

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	203
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-ffgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offering

Package	A54SX08A	A54SX16A	A54SX32A	A54SX72A
PQ208	C,I,A,M	C,I,A,M	C,I,A,M	C,I,A,M
TQ100	C,I,A,M	C,I,A,M	C,I,A,M	
TQ144	C,I,A,M	C,I,A,M	C,I,A,M	
TQ176			C,I,M	
BG329			C,I,M	
FG144	C,I,A,M	C,I,A,M	C,I,A,M	
FG256		C,I,A,M	C,I,A,M	C,I,A,M
FG484			C,I,M	C,I,A,M
CQ208			C,M,B	C,M,B
CQ256			C,M,B	C,M,B

Notes:

- 1. C = Commercial
- 2. I = Industrial
- 3. A = Automotive
- 4. M = Military
- 5. B = MIL-STD-883 Class B
- 6. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.
- 7. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Speed Grade and Temperature Grade Matrix

	F	Std	-1	-2	-3
Commercial	✓	✓	✓	1	Discontinued
Industrial		✓	✓	1	Discontinued
Automotive		✓			
Military		✓	✓		
MIL-STD-883B		✓	✓		

Notes:

- 1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.
- 2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Contact your Actel Sales representative for more information on availability.

v5.3

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using 0.22 μ / 0.25 μ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation of Security in Actel Antifuse FPGAs* application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, Actel eX, SX-A, and RTSX-S I/Os.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input. Each I/O module has an available power-up resistor of

approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os*. Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

v5.3 1-7

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications.

Table 1-2 • I/O Features

Function	Description
Input Buffer Threshold Selections	5 V: PCI, TTL
	• 3.3 V: PCI, LVTTL
	• 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	5 V: PCI, TTL
	• 3.3 V: PCI, LVTTL
	• 2.5 V: LVCMOS2 (commercial only)
Output Buffer	"Hot-Swap" Capability (3.3 V PCI is not hot swappable)
	I/O on an unpowered device does not sink current
	Can be used for "cold-sparing"
	Selectable on an individual I/O basis
	Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate)
	Enables deterministic power-up of device
	V _{CCA} and V _{CCI} can be powered in any order

Table 1-3 • I/O Characteristics for All I/O Configurations

•					
	Hot Swappable	Slew Rate Control	Power-Up Resistor		
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down		
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down		
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down		

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μ s	5 V/ms	2.5 V/ms	0.5 V/ms	0.25 V/ms	0.1 V/ms	0.025 V/ms
Units	μ s	μ s	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

1-8 v5.3

JTAG Instructions

Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.

Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'. Bits 11-1 are always '02F', which is the Actel manufacturer code.

Table 1-7 • JTAG Instruction Code

Instructions (IR4:IR0)	Binary Code
EXTEST	00000
SAMPLE/PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HighZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-8 • JTAG Instruction Code

Device	Process	Revision	Bits 31-28	Bits 27-12
A54SX08A	0.22 μ	0	8, 9	40B4, 42B4
		1	A, B	40B4, 42B4
A54SX16A	0.22 μ	0	9	40B8, 42B8
		1	В	40B8, 42B8
	0.25 μ	1	В	22B8
A54SX32A	0.2 2μ	0	9	40BD, 42BD
		1	В	40BD, 42BD
	0.25 μ	1	В	22BD
A54SX72A	0.22 μ	0	9	40B2, 42B2
		1	В	40B2, 42B2
	0.25 μ	1	В	22B2

1-10 v5.3

SX-A Probe Circuit Control Pins

SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use, integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the

PRA/PRB pins for observation. Figure 1-13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

Design Considerations

In order to preserve device probing capabilities, users should avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, the security fuse must not be programmed to preserve probing capabilities. Actel recommends that you use a $70\,\Omega$ series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The $70\,\Omega$ series termination is used to prevent data transmission corruption during probing and reading back the checksum.

