

Welcome to **E-XFL.COM**

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

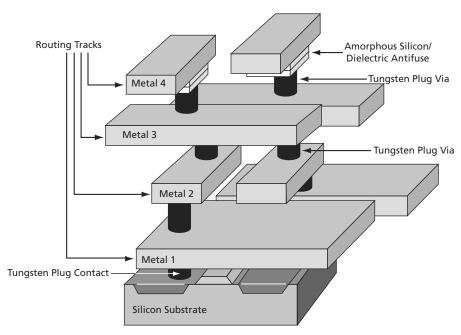
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	147
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx32a-2tqg176

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description


Introduction

The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 μm / 0.25 μm CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing time-to-market.

SX-A Family Architecture

The SX-A family's device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

Figure 1-1 • SX-A Family Interconnect Elements

v5.3 1-1

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin	Function									
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)									
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up									
Reserve Probe	Keeps pins from being used or regular I/O									

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V**_{CCI} **should be placed on the TMS pin to pull it High by default.**

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-6 • Boundary-Scan Pin Configurations and Functions

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

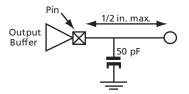

v5.3 1-9

Table 2-8 • AC Specifications (5 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	$0 < V_{OUT} \le 1.4^{-1}$	-44	_	mA
		$1.4 \le V_{OUT} < 2.4^{-1, 2}$	(-44 + (V _{OUT} - 1.4)/0.024)	_	mA
		3.1 < V _{OUT} < V _{CCI} ^{1, 3}	-	EQ 2-1 on page 2-5	-
	(Test Point)	$V_{OUT} = 3.1^{-3}$	-	-142	mA
I _{OL(AC)}	Switching Current Low	V _{OUT} ≥ 2.2 ¹	95	_	mA
		2.2 > V _{OUT} > 0.55 ¹	(V _{OUT} /0.023)	_	mA
		$0.71 > V_{OUT} > 0^{-1, 3}$	-	EQ 2-2 on page 2-5	_
	(Test Point)	$V_{OUT} = 0.71^{-3}$	-	206	mA
I _{CL}	Low Clamp Current	$-5 < V_{IN} \le -1$	-25 + (V _{IN} + 1)/0.015	_	mA
slew _R	Output Rise Slew Rate	0.4 V to 2.4 V load ⁴	1	5	V/ns
slew _F	Output Fall Slew Rate	2.4 V to 0.4 V load ⁴	1	5	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
- 3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

2-4 v5.3

Guidelines for Estimating Power

The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation:

Logic Modules (m) = 20% of modules

Inputs Switching (n) = Number inputs/4

Outputs Switching (p) = Number of outputs/4

CLKA Loads (q1) = 20% of R-cells

CLKB Loads (q2) = 20% of R-cells

Load Capacitance (CL) = 35 pF

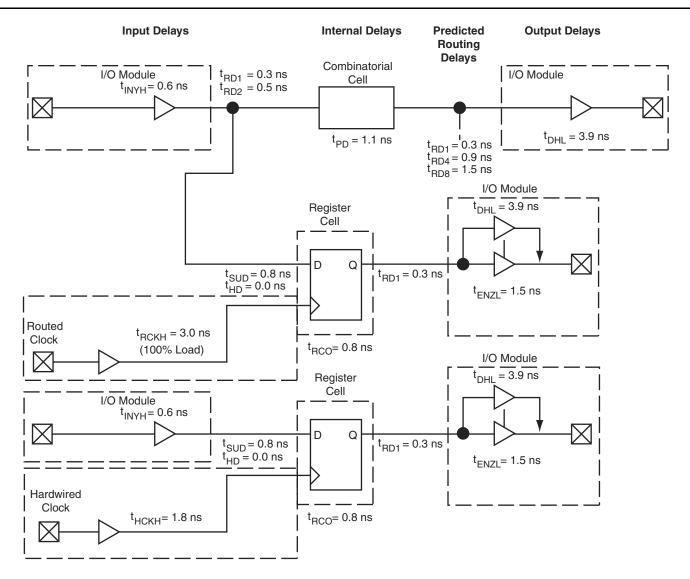
Average Logic Module Switching Rate (fm) = f/10

Average Input Switching Rate (fn) = f/5

Average Output Switching Rate (fp) = f/10

Average CLKA Rate (fq1) = f/2

Average CLKB Rate (fq2) = f/2


Average HCLK Rate (fs1) = f

HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet.

