

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	203
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BFCQFP with Tie Bar
Supplier Device Package	256-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-cq256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA

and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.

In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD—corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks* in Actel's Antifuse Devices and Using A54SX72A and RT54SX72S Quadrant Clocks application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

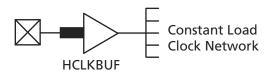


Figure 1-7 • SX-A HCLK Clock Buffer

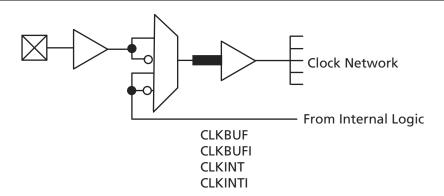


Figure 1-8 • SX-A Routed Clock Buffer

v5.3 1-5

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using 0.22 μ / 0.25 μ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation of Security in Actel Antifuse FPGAs* application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, Actel eX, SX-A, and RTSX-S I/Os.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input. Each I/O module has an available power-up resistor of

approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os*. Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

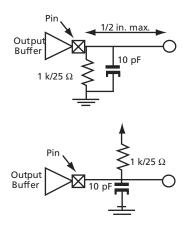

v5.3 1-7

Table 2-10 • AC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
I _{OH(AC)}	Switching Current High	0 < V _{OUT} ≤ 0.3V _{CCI} ¹	−12V _{CCI}	-	mA
		$0.3V_{CCI} \le V_{OUT} < 0.9V_{CCI}^{1}$	(–17.1(V _{CCI} – V _{OUT}))	-	mA
		$0.7V_{CCI} < V_{OUT} < V_{CCI}^{1, 2}$	-	EQ 2-3 on page 2-7	-
	(Test Point)	$V_{OUT} = 0.7V_{CC}^2$	-	−32V _{CCI}	mA
I _{OL(AC)}	Switching Current Low	$V_{CCI} > V_{OUT} \ge 0.6 V_{CCI}^{1}$	16V _{CCI}	-	mA
		$0.6V_{CCI} > V_{OUT} > 0.1V_{CCI}^{1}$	(26.7V _{OUT})	-	mA
		$0.18V_{CCI} > V_{OUT} > 0^{-1, 2}$	-	EQ 2-4 on page 2-7	-
	(Test Point)	$V_{OUT} = 0.18V_{CC}^{2}$	-	38V _{CCI}	mA
I _{CL}	Low Clamp Current	$-3 < V_{IN} \le -1$	−25 + (V _{IN} + 1)/0.015	-	mA
I _{CH}	High Clamp Current	$V_{CCI} + 4 > V_{IN} \ge V_{CCI} + 1$	25 + (V _{IN} – V _{CCI} – 1)/0.015	_	mA
slew _R	Output Rise Slew Rate	0.2V _{CCI} - 0.6V _{CCI} load ³	1	4	V/ns
slew _F	Output Fall Slew Rate	0.6V _{CCI} - 0.2V _{CCI} load ³	1	4	V/ns

Notes:

- 1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#, which are system outputs. "Switching Current High" specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#, which are open drain outputs.
- 2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.
- 3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.

2-6 v5.3

Where:

C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF

 C_{FOSM} = Equivalent capacitance of sequential modules (R-Cells) in pF

C_{EOI} = Equivalent capacitance of input buffers in pF

C_{EOO} = Equivalent capacitance of output buffers in pF

C_{EOCR} = Equivalent capacitance of CLKA/B in pF

 C_{EQHV} = Variable capacitance of HCLK in pF

 C_{EOHF} = Fixed capacitance of HCLK in pF

C_{L =} Output lead capacitance in pF

 f_m = Average logic module switching rate in MHz

 f_n = Average input buffer switching rate in MHz

 f_p = Average output buffer switching rate in MHz

 f_{q1} = Average CLKA rate in MHz

 f_{q2} = Average CLKB rate in MHz

 f_{s1} = Average HCLK rate in MHz

m = Number of logic modules switching at fm

n = Number of input buffers switching at fn

p = Number of output buffers switching at fp

 q_1 = Number of clock loads on CLKA

 q_2 = Number of clock loads on CLKB

 r_1 = Fixed capacitance due to CLKA

 r_2 = Fixed capacitance due to CLKB

s₁ = Number of clock loads on HCLK

x = Number of I/Os at logic low

y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

Guidelines for Estimating Power

The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation:

Logic Modules (m) = 20% of modules

Inputs Switching (n) = Number inputs/4

Outputs Switching (p) = Number of outputs/4

CLKA Loads (q1) = 20% of R-cells

CLKB Loads (q2) = 20% of R-cells

Load Capacitance (CL) = 35 pF

Average Logic Module Switching Rate (fm) = f/10

Average Input Switching Rate (fn) = f/5

Average Output Switching Rate (fp) = f/10

Average CLKA Rate (fq1) = f/2

Average CLKB Rate (fq2) = f/2

Average HCLK Rate (fs1) = f

HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet.

