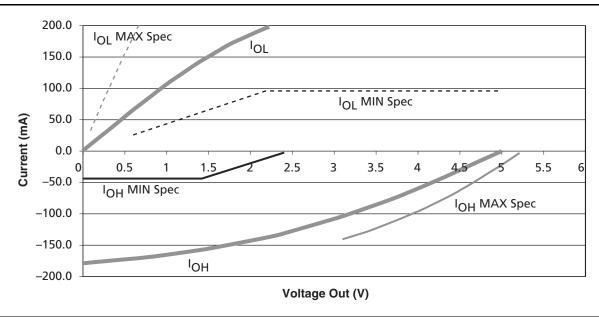


Figure 2-1 • 5 V PCI V/I Curve for SX-A Family

$$I_{OH} = 11.9 * (V_{OUT} - 5.25) * (V_{OUT} + 2.45)$$
 $I_{OL} = 78.5 * V_{OUT} * (4.4 - V_{OUT})$ for $V_{CCI} > V_{OUT} > 3.1V$ for $0V < V_{OUT} < 0.71V$

Table 2-9 • DC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V_{CCA}	Supply Voltage for Array		2.25	2.75	V
V_{CCI}	Supply Voltage for I/Os		3.0	3.6	V
V_{IH}	Input High Voltage		0.5V _{CCI}	V _{CCI} + 0.5	V
V_{IL}	Input Low Voltage		-0.5	0.3V _{CCI}	V
I _{IPU}	Input Pull-up Voltage ¹		0.7V _{CCI}	_	V
I _{IL}	Input Leakage Current ²	$0 < V_{IN} < V_{CCI}$	-10	+10	μΑ
V_{OH}	Output High Voltage	I _{OUT} = -500 μA	0.9V _{CCI}	_	V
V_{OL}	Output Low Voltage	I _{OUT} = 1,500 μA		0.1V _{CCI}	V
C _{IN}	Input Pin Capacitance ³		_	10	pF
C_{CLK}	CLK Pin Capacitance		5	12	pF

Notes:

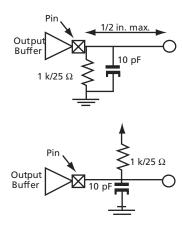

- 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization.
- 2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

Table 2-10 • AC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	0 < V _{OUT} ≤ 0.3V _{CCI} ¹	−12V _{CCI}	-	mA
		$0.3V_{CCI} \le V_{OUT} < 0.9V_{CCI}^{1}$	(–17.1(V _{CCI} – V _{OUT}))	-	mA
		$0.7V_{CCI} < V_{OUT} < V_{CCI}^{1, 2}$	-	EQ 2-3 on page 2-7	-
	(Test Point)	$V_{OUT} = 0.7V_{CC}^2$	-	−32V _{CCI}	mA
I _{OL(AC)}	Switching Current Low	$V_{CCI} > V_{OUT} \ge 0.6 V_{CCI}^{1}$	16V _{CCI}	-	mA
		$0.6V_{CCI} > V_{OUT} > 0.1V_{CCI}^{1}$	(26.7V _{OUT})	-	mA
		$0.18V_{CCI} > V_{OUT} > 0^{-1, 2}$	-	EQ 2-4 on page 2-7	-
	(Test Point)	$V_{OUT} = 0.18V_{CC}^{2}$	-	38V _{CCI}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	−25 + (V _{IN} + 1)/0.015	-	mA
I _{CH}	High Clamp Current	$V_{CCI} + 4 > V_{IN} \ge V_{CCI} + 1$	25 + (V _{IN} – V _{CCI} – 1)/0.015	_	mA
slew _R	Output Rise Slew Rate	0.2V _{CCI} - 0.6V _{CCI} load ³	1	4	V/ns
slew _F	Output Fall Slew Rate	0.6V _{CCI} - 0.2V _{CCI} load ³	1	4	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

2-6 v5.3

Table 2-14 • A54SX08A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 Sp	peed	-1 S	peed	Std. S	Speed	−F S _l	peed	
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.8		0.9		1.1		1.5	ns
Input Modul	e Predicted Routing Delays ²							•		
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.5		0.5		0.6		8.0	ns
t _{IRD3}	FO = 3 Routing Delay		0.6		0.7		8.0		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns

Notes:

- 1. For dual-module macros, use $t_{PD}+t_{RD1}+t_{PDn}$, $t_{RCO}+t_{RD1}+t_{PDn}$, or $t_{PD1}+t_{RD1}+t_{SUD}$, whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-24 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} =4.75 V, T_J = 70°C)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks								•		•
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f_{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		8.0		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

2-30 v5.3

Table 2-29 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.25 V, T_J = 70°C)

		-3 Sı	peed*	-2 S	-2 Speed		peed	Std. Speed		-F Speed		
Parameter	Description		Max.		Max.		Мах.		Max.		Max.	Units
Dedicated (Hardwired Array Clock Netwo	rks		l .		ı		<u> </u>		<u> </u>		ı
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		8.0		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f_{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.9		3.4		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.4		2.7		3.2		4.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.6	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.9		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.0	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.9		1.0		1.2		1.4		1.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.4		1.9	ns

Note: *All –3 speed grades have been discontinued.