2-10 v5.3

SX-A Timing Model

Note: *Values shown for A54SX72A, -2, worst-case commercial conditions at 5 V PCI with standard place-and-route.

Figure 2-3 • SX-A Timing Model

Sample Path Calculations

Hardwired Clock

External Setup =
$$(t_{INYH} + t_{RD1} + t_{SUD}) - t_{HCKH}$$

= $0.6 + 0.3 + 0.8 - 1.8 = -0.1$ ns
Clock-to-Out (Pad-to-Pad) = $t_{HCKH} + t_{RCO} + t_{RD1} + t_{DHL}$
= $1.8 + 0.8 + 0.3 + 3.9 = 6.8$ ns

Routed Clock

External Setup =
$$(t_{INYH} + t_{RD1} + t_{SUD}) - t_{RCKH}$$

= $0.6 + 0.3 + 0.8 - 3.0 = -1.3$ ns
Clock-to-Out (Pad-to-Pad) = $t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$
= $3.0 + 0.8 + 0.3 + 3.9 = 8.0$ ns

2-14 v5.3

Timing Characteristics

Table 2-14 • A54SX08A Timing Characteristics (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std. S	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	igation Delays ¹									
t _{PD}	Internal Array Module		0.9		1.1		1.2		1.7	ns
Predicted R	outing Delays ²									
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.5		0.5		0.6		8.0	ns
t _{RD3}	FO = 3 Routing Delay		0.6		0.7		8.0		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns
R-Cell Timin	g	I								
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.3	ns
t_{CLR}	Asynchronous Clear-to-Q		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.7		0.9		1.2	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.2		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.5		1.8		2.5		ns
t _{RECASYN}	Asynchronous Recovery Time	0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Pulse Width	1.6		1.8		2.1		2.9		ns
Input Modu	le Propagation Delays	<u> </u>		1						
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		1.0		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.3	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.1		1.3		1.8	ns

Notes:

- 1. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2-18 v5.3

Table 2-20 • **A54SX08A Timing Characteristics** (Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 4.75 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-2 S	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Units
5 V PCI Outp	ut Module Timing ¹									•
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}^2	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d _{THL} ²	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	out Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

- 1. Delays based on 50 pF loading.
- 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1 * V_{CCI} – 0.9 * V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF
 - $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.
- 3. Delays based on 35 pF loading.

Table 2-21 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	peed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	ngation Delays ²											
t _{PD}	Internal Array Module		0.9		1.0		1.2		1.4		1.9	ns
Predicted R	outing Delays ³											
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.6		0.7		8.0		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.7		8.0		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns
R-Cell Timin	ng											
t_{RCO}	Sequential Clock-to-Q		0.6		0.7		8.0		0.9		1.3	ns
t_CLR	Asynchronous Clear-to-Q		0.5		0.6		0.6		8.0		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		8.0		1.0		1.4	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{wasyn}	Asynchronous Pulse Width	1.3		1.5		1.6		1.9		2.7		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Removal Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.4		1.7		1.9		2.2		3.0		ns
Input Modu	le Propagation Delays											
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		8.0		0.9		1.0		1.1		1.6	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.5		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		8.0		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		0.9		1.1		1.2		1.4		2.0	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2-26 v5.3