2-10 v5.3

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JESD-51 series but has little relevance in actual performance of the product in real application. It should be employed with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA package at still air is as follows. i.e.:

 θ_{IA} = 17.1°C/W is taken from Table 2-12 on page 2-11

 $T_A = 125$ °C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power =
$$\frac{\text{Max Junction Temp} - \text{Max. Ambient Temp}}{\theta_{\text{JA}}} = \frac{150^{\circ}\text{C} - 125^{\circ}\text{C}}{17.1^{\circ}\text{C/W}} = 1.46 \text{ W}$$

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or the airflow inside the system must be increased.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required.

Calculation for Heat Sink

For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is 3.00 W. The user-dependent data T_J and T_A are given as follows:

 $T_J = 110$ °C

 $T_A = 70^{\circ}C$

From the datasheet:

 $\theta_{JA} = 18.0$ °C/W

 $\theta_{JC} = 3.2 \, ^{\circ}C/W$

$$P = \frac{Max \ Junction \ Temp - Max. \ Ambient \ Temp}{\theta_{JA}} = \frac{110^{\circ}C - 70^{\circ}C}{18.0^{\circ}C / W} = 2.22 \ W$$

EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated by:

$$\theta_{JA} = \frac{\text{Max Junction Temp} - \text{Max. Ambient Temp}}{P} = \frac{110^{\circ}\text{C} - 70^{\circ}\text{C}}{3.00 \text{ W}} = 13.33^{\circ}\text{C/W}$$

EQ 2-13

2-12 v5.3

Output Buffer Delays

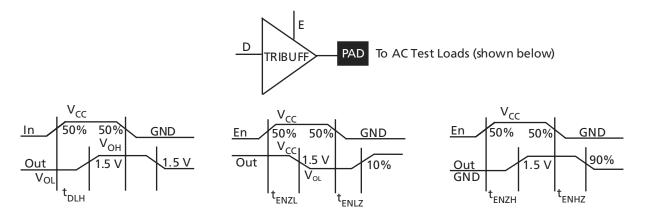


Figure 2-4 • Output Buffer Delays

AC Test Loads

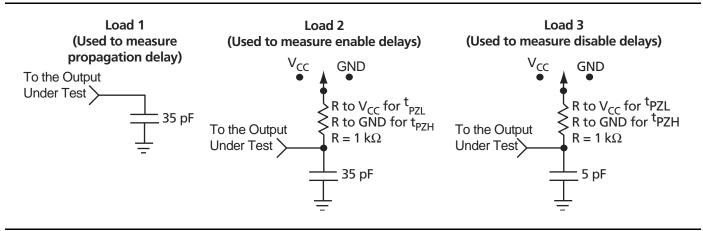


Figure 2-5 • AC Test Loads

Table 2-18 • A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.3 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std.	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMO	S Output Module Timing ^{1,2}	•								
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d_{TLH}^3	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

- 1. Delays based on 35 pF loading.
- 2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})/(C_{load}*d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-21 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	peed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	ngation Delays ²											
t _{PD}	Internal Array Module		0.9		1.0		1.2		1.4		1.9	ns
Predicted R	outing Delays ³											
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.6		0.7		8.0		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.7		8.0		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns
R-Cell Timin	ng											
t _{RCO}	Sequential Clock-to-Q		0.6		0.7		8.0		0.9		1.3	ns
t_CLR	Asynchronous Clear-to-Q		0.5		0.6		0.6		8.0		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		8.0		1.0		1.4	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{wasyn}	Asynchronous Pulse Width	1.3		1.5		1.6		1.9		2.7		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Removal Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.4		1.7		1.9		2.2		3.0		ns
Input Modu	le Propagation Delays											
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		8.0		0.9		1.0		1.1		1.6	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.5		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		8.0		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		0.9		1.1		1.2		1.4		2.0	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2-26 v5.3

