E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	174
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFCQFP with Tie Bar
Supplier Device Package	208-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-cq208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Introduction

The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 μ m / 0.25 μ m CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing time-to-market.

SX-A Family Architecture

The SX-A family's device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

Figure 1-1 • SX-A Family Interconnect Elements

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.

In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks in Actel's Antifuse Devices* and *Using A54SX72A and RT54SX72S Quadrant Clocks* application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications.

Function	Description
Input Buffer Threshold Selections	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Output Buffer	 "Hot-Swap" Capability (3.3 V PCI is not hot swappable) I/O on an unpowered device does not sink current Can be used for "cold-sparing" Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device V _{CCA} and V _{CCI} can be powered in any order

Table 1-2 • I/O Features

Table 1-3 • I/O Characteristics for All I/O Configurations

	Hot Swappable	Slew Rate Control	Power-Up Resistor
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μs	5 V/ms	2.5 V/ms	0.5 V/ms	0.25 V/ms	0.1 V/ms	0.025 V/ms
Units	μs	μs	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V_{CCI} should be placed on the TMS pin to pull it High by default.**

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-6	٠	Boundary-Scan Pin Configurations an	d
		Functions	

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin	Function					
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)					
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up					
Reserve Probe	Keeps pins from being used or regular I/O					

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JESD-51 series but has little relevance in actual performance of the product in real application. It should be employed with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA package at still air is as follows. i.e.:

$$\theta_{JA} = 17.1^{\circ}$$
C/W is taken from Table 2-12 on page 2-11

 $T_A = 125$ °C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power =
$$\frac{\text{Max Junction Temp - Max. Ambient Temp}}{\theta_{JA}} = \frac{150^{\circ}\text{C} - 125^{\circ}\text{C}}{17.1^{\circ}\text{C/W}} = 1.46 \text{ W}$$

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or the airflow inside the system must be increased.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required.

Calculation for Heat Sink

For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is 3.00 W. The user-dependent data T_J and T_A are given as follows:

$$T_{J} = 110^{\circ}C$$

 $T_{A} = 70^{\circ}C$

From the datasheet:

 $\theta_{JA} = 18.0^{\circ}C/W$ $\theta_{JC} = 3.2^{\circ}C/W$

$$P = \frac{\text{Max Junction Temp} - \text{Max. Ambient Temp}}{\theta_{JA}} = \frac{110^{\circ}\text{C} - 70^{\circ}\text{C}}{18.0^{\circ}\text{C/W}} = 2.22 \text{ W}$$

EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated by:

$$\theta_{JA} = \frac{Max Junction Temp - Max. Ambient Temp}{P} = \frac{110^{\circ}C - 70^{\circ}C}{3.00 W} = 13.33^{\circ}C/W$$

EQ 2-13

Output Buffer Delays

AC Test Loads

Figure 2-5 • AC Test Loads

Input Buffer Delays

t INY **C-Cell Delays**

Figure 2-6 • Input Buffer Delays

GND

Figure 2-7 • C-Cell Delays

Cell Timing Characteristics

t_{INY}

Figure 2-8 • Flip-Flops

Timing Characteristics

Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

 Table 2-13
 Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, V_{CCA} = 2.25 V)

	Junction Temperature (T _J)								
V _{CCA}	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C		
2.250 V	0.79	0.80	0.87	0.89	1.00	1.04	1.14		
2.500 V	0.74	0.75	0.82	0.83	0.94	0.97	1.07		
2.750 V	0.68	0.69	0.75	0.77	0.87	0.90	0.99		

Table 2-15 • A54SX08A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _C	_{CI} = 2.25 V, T _J = 70°C)
----------------------------------	---	--

		-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	lardwired) Array Clock Networks			8				8		
t _{НСКН}	Input Low to High (Pad to R-cell Input)		1.4		1.6		1.8		2.6	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.3		1.5		1.7		2.4	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.4		0.5		0.7	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	y Clock Networks									
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.1		1.3		1.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.0		1.1		1.3		1.8	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.4	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.7	ns

Table 2-17 • A54SX08A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _{CCI} =	= 4.75 V, T _J = 70°C)
----------------------------------	---	----------------------------------

		-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	lardwired) Array Clock Networks									
t _{НСКН}	Input Low to High (Pad to R-cell Input)		1.2		1.3		1.5		2.3	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.2		1.4		2.0	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.4		0.5		0.8	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	y Clock Networks									
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		0.9		1.0		1.2		1.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.5		1.7		2.0		2.7	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		0.9		1.0		1.2		1.7	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.5		1.7		2.0		2.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.3		1.5		2.1	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.9	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPVVL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.1		1.5	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		1.0		1.1		1.5	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.7	ns

Table 2-28 A545X32A Timing Characteristics (Continued)

		-3 S	peed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}_{CCI} = 3.0 \text{ V}, T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-34 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	$V_{CCA} = 2.25 V, V_{CC}$	_{Cl} = 4.75 V, T _J = 70°C)
-----------------------------------	----------------------------	--