Table 2-28 • A54SX32A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	oeed ¹	-2 S	peed	-1 S	peed	Std. 9	peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		8.0		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-30 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 S _I	eed*	-2 S	peed	-1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks		ı								
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		8.0		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f_{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.6	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.4		2.7		3.2		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.3		2.7		3.1		3.6		5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.5		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.1	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.9		1.0		1.2		1.4		1.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.4		1.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-34 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Sp	eed ¹	-2 S	peed	-1 S	peed	Std. 9	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²	•										
t _{DLH}	Data-to-Pad Low to High		2.1		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.1		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^3	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^3	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.6		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d_{TLH}^3	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d_{THL}^3	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 50 pF loading.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load} * d_{T[LH|HL]HLS}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-35 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Speed ¹		-2 S	peed	-1 S	peed	Std. 9	peed	-F Speed		
Parameter	Description	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Мах.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		8.0		0.9		1.0		1.2		1.6	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.7		8.0		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.7		8.0		0.9		1.3	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.25 V, T_J = 70°C)

		-3 Speed*		-2 S	peed	-1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Units
^t QCKH	Input Low to High (100% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.9		3.4		3.8		4.5		6.3	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-37 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	−F S _I	peed	
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Мах.	Units
^t QCKH	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
^t QCHKL	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-41 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Speed	1 –2	Speed	-1 Speed	Std.	Speed	−F S	peed	
Parameter	Description	Min. Ma	x. Min	. Max.	Min. Max.	Min.	Max.	Min.	Мах.	Units
5 V PCI Out	put Module Timing ²									
t _{DLH}	Data-to-Pad Low to High	2.	,	3.1	3.5		4.1		5.7	ns
t _{DHL}	Data-to-Pad High to Low	3.4		3.9	4.4		5.1		7.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	1	3	1.5	1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.	,	3.1	3.5		4.1		5.7	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.0)	3.5	3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z	3.4		3.9	4.4		5.1		7.2	ns
d_{TLH}^3	Delta Low to High	0.0	6	0.016	0.02		0.022		0.032	ns/pF
d_{THL}^3	Delta High to Low	0.0	26	0.03	0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴									
t _{DLH}	Data-to-Pad Low to High	2.4		2.8	3.1		3.7		5.1	ns
t _{DHL}	Data-to-Pad High to Low	3.		3.5	4.0		4.7		6.6	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	7.4		8.5	9.7		11.4		15.9	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.		2.4	2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	7.4	ı	8.4	9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.4	ı	2.8	3.1		3.7		5.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.0	5	4.2	4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z	3.		3.5	4.0		4.7		6.6	ns
d_{TLH}^3	Delta Low to High	0.0	4	0.017	0.017		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low	0.02	:3	0.029	0.031		0.037		0.051	ns/pF
d_{THLS}^{3}	Delta High to Low—low slew	0.04	13	0.046	0.057		0.066		0.089	ns/pF

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 50 pF loading.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load} * d_{T[LH|HL]HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

2-52 v5.3

256-Pin FBGA

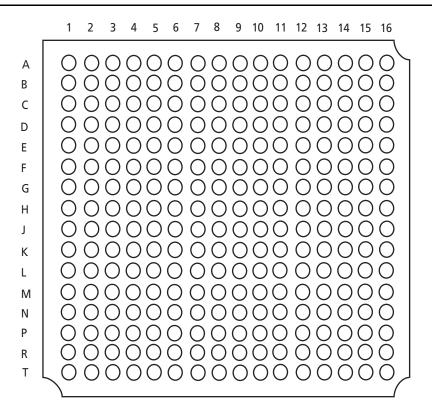


Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

v5.3 3-21

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
C19	I/O	I/O				
C20	V _{CCI}	V _{CCI}				
C21	I/O	I/O				
C22	I/O	I/O				
C23	I/O	I/O				
C24	I/O	I/O				
C25	NC*	I/O				
C26	NC*	I/O				
D1	NC*	I/O				
D2	TMS	TMS				
D3	I/O	I/O				
D4	V _{CCI}	V _{CCI}				
D5	NC*	I/O				
D6	TCK, I/O	TCK, I/O				
D7	I/O	I/O				
D8	I/O	I/O				
D9	I/O	I/O				
D10	I/O	I/O				
D11	I/O	I/O				
D12	I/O	QCLKC				
D13	I/O	I/O				
D14	I/O	I/O				
D15	I/O	I/O				
D16	I/O	I/O				
D17	I/O	I/O				
D18	I/O	I/O				
D19	I/O	I/O				
D20	I/O	I/O				
D21	V _{CCI}	V _{CCI}				
D22	GND	GND				
D23	I/O	I/O				
D24	I/O	I/O				
D25	NC*	I/O				
D26	NC*	I/O				
E1	NC*	I/O				