Table 2-21 • A54SX16A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	oeed ¹	-2 S	peed	-1 S	peed	Std. 9	peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.7		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.7		0.8		0.9		1.1		1.5	ns
Input Modu	le Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		8.0		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		8.0		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-26 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

Description	Min. Ma		Speed -1 Speed						
44 B.C		c. Min	. Max.	Min. Max.	Min. I	Max.	Min.	Max.	Units
tput Module Timing ²									
Data-to-Pad Low to High	2.0		2.3	2.6		3.1		4.3	ns
Data-to-Pad High to Low	2.2		2.5	2.8		3.3		4.6	ns
Enable-to-Pad, Z to L	1.4		1.7	1.9		2.2		3.1	ns
Enable-to-Pad, Z to H	2.0		2.3	2.6		3.1		4.3	ns
Enable-to-Pad, L to Z	2.5		2.8	3.2		3.8		5.3	ns
Enable-to-Pad, H to Z	2.2		2.5	2.8		3.3		4.6	ns
Delta Low to High	0.02	5	0.03	0.03		0.04		0.045	ns/pF
Delta High to Low	0.0	5	0.015	0.015	(0.015		0.025	ns/pF
Output Module Timing ⁴									
Data-to-Pad Low to High	2.8		3.2	3.6		4.3		6.0	ns
Data-to-Pad High to Low	2.7		3.1	3.5		4.1		5.7	ns
Data-to-Pad High to Low—low slew	9.5		10.9	12.4		14.6		20.4	ns
Enable-to-Pad, Z to L	2.2		2.6	2.9		3.4		4.8	ns
Enable-to-Pad, Z to L—low slew	15.	3	18.9	21.3		25.4		34.9	ns
Enable-to-Pad, Z to H	2.8		3.2	3.6		4.3		6.0	ns
Enable-to-Pad, L to Z	2.9		3.3	3.7		4.4		6.2	ns
Enable-to-Pad, H to Z	2.7		3.1	3.5		4.1		5.7	ns
Delta Low to High	0.02	5	0.03	0.03		0.04		0.045	ns/pF
Delta High to Low	0.0	5	0.015	0.015	(0.015		0.025	ns/pF
Delta High to Low—low slew	0.0	3	0.053	0.067	(0.073		0.107	ns/pF
	Data-to-Pad High to Low Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z Delta Low to High Delta High to Low Dutput Module Timing ⁴ Data-to-Pad Low to High Data-to-Pad High to Low Data-to-Pad High to Low—low slew Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z Delta Low to High Delta High to Low	Data-to-Pad High to Low Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z Delta Low to High Data-to-Pad Low to High Data-to-Pad High to Low Data-to-Pad High to Low Data-to-Pad High to Low Data-to-Pad High to Low Data-to-Pad, Z to L Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z Delta Low to High Data-to-Pad, Da	Data-to-Pad High to Low Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z Delta Low to High Data-to-Pad Low to High Data-to-Pad High to Low Data-to-Pad High to Low Data-to-Pad High to Low Data-to-Pad High to Low Data-to-Pad High to Low—low slew Enable-to-Pad, Z to L Enable-to-Pad, Z to H Enable-to-Pad, L to Z Enable-to-Pad, H to Z Delta Low to High Data-to-Pad, L to Z Enable-to-Pad, H to Z Delta Low to High Delta Low to High Double-to-Pad, H to Z Delta Low to High Delta High to Low Double-to-Pad, H to Z Delta Low to High Delta High to Low Double-to-Pad, H to Z Delta Low to High Delta High to Low Double-to-Pad, H to Z Delta High to Low Double-to-Pad, H to Z	Data-to-Pad High to Low 2.2 2.5 Enable-to-Pad, Z to L 1.4 1.7 Enable-to-Pad, Z to H 2.0 2.3 Enable-to-Pad, L to Z 2.5 2.8 Enable-to-Pad, H to Z 2.2 2.5 Delta Low to High 0.025 0.03 Delta High to Low 0.015 0.015 Data-to-Pad Low to High 2.8 3.2 Data-to-Pad High to Low 2.7 3.1 Data-to-Pad High to Low—low slew 9.5 10.9 Enable-to-Pad, Z to L 2.2 2.6 Enable-to-Pad, Z to L—low slew 15.8 18.9 Enable-to-Pad, Z to H 2.8 3.2 Enable-to-Pad, L to Z 2.9 3.3 Enable-to-Pad, H to Z 2.7 3.1 Delta Low to High 0.025 0.03 Delta High to Low 0.015 0.015	Data-to-Pad High to Low 2.2 2.5 2.8 Enable-to-Pad, Z to L 1.4 1.7 1.9 Enable-to-Pad, Z to H 2.0 2.3 2.6 Enable-to-Pad, L to Z 2.5 2.8 3.2 Enable-to-Pad, H to Z 2.2 2.5 2.8 Delta Low to High 0.025 0.03 0.03 Delta High to Low 0.015 0.015 0.015 Dutput Module Timing ⁴ Data-to-Pad Low to High 2.8 3.2 3.6 Data-to-Pad High to Low 2.7 3.1 3.5 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 Enable-to-Pad, Z to L 2.2 2.6 2.9 Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 Enable-to-Pad, L to Z 2.9 3.3 3.7 Enable-to-Pad, L to Z 2.9 3.3 3.7 Enable-to-Pad, H to Z 2.7 3.1 3.5 Delta Low to High 0.025 0.03 0.03 Delta Low to High 0.025 0.03 0.015 <td>Data-to-Pad High to Low 2.2 2.5 2.8 Enable-to-Pad, Z to L 1.4 1.7 1.9 Enable-to-Pad, Z to H 2.0 2.3 2.6 Enable-to-Pad, L to Z 2.5 2.8 3.2 Enable-to-Pad, H to Z 2.2 2.5 2.8 Delta Low to High 0.025 0.03 0.03 Delta High to Low 0.015 0.015 0.015 Output Module Timing⁴ Data-to-Pad Low to