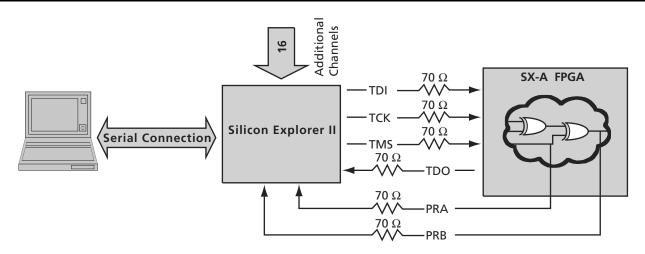


Figure 1-13 • Probe Setup

1-12 v5.3

Pin Description

CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption.

For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating).

QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating).

These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only.

GND Ground

Low supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software.

NC No Connection

This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device.

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any user-defined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset Pin** is not selected in Designer.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 2-2 on page 2-1. All V_{CCI} power pins in the device should be connected.

V_{CCA} Supply Voltage

Supply voltage for array. See Table 2-2 on page 2-1. All V_{CCA} power pins in the device should be connected.

v5.3 1-15

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

			Comm	ercial	Indu	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -1 \text{ mA})$	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -8 \text{ mA})$	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			8.0		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, $V_{IN} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	рF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web	O.			•		•

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

			Comn	nercial	Indu	strial	
Symbol	Parameter		Min. Max.		Min.	Max.	Units
V _{OH}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -100 \mu\text{A})$	2.1		2.1		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -1 \text{ mA})$	2.0		2.0		V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OH} =2 mA)	1.7		1.7		V
V _{OL}	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{DD} = MIN,$ $V_{I} = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 2 mA)		0.7		0.7	V
V _{IL}	Input Low Voltage, V _{OUT} ≤ V _{VOL(max)}		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, V _{OUT} ≥ V _{VOH(min)}		1.7	5.75	1.7	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	рF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						-

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

2-2 v5.3

EQ 2-2

Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

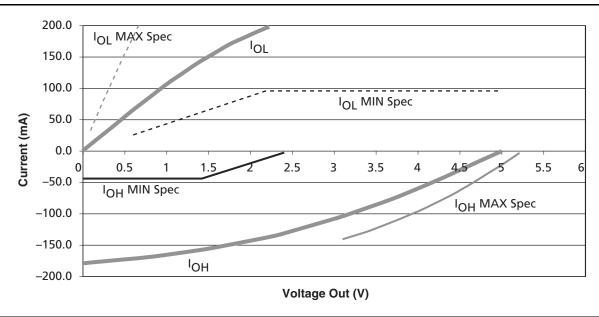


Figure 2-1 • 5 V PCI V/I Curve for SX-A Family

$$I_{OH} = 11.9 * (V_{OUT} - 5.25) * (V_{OUT} + 2.45)$$
 $I_{OL} = 78.5 * V_{OUT} * (4.4 - V_{OUT})$ for $V_{CCI} > V_{OUT} > 3.1V$ for $0V < V_{OUT} < 0.71V$

Table 2-9 • DC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V_{CCA}	Supply Voltage for Array		2.25	2.75	V
V_{CCI}	Supply Voltage for I/Os		3.0	3.6	V
V_{IH}	Input High Voltage		0.5V _{CCI}	V _{CCI} + 0.5	V
V_{IL}	Input Low Voltage		-0.5	0.3V _{CCI}	V
I _{IPU}	Input Pull-up Voltage ¹		0.7V _{CCI}	_	V
I _{IL}	Input Leakage Current ²	$0 < V_{IN} < V_{CCI}$	-10	+10	μΑ
V_{OH}	Output High Voltage	I _{OUT} = -500 μA	0.9V _{CCI}	_	V
V_{OL}	Output Low Voltage	I _{OUT} = 1,500 μA		0.1V _{CCI}	V
C _{IN}	Input Pin Capacitance ³		_	10	pF
C_{CLK}	CLK Pin Capacitance		5	12	pF

Notes:

- 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization.
- 2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

v5.3 2-5

Where:

C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF

 C_{FOSM} = Equivalent capacitance of sequential modules (R-Cells) in pF

 C_{EOI} = Equivalent capacitance of input buffers in pF

C_{EOO} = Equivalent capacitance of output buffers in pF

C_{EOCR} = Equivalent capacitance of CLKA/B in pF

 C_{EQHV} = Variable capacitance of HCLK in pF

 C_{EOHF} = Fixed capacitance of HCLK in pF

C_{L =} Output lead capacitance in pF

 f_m = Average logic module switching rate in MHz

 f_n = Average input buffer switching rate in MHz

 f_p = Average output buffer switching rate in MHz

 f_{q1} = Average CLKA rate in MHz

 f_{q2} = Average CLKB rate in MHz

 f_{s1} = Average HCLK rate in MHz

m = Number of logic modules switching at fm

n = Number of input buffers switching at fn

p = Number of output buffers switching at fp

 q_1 = Number of clock loads on CLKA

 q_2 = Number of clock loads on CLKB

 r_1 = Fixed capacitance due to CLKA

 r_2 = Fixed capacitance due to CLKB

s₁ = Number of clock loads on HCLK

x = Number of I/Os at logic low

y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

v5.3 2-9

Table 2-22 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.25 V, T_J = 70°C)

		-3 S _I	peed*	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks		ı								
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f_{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	ay Clock Networks	•										
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		8.0		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

2-28 v5.3

Table 2-27 • A54SX16A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Spee	d ¹	-2 S _I	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min. M	ax.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	5 V PCI Output Module Timing ²											
t _{DLH}	Data-to-Pad Low to High	2	2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low	2	8.		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L	1	.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H	2	2.2		2.5		2.8		3.3		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3	3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2	8.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^3	Delta Low to High	0.0	016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low	0.0	026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High	2	2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low	2	8.		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	6	5.7		7.7		8.7		10.2		14.3	ns
t _{ENZL}	Enable-to-Pad, Z to L	2	1.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	7	'.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H	1	.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3	3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2	2.5		2.9		3.3		3.9		5.4	ns
d_{TLH}^3	Delta Low to High	0.0	014		0.017		0.017		0.023		0.031	ns/pF
d_{THL}^3	Delta High to Low	0.0	023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.0	043		0.046		0.057		0.066		0.089	ns/pF

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 50 pF loading.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1*V_{CCI} 0.9*V_{CCI})/ (C_{load} * d_{T[LH|HL|HLS]}) where C_{load} is the load capacitance driven by the I/O in pF d_{T[LH|HL|HLS]} is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

v5.3 2-33

Table 2-32 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.3 V, T_J = 70°C)

		-3 Sp	-3 Speed ¹ -2 Speed		peed	-1 S	peed	Std. 9	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM											•	
t _{DLH}	Data-to-Pad Low to High		3.3		3.8		4.2		5.0		7.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		11.1		12.8		14.5		17.0		23.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.3		3.8		4.2		5.0		7.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d_{TLH}^{4}	Delta Low to High		0.031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^{4}	Delta High to Low		0.017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^{4}	Delta High to Low—low slew		0.057		0.06		0.071		0.086		0.117	ns/pF

Note:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 35 pF loading.
- 3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
- 4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/Ins] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load}*d_{T[LH|HL|S]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

v5.3 2-39

Table 2-33 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	eed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Мах.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.0		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.0		2.3		2.6		3.1		4.3	ns
d_{TLH}^3	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^3	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.6		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		2.6		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		9.0		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.6		3.0		3.4		4.0		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.6		3.0		3.3		3.9		5.5	ns
d_{TLH}^3	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 10 pF loading and 25 Ω resistance.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load} * d_{T[LH|HL]HLS}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