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
E2	NC*	I/O
E3	I/O	I/O
E4	I/O	I/O
E5	GND	GND
E6	TDI, IO	TDI, IO
E7	I/O	I/O
E8	I/O	I/O
E9	I/O	I/O
E10	I/O	I/O
E11	I/O	I/O
E12	I/O	I/O
E13	V_{CCA}	V _{CCA}
E14	CLKB	CLKB
E15	I/O	I/O
E16	I/O	I/O
E17	I/O	I/O
E18	I/O	I/O
E19	I/O	I/O
E20	I/O	I/O
E21	I/O	I/O
E22	I/O	I/O
E23	I/O	I/O
E24	I/O	I/O
E25	V _{CCI}	V _{CCI}
E26	GND	GND
F1	V _{CCI}	V _{CCI}
F2	NC*	I/O
F3	NC*	I/O
F4	I/O	I/O
F5	I/O	I/O
F22	I/O	I/O
F23	I/O	I/O
F24	1/0	I/O
F25	I/O	I/O
F26	NC*	I/O

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
G1	NC*	I/O				
G2	NC*	I/O				
G3	NC*	I/O				
G4	I/O	I/O				
G5	I/O	I/O				
G22	I/O	I/O				
G23	V_{CCA}	V_{CCA}				
G24	I/O	I/O				
G25	NC*	I/O				
G26	NC*	I/O				
H1	NC*	I/O				
H2	NC*	I/O				
НЗ	I/O	I/O				
H4	I/O	I/O				
H5	I/O	I/O				
H22	I/O	I/O				
H23	I/O	I/O				
H24	I/O	I/O				
H25	NC*	I/O				
H26	NC*	I/O				
J1	NC*	I/O				
J2	NC*	I/O				
J3	I/O	I/O				
J4	I/O	I/O				
J5	I/O	I/O				
J22	I/O	I/O				
J23	I/O	I/O				
J24	I/O	I/O				
J25	V _{CCI}	V _{CCI}				
J26	NC*	I/O				
K1	I/O	I/O				
K2	V _{CCI}	V _{CCI}				
К3	I/O	I/O				
K4	I/O	I/O				
K5	V _{CCA}	V _{CCA}				

Note: *These pins must be left floating on the A54SX32A device.

v5.3 3-29

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
K10	GND	GND				
K11	GND	GND				
K12	GND	GND				
K13	GND	GND				
K14	GND	GND				
K15	GND	GND				
K16	GND	GND				
K17	GND	GND				
K22	I/O	I/O				
K23	I/O	I/O				
K24	NC*	NC				
K25	NC*	I/O				
K26	NC*	I/O				
L1	NC*	I/O				
L2	NC*	I/O				
L3	I/O	I/O				
L4	I/O	I/O				
L5	1/0	1/0				
L10	GND	GND				
L11	GND	GND				
L12	GND	GND				
L13	GND	GND				
L14	GND	GND				
L15	GND	GND				
L16	GND	GND				
L17	GND	GND				
L22	I/O	I/O				
L23	1/0	I/O				
L24	1/0	I/O				
L25	I/O	I/O				
L26	I/O	I/O				
M1	NC*	NC				
M2	I/O	I/O				
M3	I/O	I/O				
M4	I/O	I/O				