High 2.8 3.2 3.6 Data-to-Pad High to Low 2.7 3.1 3.5 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 Enable-to-Pad, Z to L 2.2 2.6 2.9 Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 Enable-to-Pad, Z to H 2.8 3.2 3.6 Enable-to-Pad, L to Z 2.9 3.3 3.7 Enable-to-Pad, L to Z 2.7 3.1 3.5 Delta Low to High 0.025 0.03 0.03</td> <td>Data-to-Pad High to Low 2.2 2.5 2.8 3.3 Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 Enable-to-Pad, Z to H 2.0 2.3 2.6 3.1 Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 Enable-to-Pad, H to Z 2.2 2.5 2.8 3.3 Delta Low to High 0.025 0.03 0.03 0.04 Delta High to Low 0.015 0.015 0.015 0.015 Dutput Module Timing⁴ Data-to-Pad Low to High 2.8 3.2 3.6 4.3 Data-to-Pad High to Low 2.7 3.1 3.5 4.1 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 14.6 Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 Enable-to-Pad, Z to H 2.8 3.2 3.6 4.3 Enable-to-Pad, L to Z 2.9</td> <td>Data-to-Pad High to Low 2.2 2.5 2.8 3.3 Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 Enable-to-Pad, Z to H 2.0 2.3 2.6 3.1 Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 Enable-to-Pad, H to Z 2.2 2.5 2.8 3.3 Delta Low to High 0.025 0.03 0.03 0.04 Delta High to Low 0.015 0.015 0.015 0.015 Dutput Module Timing⁴ Data-to-Pad Low to High 2.8 3.2 3.6 4.3 Data-to-Pad High to Low 2.7 3.1 3.5 4.1 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 14.6 Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 Enable-to-Pad, L to Z 2.7</td> <td>Data-to-Pad High to Low 2.2 2.5 2.8 3.3 4.6 Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 Enable-to-Pad, Z to H 2.0 2.3 2.6 3.1 4.3 Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 Enable-to-Pad, H to Z 2.2 2.5 2.8 3.3 4.6 Delta Low to High 0.025 0.03 0.03 0.04 0.045 Delta High to Low 0.015 0.015 0.015 0.015 0.015 0.025 Dutput Module Timing⁴ Data-to-Pad Low to High 2.8 3.2 3.6 4.3 6.0 Data-to-Pad High to Low 2.7 3.1 3.5 4.1 5.7 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 14.6 20.4 Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 Enable-to-Pad, Z to H 2.8 3.2 3.6</td>	Data-to-Pad High to Low 2.2 2.5 2.8 Enable-to-Pad, Z to L 1.4 1.7 1.9 Enable-to-Pad, Z to H 2.0 2.3 2.6 Enable-to-Pad, L to Z 2.5 2.8 3.2 Enable-to-Pad, H to Z 2.2 2.5 2.8 Delta Low to High 0.025 0.03 0.03 Delta High to Low 0.015 0.015 0.015 Output Module Timing ⁴ Data-to-Pad Low to High 2.8 3.2 3.6 Data-to-Pad High to Low 2.7 3.1 3.5 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 Enable-to-Pad, Z to L 2.2 2.6 2.9 Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 Enable-to-Pad, Z to H 2.8 3.2 3.6 Enable-to-Pad, L to Z 2.9 3.3 3.7 Enable-to-Pad, L to Z 2.7 3.1 3.5 Delta Low to High 0.025 0.03 0.03	Data-to-Pad High to Low 2.2 2.5 2.8 3.3 Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 Enable-to-Pad, Z to H 2.0 2.3 2.6 3.1 Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 Enable-to-Pad, H to Z 2.2 2.5 2.8 3.3 Delta Low to High 0.025 0.03 0.03 0.04 Delta High to Low 0.015 0.015 0.015 0.015 Dutput Module Timing ⁴ Data-to-Pad Low to High 2.8 3.2 3.6 4.3 Data-to-Pad High to Low 2.7 3.1 3.5 4.1 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 14.6 Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 Enable-to-Pad, Z to H 2.8 3.2 3.6 4.3 Enable-to-Pad, L to Z 2.9	Data-to-Pad High to Low 2.2 2.5 2.8 3.3 Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 Enable-to-Pad, Z to H 2.0 2.3 2.6 3.1 Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 Enable-to-Pad, H to Z 2.2 2.5 2.8 3.3 Delta Low to High 0.025 0.03 0.03 0.04 Delta High to Low 0.015 0.015 0.015 0.015 Dutput Module Timing ⁴ Data-to-Pad Low to High 2.8 3.2 3.6 4.3 Data-to-Pad High to Low 2.7 3.1 3.5 4.1 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 14.6 Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 Enable-to-Pad, L to Z 2.7	Data-to-Pad High to Low 2.2 2.5 2.8 3.3 4.6 Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 Enable-to-Pad, Z to H 2.0 2.3 2.6 3.1 4.3 Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 Enable-to-Pad, H to Z 2.2 2.5 2.8 3.3 4.6 Delta Low to High 0.025 0.03 0.03 0.04 0.045 Delta High to Low 0.015 0.015 0.015 0.015 0.015 0.025 Dutput Module Timing ⁴ Data-to-Pad Low to High 2.8 3.2 3.6 4.3 6.0 Data-to-Pad High to Low 2.7 3.1 3.5 4.1 5.7 Data-to-Pad High to Low—low slew 9.5 10.9 12.4 14.6 20.4 Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 Enable-to-Pad, Z to H 2.8 3.2 3.6