2-40 v5.3

Table 2-35 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	oeed ¹	-2 S	peed	-1 S	peed	Std. 9	Speed	−F S	peed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Units
C-Cell Propa	ngation Delays ²											
t _{PD}	Internal Array Module		1.0		1.1		1.3		1.5		2.0	ns
Predicted R	outing Delays ³											
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.7	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.6		0.7		1	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.7		8.0		0.9		1.3	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.9		1		1.1		1.5	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.5		1.7		2.1		2.9	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2.2		2.5		3		4.2	ns
R-Cell Timin	ıg			ı		I				ı		
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.1		1.5	ns
t_{CLR}	Asynchronous Clear-to-Q		0.6		0.7		0.7		0.9		1.2	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		8.0		8.0		1.0		1.4	ns
t _{SUD}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.3		1.5		1.7		2.0		2.8		ns
t _{RECASYN}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.5		1.7		2.0		2.3		3.2		ns
Input Modu	le Propagation Delays											
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.6		0.7		8.0		0.9		1.3	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		8.0		1.0		1.1		1.3		1.7	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		8.0		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.2		1.3		1.5		2.1	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

2-42 v5.3

Table 2-36 • A54SX72A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.25 V, T_J = 70°C)

		-3 S ₁	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	−F S	peed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Netwo	rks				ı		ı		ı		
^t нскн	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
^t HCKL	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks	•										
^t rckh	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.3		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.0		4.7		6.6	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.8		2.1		2.4		2.8		3.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.8		2.1		2.4		2.8		3.9	ns
Quadrant A	rray Clock Networks											-
^t QCKH	Input Low to High (Light Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.6		3.0		3.3		3.9		5.5	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
^t QCHKL	Input High to Low (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.2		5.9	ns

Note: *All –3 speed grades have been discontinued.

2-44 v5.3

	2	08-Pin PQF	P	
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function
1	GND	GND	GND	GND
2	TDI, I/O	TDI, I/O	TDI, I/O	TDI, I/O
3	I/O	I/O	I/O	I/O
4	NC	I/O	I/O	I/O
5	I/O	I/O	I/O	I/O
6	NC	I/O	I/O	I/O
7	I/O	I/O	I/O	I/O
8	I/O	I/O	I/O	I/O
9	I/O	I/O	I/O	I/O
10	I/O	I/O	I/O	I/O
11	TMS	TMS	TMS	TMS
12	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}
13	I/O	I/O	I/O	I/O
14	NC	I/O	I/O	I/O
15	I/O	I/O	I/O	I/O
16	I/O	I/O	I/O	I/O
17	NC	I/O	I/O	I/O
18	I/O	I/O	I/O	GND
19	I/O	I/O	I/O	V _{CCA}
20	NC	I/O	I/O	I/O
21	I/O	I/O	I/O	I/O
22	I/O	I/O	I/O	I/O
23	NC	I/O	I/O	I/O
24	I/O	I/O	I/O	I/O
25	NC	NC	NC	I/O
26	GND	GND	GND	GND
27	V_{CCA}	V _{CCA}	V_{CCA}	V_{CCA}
28	GND	GND	GND	GND
29	I/O	I/O	I/O	I/O
30	TRST, I/O	TRST, I/O	TRST, I/O	TRST, I/O
31	NC	I/O	I/O	I/O
32	I/O	I/O	I/O	I/O
33	I/O	I/O	I/O	I/O
34	I/O	I/O	I/O	I/O
35	NC	I/O	I/O	I/O

	208-Pin PQFP										
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function							
36	I/O	I/O	I/O	I/O							
37	I/O	I/O	I/O	I/O							
38	I/O	I/O	I/O	I/O							
39	NC	I/O	I/O	I/O							
40	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}							
41	V_{CCA}	V_{CCA}	V_{CCA}	V_{CCA}							
42	I/O	I/O	I/O	I/O							
43	I/O	I/O	I/O	I/O							
44	I/O	I/O	I/O	I/O							
45	I/O	I/O	I/O	I/O							
46	I/O	I/O	I/O	I/O							
47	I/O	I/O	I/O	I/O							
48	NC	I/O	I/O	I/O							
49	I/O	I/O	I/O	I/O							
50	NC	I/O	I/O	I/O							
51	1/0	I/O	I/O	I/O							
52	GND	GND	GND	GND							
53	I/O	I/O	I/O	I/O							
54	I/O	I/O	I/O	I/O							
55	I/O	I/O	I/O	I/O							
56	I/O	I/O	I/O	I/O							
57	I/O	I/O	I/O	I/O							
58	I/O	I/O	I/O	I/O							
59	I/O	I/O	I/O	I/O							
60	V _{CCI}	V _{CCI}	V_{CCI}	V _{CCI}							
61	NC	I/O	I/O	I/O							
62	I/O	I/O	I/O	I/O							
63	I/O	I/O	I/O	I/O							
64	NC	I/O	I/O	I/O							
65	I/O	I/O	NC	I/O							
66	I/O	I/O	I/O	I/O							
67	NC	I/O	I/O	I/O							
68	I/O	I/O	I/O	I/O							
69	I/O	I/O	I/O	I/O							
70	NC	I/O	1/0	I/O							