2-36 v5.3

Table 2-30 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 S _I	eed*	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks		ı								
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		8.0		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f_{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.6	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.4		2.7		3.2		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.3		2.7		3.1		3.6		5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.5		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.1	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.9		1.0		1.2		1.4		1.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.4		1.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-31 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std.	Speed	−F S	peed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
Dedicated ((Hardwired) Array Clock Networ	ks										
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		1.9		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		8.0		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.5		2.8		3.3		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.8		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.2	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

2-38 v5.3

Table 2-32 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.3 V, T_J = 70°C)

		-3 Sp	eed ¹	-2 S	peed	-1 S	peed	Std. 9	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2,3}											•
t _{DLH}	Data-to-Pad Low to High		3.3		3.8		4.2		5.0		7.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		11.1		12.8		14.5		17.0		23.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.3		3.8		4.2		5.0		7.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d_{TLH}^{4}	Delta Low to High		0.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^{4}	Delta High to Low		0.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^{4}	Delta High to Low—low slew		0.057		0.06		0.071		0.086		0.117	ns/pF

Note:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 35 pF loading.
- 3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
- 4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/Ins] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load}*d_{T[LH|HL|S]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-34 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Speed	-2 9	peed	-1 Speed	Std. S	peed	−F S	peed	
Parameter	Description	Min. Ma	. Min.	Мах.	Min. Max.	Min.	Мах.	Min.	Max.	Units
5 V PCI Out	5 V PCI Output Module Timing ²									
t _{DLH}	Data-to-Pad Low to High	2.1		2.4	2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low	2.8		3.2	3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.3		1.5	1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.1		2.4	2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.0		3.5	3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.8		3.2	3.6		4.2		5.9	ns
d_{TLH}^3	Delta Low to High	0.01	6	0.016	0.02		0.022		0.032	ns/pF
d_{THL}^3	Delta High to Low	0.02	6	0.03	0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴									
t _{DLH}	Data-to-Pad Low to High	1.9		2.2	2.5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low	2.5		2.9	3.3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	6.6		7.6	8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.1		2.4	2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	7.4		8.4	9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H	1.9		2.2	2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.6		4.2	4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.5		2.9	3.3		3.9		5.4	ns
d_{TLH}^3	Delta Low to High	0.01	4	0.017	0.017		0.023		0.031	ns/pF
d_{THL}^3	Delta High to Low	0.02	3	0.029	0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.04	3	0.046	0.057		0.066		0.089	ns/pF

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 50 pF loading.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load} * d_{T[LH|HL]HLS}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-37 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	−F S _I	peed	
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Мах.	Units
^t QCKH	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
^t QCHKL	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-39 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.3 V, T_J = 70°C)

		-3 Sp	eed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}											
t _{DLH}	Data-to-Pad Low to High		3.9		4.5		5.1		6.0		8.4	ns
t _{DHL}	Data-to-Pad High to Low		3.1		3.6		4.1		4.8		6.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		12.7		14.6		16.5		19.4		27.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.5		5.1		6.0		8.4	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.1		3.6		4.1		4.8		6.7	ns
d_{TLH}^{4}	Delta Low to High		0.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^{4}	Delta High to Low		0.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^{4}	Delta High to Low—low slew		0.057		0.06		0.071		0.086		0.117	ns/pF

Note:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 35 pF loading.
- 3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
- 4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/Ins] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load}*d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