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 10 pF loading and 25 Ω resistance.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load} * d_{T[LH|HL]HLS}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

2-32 v5.3

Table 2-28 • A54SX32A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	oeed ¹	-2 S	peed	-1 S	peed	Std. 9	peed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		8.0		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 • A54SX72A Timing Characteristics (Continued) (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.25 V, T_J = 70°C)

		-3 Speed*		-2 S	peed	-1 S	peed	Std. 9	Speed	-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Units
^t QCKH	Input Low to High (100% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.9		3.4		3.8		4.5		6.3	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-37 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 S _l	eed*	-2 S	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Netwo	rks						1		1		
^t нскн	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
^t HCKL	Input High to Low (Pad to R-cell Input)		1.7		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
^t rckh	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.3		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.4		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.1		4.8		6.7	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.9		2.1		2.4		2.8		3.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.9		2.1		2.4		2.8		3.9	ns
Quadrant A	rray Clock Networks											
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.3		1.5		1.7		1.9		2.7	ns
^t QCHKL	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.5		1.7		2		2.8	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.5		1.7		1.9		2.2		3.1	ns
^t QCHKL	Input High to Low (50% Load) (Pad to R-cell Input)		1.5		1.8		2		2.3		3.2	ns

Note: *All –3 speed grades have been discontinued.

2-46 v5.3

Table 2-38 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Sp	peed*	-2 S	peed	-1 S	peed	Std. S	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Netwo	rks						ı				
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.8	ns
^t HCKL	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks	•										
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		3.0		3.5		4.9	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.5		2.9		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		3.9		5.5	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.2		3.6		4.1		4.8		6.8	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.9		2.2		2.5		3.0		4.1	ns
Quadrant A	rray Clock Networks	•										
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.4		1.6		1.9		2.7	ns
^t qckh	Input Low to High (50% Load) (Pad to R-cell Input)		1.4		1.6		1.8		2.1		3.0	ns
^t QCHKL	Input High to Low (50% Load) (Pad to R-cell Input)		1.4		1.7		1.9		2.2		3.1	ns

Note: *All –3 speed grades have been discontinued.