3-2 v5.3

208-Pin PQFP									
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function					
141	NC	I/O	I/O	I/O					
142	I/O	I/O	I/O	I/O					
143	NC	I/O	I/O	I/O					
144	I/O	I/O	I/O	I/O					
145	V_{CCA}	V_{CCA}	V_{CCA}	V_{CCA}					
146	GND	GND	GND	GND					
147	I/O	I/O	I/O	I/O					
148	V_{CCI}	V_{CCI}	V_{CCI}	V_{CCI}					
149	I/O	I/O	I/O	I/O					
150	I/O	I/O	I/O	I/O					
151	I/O	I/O	I/O	I/O					
152	I/O	I/O	I/O	I/O					
153	I/O	I/O	I/O	I/O					
154	I/O	I/O	I/O	I/O					
155	NC	I/O	I/O	I/O					
156	NC	I/O	I/O	I/O					
157	GND	GND	GND	GND					
158	I/O	I/O	I/O	I/O					
159	I/O	I/O	I/O	I/O					
160	I/O	I/O	I/O	I/O					
161	I/O	I/O	I/O	I/O					
162	I/O	I/O	I/O	I/O					
163	I/O	I/O	I/O	I/O					
164	V _{CCI}	V_{CCI}	V _{CCI}	V _{CCI}					
165	I/O	I/O	I/O	I/O					
166	I/O	I/O	I/O	I/O					
167	NC	I/O	I/O	I/O					
168	I/O	I/O	I/O	I/O					
169	I/O	I/O	I/O	I/O					
170	NC	I/O	I/O	I/O					
171	I/O	I/O	I/O	I/O					
172	I/O	I/O	I/O	I/O					
173	NC	I/O	I/O	I/O					
174	I/O	I/O	I/O	I/O					
175	I/O	I/O	I/O	I/O					

	2	08-Pin PQF	P	
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function
176	NC	I/O	I/O	I/O
177	I/O	I/O	I/O	I/O
178	I/O	I/O	I/O	QCLKD
179	I/O	I/O	I/O	I/O
180	CLKA	CLKA	CLKA	CLKA
181	CLKB	CLKB	CLKB	CLKB
182	NC	NC	NC	NC
183	GND	GND	GND	GND
184	V_{CCA}	V_{CCA}	V_{CCA}	V_{CCA}
185	GND	GND	GND	GND
186	PRA, I/O	PRA, I/O	PRA, I/O	PRA, I/O
187	I/O	I/O	I/O	V _{CCI}
188	I/O	I/O	I/O	I/O
189	NC	I/O	I/O	I/O
190	I/O	I/O	I/O	QCLKC
191	I/O	1/0	I/O	I/O
192	NC	1/0	I/O	I/O
193	I/O	1/0	1/0	I/O
194	I/O	I/O	I/O	I/O
195	NC	I/O	I/O	I/O
196	I/O	1/0	1/0	I/O
197	I/O	I/O	I/O	I/O
198	NC	I/O	I/O	I/O
199	I/O	I/O	I/O	I/O
200	I/O	I/O	I/O	I/O
201	V _{CCI}	V_{CCI}	V_{CCI}	V_{CCI}
202	NC	1/0	I/O	I/O
203	NC	I/O	I/O	I/O
204	1/0	I/O	I/O	I/O
205	NC	1/0	I/O	1/0
206	1/0	I/O	I/O	1/0
207	1/0	I/O	I/O	I/O
208	TCK, I/O	TCK, I/O	TCK, I/O	TCK, I/O