2-50 v5.3

176-Pin TQFP

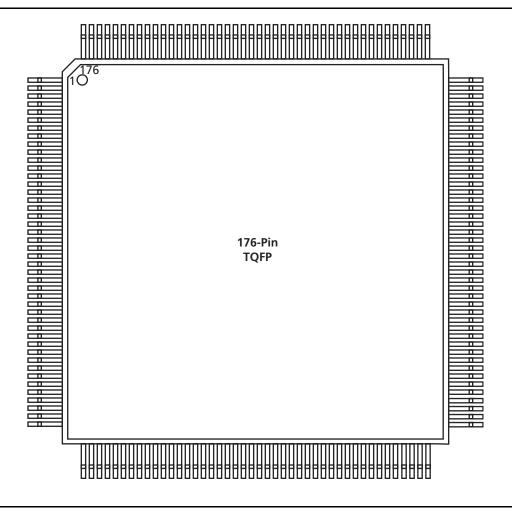


Figure 3-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

v5.3 3-11

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
K10	GND	GND				
K11	GND	GND				
K12	GND	GND				
K13	GND	GND				
K14	GND	GND				
K15	GND	GND				
K16	GND	GND				
K17	GND	GND				
K22	I/O	I/O				
K23	I/O	I/O				
K24	NC*	NC				
K25	NC*	I/O				
K26	NC*	I/O				
L1	NC*	I/O				
L2	NC*	I/O				
L3	I/O	I/O				
L4	I/O	I/O				
L5	I/O	I/O				
L10	GND	GND				
L11	GND	GND				
L12	GND	GND				
L13	GND	GND				
L14	GND	GND				
L15	GND	GND				
L16	GND	GND				
L17	GND	GND				
L22	I/O	I/O				
L23	1/0	I/O				
L24	1/0	I/O				
L25	I/O	I/O				
L26	I/O	I/O				
M1	NC*	NC				
M2	I/O	I/O				
M3	I/O	I/O				
M4	I/O	I/O				

	484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function					
M5	I/O	I/O					
M10	GND	GND					
M11	GND	GND					
M12	GND	GND					
M13	GND	GND					
M14	GND	GND					
M15	GND	GND					
M16	GND	GND					
M17	GND	GND					
M22	I/O	I/O					
M23	I/O	I/O					
M24	I/O	I/O					
M25	NC*	I/O					
M26	NC*	I/O					
N1	I/O	I/O					
N2	V _{CCI}	V _{CCI}					
N3	I/O	I/O					
N4	I/O	I/O					
N5	I/O	I/O					
N10	GND	GND					
N11	GND	GND					
N12	GND	GND					
N13	GND	GND					
N14	GND	GND					
N15	GND	GND					
N16	GND	GND					
N17	GND	GND					
N22	V_{CCA}	V_{CCA}					
N23	I/O	I/O					
N24	I/O	I/O					
N25	I/O	I/O					
N26	NC*	NC					
P1	NC*	I/O					
P2	NC*	I/O					
P3	I/O	I/O					

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
P4	I/O	I/O
P5	V_{CCA}	V_{CCA}
P10	GND	GND
P11	GND	GND
P12	GND	GND
P13	GND	GND
P14	GND	GND
P15	GND	GND
P16	GND	GND
P17	GND	GND
P22	I/O	I/O
P23	I/O	I/O
P24	V _{CCI}	V _{CCI}
P25	I/O	I/O
P26	I/O	I/O
R1	NC*	I/O
R2	NC*	I/O
R3	1/0	I/O
R4	I/O	I/O
R5	TRST, I/O	TRST, I/O
R10	GND	GND
R11	GND	GND
R12	GND	GND
R13	GND	GND
R14	GND	GND
R15	GND	GND
R16	GND	GND
R17	GND	GND
R22	I/O	I/O
R23	I/O	I/O
R24	I/O	I/O
R25	NC*	I/O
R26	NC*	I/O
T1	NC*	I/O
T2	NC*	I/O

Note: *These pins must be left floating on the A54SX32A device.

3-30 v5.3

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
T3	I/O	I/O				
T4	I/O	I/O				
T5	I/O	I/O				
T10	GND	GND				
T11	GND	GND				
T12	GND	GND				
T13	GND	GND				
T14	GND	GND				
T15	GND	GND				
T16	GND	GND				
T17	GND	GND				
T22	1/0	I/O				
T23	I/O	I/O				
T24	1/0	I/O				
T25	NC*	I/O				
T26	NC*	I/O				
U1	I/O	I/O				
U2	V _{CCI}	V _{CCI}				
U3	I/O	I/O				
U4	I/O	I/O				
U5	I/O	I/O				
U10	GND	GND				
U11	GND	GND				
U12	GND	GND				
U13	GND	GND				
U14	GND	GND				
U15	GND	GND				
U16	GND	GND				
U17	GND	GND				
U22	I/O	I/O				
U23	I/O	I/O				
U24	I/O	I/O				
U25	V _{CCI}	V _{CCI}				
U26	I/O	I/O				
V1	NC*	I/O				

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
V2	NC*	I/O				
V3	I/O	I/O				
V4	I/O	I/O				
V5	I/O	I/O				
V22	V_{CCA}	V_{CCA}				
V23	I/O	I/O				
V24	I/O	I/O				
V25	NC*	I/O				
V26	NC*	I/O				
W1	I/O	I/O				
W2	I/O	I/O				
W3	I/O	I/O				
W4	I/O	I/O				
W5	1/0	I/O				
W22	I/O	I/O				
W23	V_{CCA}	V_{CCA}				
W24	I/O	I/O				
W25	NC*	I/O				
W26	NC*	I/O				
Y1	NC*	I/O				
Y2	NC*	I/O				
Y3	I/O	I/O				
Y4	I/O	I/O				
Y5	NC*	I/O				
Y22	I/O	I/O				
Y23	I/O	I/O				
Y24	V _{CCI}	V _{CCI}				
Y25	1/0	I/O				
Y26	I/O	I/O				

Note: *These pins must be left floating on the A54SX32A device.

v5.3 3-31

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	–3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9

v5.3 4