2-48 v5.3

256-Pin FBGA			
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
A1	GND	GND	GND
A2	TCK, I/O	TCK, I/O	TCK, I/O
A3	I/O	1/0	I/O
A4	I/O	1/0	1/0
A5	I/O	1/0	I/O
A6	I/O	1/0	I/O
A7	I/O	1/0	1/0
A8	I/O	1/0	I/O
A9	CLKB	CLKB	CLKB
A10	I/O	1/0	I/O
A11	I/O	1/0	I/O
A12	NC	1/0	I/O
A13	I/O	1/0	I/O
A14	1/0	1/0	I/O
A15	GND	GND	GND
A16	GND	GND	GND
B1	1/0	1/0	I/O
B2	GND	GND	GND
В3	1/0	1/0	I/O
В4	1/0	1/0	I/O
B5	I/O	1/0	I/O
В6	NC	I/O	I/O
В7	I/O	1/0	I/O
В8	V _{CCA}	V _{CCA}	V_{CCA}
В9	1/0	1/0	I/O
B10	1/0	1/0	I/O
B11	NC	1/0	I/O
B12	I/O	1/0	I/O
B13	I/O	I/O	I/O
B14	I/O	I/O	I/O
B15	GND	GND	GND
B16	I/O	I/O	I/O
C1	I/O	I/O	I/O
C2	TDI, I/O	TDI, I/O	TDI, I/O
C3	GND	GND	GND
C4	I/O	I/O	I/O
C5	NC	1/0	I/O

256-Pin FBGA			
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
C6	I/O	I/O	I/O
C7	I/O	I/O	I/O
C8	I/O	I/O	I/O
С9	CLKA	CLKA	CLKA
C10	I/O	I/O	1/0
C11	I/O	I/O	I/O
C12	I/O	I/O	I/O
C13	I/O	I/O	I/O
C14	I/O	I/O	I/O
C15	I/O	I/O	I/O
C16	I/O	I/O	I/O
D1	I/O	I/O	I/O
D2	I/O	I/O	I/O
D3	I/O	I/O	I/O
D4	I/O	I/O	I/O
D5	I/O	I/O	I/O
D6	I/O	1/0	1/0
D7	I/O	1/0	1/0
D8	PRA, I/O	PRA, I/O	PRA, I/O
D9	I/O	I/O	QCLKD
D10	I/O	I/O	I/O
D11	NC	I/O	I/O
D12	I/O	I/O	I/O
D13	I/O	I/O	I/O
D14	I/O	I/O	I/O
D15	I/O	I/O	I/O
D16	I/O	I/O	I/O
E1	I/O	I/O	I/O
E2	I/O	I/O	I/O
E3	I/O	I/O	I/O
E4	I/O	I/O	I/O
E5	I/O	I/O	I/O
E6	I/O	I/O	1/0
E7	I/O	I/O	QCLKC
E8	I/O	I/O	1/0
E9	I/O	I/O	1/0
E10	I/O	I/O	I/O

3-22 v5.3

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
AD18	I/O	I/O	
AD19	I/O	I/O	
AD20	I/O	I/O	
AD21	I/O	I/O	
AD22	1/0	I/O	
AD23	V _{CCI}	V _{CCI}	
AD24	NC*	I/O	
AD25	NC*	I/O	
AD26	NC*	I/O	
AE1	NC*	NC	
AE2	I/O	I/O	
AE3	NC*	I/O	
AE4	NC*	I/O	
AE5	NC*	I/O	
AE6	NC*	I/O	
AE7	I/O	I/O	
AE8	I/O	I/O	
AE9	I/O	I/O	
AE10	I/O	I/O	
AE11	NC*	I/O	
AE12	I/O	I/O	
AE13	1/0	I/O	
AE14	I/O	I/O	
AE15	NC*	I/O	
AE16	NC*	I/O	
AE17	I/O	I/O	
AE18	I/O	I/O	
AE19	I/O	I/O	
AE20	I/O	I/O	
AE21	NC*	I/O	
AE22	NC*	I/O	
AE23	NC*	I/O	
AE24	NC*	I/O	
AE25	NC*	NC	
AE26	NC*	NC	