484-Pin FBGA					
Pin Number	A54SX32A Function	A54SX72A Function			
M5	I/O	I/O			
M10	GND	GND			
M11	GND	GND			
M12	GND	GND			
M13	GND	GND			
M14	GND	GND			
M15	GND	GND			
M16	GND	GND			
M17	GND	GND			
M22	I/O	I/O			
M23	I/O	I/O			
M24	I/O	I/O			
M25	NC*	I/O			
M26	NC*	I/O			
N1	I/O	I/O			
N2	V _{CCI}	V _{CCI}			
N3	I/O	I/O			
N4	I/O	I/O			
N5	I/O	I/O			
N10	GND	GND			
N11	GND	GND			
N12	GND	GND			
N13	GND	GND			
N14	GND	GND			
N15	GND	GND			
N16	GND	GND			
N17	GND	GND			
N22	V_{CCA}	V_{CCA}			
N23	I/O	I/O			
N24	I/O	I/O			
N25	I/O	I/O			
N26	NC*	NC			
P1	NC*	I/O			
P2	NC*	I/O			
P3	I/O	I/O			

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
P4	I/O	I/O				
P5	V_{CCA}	V_{CCA}				
P10	GND	GND				
P11	GND	GND				
P12	GND	GND				
P13	GND	GND				
P14	GND	GND				
P15	GND	GND				
P16	GND	GND				
P17	GND	GND				
P22	I/O	I/O				
P23	I/O	I/O				
P24	V _{CCI}	V _{CCI}				
P25	I/O	I/O				
P26	I/O	I/O				
R1	NC*	I/O				
R2	NC*	I/O				
R3	1/0	I/O				
R4	I/O	I/O				
R5	TRST, I/O	TRST, I/O				
R10	GND	GND				
R11	GND	GND				
R12	GND	GND				
R13	GND	GND				
R14	GND	GND				
R15	GND	GND				
R16	GND	GND				
R17	GND	GND				
R22	I/O	I/O				
R23	I/O	I/O				
R24	I/O	I/O				
R25	NC*	I/O				
R26	NC*	I/O				
T1	NC*	I/O				
T2	NC*	I/O				

Note: *These pins must be left floating on the A54SX32A device.

3-30 v5.3

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
T3	I/O	I/O				
T4	I/O	I/O				
T5	I/O	I/O				
T10	GND	GND				
T11	GND	GND				
T12	GND	GND				
T13	GND	GND				
T14	GND	GND				
T15	GND	GND				
T16	GND	GND				
T17	GND	GND				
T22	1/0	I/O				
T23	I/O	I/O				
T24	1/0	I/O				
T25	NC*	I/O				
T26	NC*	I/O				
U1	I/O	I/O				
U2	V _{CCI}	V _{CCI}				
U3	I/O	I/O				
U4	I/O	I/O				
U5	I/O	I/O				
U10	GND	GND				
U11	GND	GND				
U12	GND	GND				
U13	GND	GND				
U14	GND	GND				
U15	GND	GND				
U16	GND	GND				
U17	GND	GND				
U22	I/O	I/O				
U23	I/O	I/O				
U24	I/O	I/O				
U25	V _{CCI}	V _{CCI}				
U26	I/O	I/O				
V1	NC*	I/O				

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
V2	NC*	I/O				
V3	I/O	I/O				
V4	I/O	I/O				
V5	I/O	I/O				
V22	V_{CCA}	V_{CCA}				
V23	I/O	I/O				
V24	I/O	I/O				
V25	NC*	I/O				
V26	NC*	I/O				
W1	I/O	I/O				
W2	I/O	I/O				
W3	I/O	I/O				
W4	I/O	I/O				
W5	1/0	I/O				
W22	I/O	I/O				
W23	V_{CCA}	V_{CCA}				
W24	I/O	I/O				
W25	NC*	I/O				
W26	NC*	I/O				
Y1	NC*	I/O				
Y2	NC*	I/O				
Y3	I/O	I/O				
Y4	I/O	I/O				
Y5	NC*	I/O				
Y22	I/O	I/O				
Y23	I/O	I/O				
Y24	V _{CCI}	V _{CCI}				
Y25	1/0	I/O				
Y26	I/O	I/O				

Note: *These pins must be left floating on the A54SX32A device.

v5.3 3-31

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section"was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

4-2 v5.3