		-3 Speed ¹	-2 Spe	ed	–1 Speed	k	Std. S	Speed	–F S	peed	
Parameter	Description	Min. Max.	Min. M	lax.	Min. Ma	х.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²										
t _{DLH}	Data-to-Pad Low to High	2.1	2	2.4	2.8	3		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low	2.8	3	3.2	3.6	5		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.3	1	1.5	1.7	7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.1	2	2.4	2.8	3		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.0	3	3.5	3.9	9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.8	3	3.2	3.6	5		4.2		5.9	ns
d _{TLH} ³	Delta Low to High	0.016	0.	016	0.0	2		0.022		0.032	ns/pF
d _{THL} ³	Delta High to Low	0.026	0	.03	0.03	32		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴					•					
t _{DLH}	Data-to-Pad Low to High	1.9	2	2.2	2.5	5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low	2.5	Ź	2.9	3.3	3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	6.6	7	7.6	8.6	5		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.1	2	2.4	2.7	7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	7.4	8	8.4	9.5	5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H	1.9	2	2.2	2.!	5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.6	2	4.2	4.7	7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.5	Ź	2.9	3.3	3		3.9		5.4	ns
d _{TLH} ³	Delta Low to High	0.014	0.	017	0.0	17		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low	0.023	0.	029	0.03	31		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.043	0.	046	0.0	57		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-35 A545X72A Timing Characteristics (Continued)

		-3 Sp	beed ¹	-2 S	peed	ed –1 Speed S		Std. 9	5peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.0		1.2		1.6	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.7		0.8		0.9		1.3	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 V$, $V_{CCI} = 2.25 V$, $T_J = 70^{\circ}C$:)
---	----

		-3 Sp	beed*	-2 S	peed	-1 S	-1 Speed S		Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.9		3.4		3.8		4.5		6.3	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-38 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	= 2.25 V, V _{CCl} = 4.75 V, T _J = 70°C
--	--

		-3 Sr	beed*	-2 S	peed	–1 Speed Std. Speed		Speed	J –F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Netwo	rks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)	bw 1.6 1.9 2.1 put)			2.5		3.8	ns				
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{rckh}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		3.0		3.5		4.9	ns
t _{rckl}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.5		2.9		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		3.9		5.5	ns
t _{rckl}	Input High to Low (100% Load) (Pad to R-cell Input)		3.2		3.6		4.1		4.8		6.8	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.9		2.2		2.5		3.0		4.1	ns
Quadrant A	rray Clock Networks											-
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.4		1.6		1.9		2.7	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.4		1.6		1.8		2.1		3.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.4		1.7		1.9		2.2		3.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-38 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 V$, $V_{CCI} = 4.75 V$, $T_J = 70^{\circ}$ C)

		-3 Sp	beed*	-2 S	peed	eed –1 Speed		3 Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.5	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{qcksw}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{qcksw}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Package Pin Assignments

208-Pin PQFP

Figure 3-1 • 208-Pin PQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

144-Pin TQFP

Figure 3-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

176-P	in TQFP						
Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function
1	GND	37	I/O	73	I/O	109	V _{CCA}
2	TDI, I/O	38	I/O	74	I/O	110	GND
3	I/O	39	I/O	75	I/O	111	I/O
4	I/O	40	I/O	76	I/O	112	I/O
5	I/O	41	I/O	77	I/O	113	I/O
6	I/O	42	I/O	78	I/O	114	I/O
7	I/O	43	I/O	79	I/O	115	I/O
8	I/O	44	GND	80	I/O	116	I/O
9	I/O	45	I/O	81	I/O	117	I/O
10	TMS	46	I/O	82	V _{CCI}	118	I/O
11	V _{CCI}	47	I/O	83	I/O	119	I/O
12	I/O	48	I/O	84	I/O	120	I/O
13	I/O	49	I/O	85	I/O	121	I/O
14	I/O	50	I/O	86	I/O	122	V _{CCA}
15	I/O	51	I/O	87	TDO, I/O	123	GND
16	I/O	52	V _{CCI}	88	I/O	124	V _{CCI}
17	I/O	53	I/O	89	GND	125	I/O
18	I/O	54	I/O	90	I/O	126	I/O
19	I/O	55	I/O	91	I/O	127	I/O
20	I/O	56	I/O	92	I/O	128	I/O
21	GND	57	I/O	93	I/O	129	I/O
22	V _{CCA}	58	I/O	94	I/O	130	I/O
23	GND	59	I/O	95	I/O	131	I/O
24	I/O	60	I/O	96	I/O	132	I/O
25	TRST, I/O	61	I/O	97	I/O	133	GND
26	I/O	62	I/O	98	V _{CCA}	134	I/O
27	I/O	63	I/O	99	V _{CCI}	135	I/O
28	I/O	64	PRB, I/O	100	I/O	136	I/O
29	I/O	65	GND	101	I/O	137	I/O
30	I/O	66	V _{CCA}	102	I/O	138	I/O
31	I/O	67	NC	103	I/O	139	I/O
32	V _{CCI}	68	I/O	104	I/O	140	V _{CCI}
33	V _{CCA}	69	HCLK	105	I/O	141	I/O
34	I/O	70	I/O	106	I/O	142	I/O
35	I/O	71	I/O	107	I/O	143	I/O
36	I/O	72	I/O	108	GND	144	I/O