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
AF1	NC*	NC	
AF2	NC*	NC	
AF3	NC	I/O	
AF4	NC*	I/O	
AF5	NC*	I/O	
AF6	NC*	I/O	
AF7	I/O	I/O	
AF8	I/O	I/O	
AF9	I/O	I/O	
AF10	I/O	I/O	
AF11	NC*	I/O	
AF12	NC*	NC	
AF13	HCLK	HCLK	
AF14	I/O	QCLKB	
AF15	NC*	I/O	
AF16	NC*	I/O	
AF17	I/O	I/O	
AF18	I/O	I/O	
AF19	I/O	I/O	
AF20	NC*	I/O	
AF21	NC*	I/O	
AF22	NC*	I/O	
AF23	NC*	I/O	
AF24	NC*	I/O	
AF25	NC*	NC	
AF26	NC*	NC	
B1	NC*	NC	
B2	NC*	NC	
В3	NC*	I/O	
B4	NC*	I/O	
B5	NC*	I/O	
В6	I/O	I/O	
В7	I/O	I/O	
B8	I/O	I/O	
В9	I/O	I/O	

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
B10	I/O	I/O	
B11	NC*	I/O	
B12	NC*	I/O	
B13	V _{CCI}	V _{CCI}	
B14	CLKA	CLKA	
B15	NC*	I/O	
B16	NC*	I/O	
B17	1/0	I/O	
B18	V _{CCI}	V _{CCI}	
B19	I/O	I/O	
B20	I/O	I/O	
B21	NC*	I/O	
B22	NC*	I/O	
B23	NC*	I/O	
B24	NC*	I/O	
B25	I/O	I/O	
B26	NC*	NC	
C1	NC*	I/O	
C2	NC*	I/O	
C3	NC*	I/O	
C4	NC*	I/O	
C5	I/O	I/O	
C6	V _{CCI}	V _{CCI}	
C7	I/O	I/O	
C8	I/O	I/O	
С9	V _{CCI}	V _{CCI}	
C10	I/O	I/O	
C11	I/O	I/O	
C12	I/O	I/O	
C13	PRA, I/O	PRA, I/O	
C14	I/O	I/O	
C15	I/O	QCLKD	
C16	I/O	I/O	
C17	I/O	I/O	
C18	I/O	I/O	

Note: *These pins must be left floating on the A54SX32A device.

3-28 v5.3

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
C19	I/O	I/O	
C20	V _{CCI}	V _{CCI}	
C21	I/O	I/O	
C22	I/O	I/O	
C23	I/O	I/O	
C24	I/O	I/O	
C25	NC*	I/O	
C26	NC*	I/O	
D1	NC*	I/O	
D2	TMS	TMS	
D3	I/O	I/O	
D4	V _{CCI}	V _{CCI}	
D5	NC*	I/O	
D6	TCK, I/O	TCK, I/O	
D7	I/O	I/O	
D8	I/O	I/O	
D9	I/O	I/O	
D10	I/O	I/O	
D11	I/O	I/O	
D12	I/O	QCLKC	
D13	I/O	I/O	
D14	I/O	I/O	
D15	I/O	I/O	
D16	I/O	I/O	
D17	I/O	I/O	
D18	I/O	I/O	
D19	I/O	I/O	
D20	I/O	I/O	
D21	V _{CCI}	V _{CCI}	
D22	GND	GND	
D23	I/O	I/O	
D24	I/O	I/O	
D25	NC*	I/O	
D26	NC*	I/O	
E1	NC*	I/O	

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
E2	NC*	I/O
E3	I/O	I/O
E4	I/O	I/O
E5	GND	GND
E6	TDI, IO	TDI, IO
E7	I/O	I/O
E8	I/O	I/O
E9	I/O	I/O
E10	I/O	I/O
E11	I/O	I/O
E12	I/O	I/O
E13	V_{CCA}	V _{CCA}
E14	CLKB	CLKB
E15	I/O	I/O
E16	I/O	I/O
E17	I/O	I/O
E18	I/O	I/O
E19	I/O	I/O
E20	I/O	I/O
E21	I/O	I/O
E22	I/O	I/O
E23	I/O	I/O
E24	I/O	I/O
E25	V _{CCI}	V _{CCI}
E26	GND	GND
F1	V _{CCI}	V _{CCI}
F2	NC*	I/O
F3	NC*	I/O
F4	I/O	I/O
F5	I/O	I/O
F22	I/O	I/O
F23	I/O	I/O
F24	1/0	I/O
F25	I/O	I/O
F26	NC*	I/O

484-Pin FBGA		
Pin Number	A54SX32A Function	A54SX72A Function
G1	NC*	I/O
G2	NC*	I/O
G3	NC*	I/O
G4	I/O	I/O
G5	I/O	I/O
G22	I/O	I/O
G23	V_{CCA}	V_{CCA}
G24	I/O	I/O
G25	NC*	I/O
G26	NC*	I/O
H1	NC*	I/O
H2	NC*	I/O
НЗ	I/O	I/O
H4	I/O	I/O
H5	I/O	I/O
H22	I/O	I/O
H23	I/O	I/O
H24	I/O	I/O
H25	NC*	I/O
H26	NC*	I/O
J1	NC*	I/O
J2	NC*	I/O
J3	I/O	I/O
J4	I/O	I/O
J5	I/O	I/O
J22	I/O	I/O
J23	I/O	I/O
J24	I/O	I/O
J25	V _{CCI}	V _{CCI}
J26	NC*	I/O
K1	I/O	I/O
K2	V _{CCI}	V _{CCI}
К3	I/O	I/O
K4	I/O	I/O
K5	V _{CCA}	V _{CCA}

Note: *These pins must be left floating on the A54SX32A device.

v5.3 3-29

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
K10	GND	GND	
K11	GND	GND	
K12	GND	GND	
K13	GND	GND	
K14	GND	GND	
K15	GND	GND	
K16	GND	GND	
K17	GND	GND	
K22	I/O	I/O	
K23	I/O	I/O	
K24	NC*	NC	
K25	NC*	I/O	
K26	NC*	I/O	
L1	NC*	I/O	
L2	NC*	I/O	
L3	I/O	I/O	
L4	I/O	I/O	
L5	1/0	1/0	
L10	GND	GND	
L11	GND	GND	
L12	GND	GND	
L13	GND	GND	
L14	GND	GND	
L15	GND	GND	
L16	GND	GND	
L17	GND	GND	
L22	I/O	I/O	
L23	I/O	I/O	
L24	1/0	I/O	
L25	I/O	I/O	
L26	I/O	I/O	
M1	NC*	NC	
M2	I/O	I/O	
M3	I/O	I/O	
M4	1/0	I/O	

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
M5	I/O	I/O	
M10	GND	GND	
M11	GND	GND	
M12	GND	GND	
M13	GND	GND	
M14	GND	GND	
M15	GND	GND	
M16	GND	GND	
M17	GND	GND	
M22	I/O	I/O	
M23	I/O	I/O	
M24	I/O	I/O	
M25	NC*	I/O	
M26	NC*	I/O	
N1	I/O	I/O	
N2	V _{CCI}	V _{CCI}	
N3	I/O	I/O	
N4	I/O	I/O	
N5	I/O	I/O	
N10	GND	GND	
N11	GND	GND	
N12	GND	GND	
N13	GND	GND	
N14	GND	GND	
N15	GND	GND	
N16	GND	GND	
N17	GND	GND	
N22	V_{CCA}	V_{CCA}	
N23	I/O	I/O	
N24	I/O	I/O	
N25	I/O	I/O	
N26	NC*	NC	
P1	NC*	I/O	
P2	NC*	I/O	
P3	I/O	I/O	

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
P4	I/O	I/O	
P5	V_{CCA}	V_{CCA}	
P10	GND	GND	
P11	GND	GND	
P12	GND	GND	
P13	GND	GND	
P14	GND	GND	
P15	GND	GND	
P16	GND	GND	
P17	GND	GND	
P22	I/O	I/O	
P23	I/O	I/O	
P24	V _{CCI}	V _{CCI}	
P25	I/O	I/O	
P26	I/O	I/O	
R1	NC*	I/O	
R2	NC*	I/O	
R3	1/0	I/O	
R4	I/O	I/O	
R5	TRST, I/O	TRST, I/O	
R10	GND	GND	
R11	GND	GND	
R12	GND	GND	
R13	GND	GND	
R14	GND	GND	
R15	GND	GND	
R16	GND	GND	
R17	GND	GND	
R22	I/O	I/O	
R23	I/O	I/O	
R24	I/O	I/O	
R25	NC*	I/O	
R26	NC*	I/O	
T1	NC*	I/O	
T2	NC*	I/O	

Note: *These pins must be left floating on the A54SX32A device.

3-30 v5.3

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section"was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

4-2 v5.3