3-4 v5.3

329-Pin PBGA							
Pin	A54SX32A						
Number	Function						
V22	1/0						
V23	I/O						
W1	1/0						
W2	1/0						
W3	1/0						
W4	1/0						
W20	I/O						
W21	1/0						
W22	1/0						
W23	NC						
Y1	NC						
Y2	1/0						
Y3	1/0						
Y4	GND						
Y5	1/0						
Y6	1/0						
Y7	1/0						
Y8	1/0						
Y9	1/0						
Y10	1/0						
Y11	1/0						
Y12	V_{CCA}						
Y13	NC						
Y14	1/0						
Y15	1/0						
Y16	I/O						
Y17	I/O						
Y18	I/O						
Y19	I/O						
Y20	GND						
Y21	I/O						
Y22	I/O						
Y23	I/O						

v5.3 3-17

	144-Pin FBGA									
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function							
G1	I/O	1/0	I/O							
G2	GND	GND	GND							
G3	I/O	1/0	I/O							
G4	I/O	1/0	I/O							
G5	GND	GND	GND							
G6	GND	GND	GND							
G7	GND	GND	GND							
G8	V _{CCI}	V _{CCI}	V_{CCI}							
G9	I/O	I/O	I/O							
G10	I/O	I/O	I/O							
G11	I/O	1/0	I/O							
G12	I/O	1/0	I/O							
H1	TRST, I/O	TRST, I/O	TRST, I/O							
H2	I/O	1/0	I/O							
НЗ	I/O	1/0	I/O							
H4	I/O	1/0	I/O							
H5	V_{CCA}	V_{CCA}	V_{CCA}							
H6	V_{CCA}	V_{CCA}	V_{CCA}							
H7	V _{CCI}	V _{CCI}	V _{CCI}							
Н8	V _{CCI}	V _{CCI}	V _{CCI}							
H9	V _{CCA}	V_{CCA}	V_{CCA}							
H10	I/O	1/0	I/O							
H11	I/O	1/0	I/O							
H12	NC	NC	NC							
J1	I/O	1/0	I/O							
J2	I/O	1/0	I/O							
J3	I/O	1/0	I/O							
J4	I/O	1/0	I/O							
J5	I/O	I/O	I/O							
J6	PRB, I/O	PRB, I/O	PRB, I/O							
J7	I/O	I/O	I/O							
J8	I/O	I/O	I/O							
J9	I/O	1/0	I/O							
J10	I/O	1/0	I/O							
J11	I/O	I/O	I/O							
J12	V _{CCA}	V _{CCA}	V _{CCA}							

144-Pin FBGA				
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	
K1	I/O	I/O	1/0	
K2	I/O	I/O	1/0	
K3	I/O	I/O	1/0	
K4	I/O	I/O	1/0	
K5	I/O	I/O	1/0	
K6	I/O	I/O	1/0	
K7	GND	GND	GND	
K8	I/O	I/O	1/0	
K9	I/O	I/O	I/O	
K10	GND	GND	GND	
K11	I/O	I/O	I/O	
K12	I/O	I/O	I/O	
L1	GND	GND	GND	
L2	I/O	I/O	1/0	
L3	I/O	I/O	I/O	
L4	I/O	I/O	1/0	
L5	I/O	I/O	I/O	
L6	I/O	I/O	I/O	
L7	HCLK	HCLK	HCLK	
L8	I/O	I/O	I/O	
L9	I/O	I/O	I/O	
L10	I/O	I/O	I/O	
L11	I/O	I/O	I/O	
L12	I/O	I/O	I/O	
M1	I/O	I/O	I/O	
M2	I/O	I/O	I/O	
M3	I/O	I/O	I/O	
M4	I/O	I/O	I/O	
M5	I/O	I/O	I/O	
M6	I/O	I/O	I/O	
M7	V _{CCA}	V _{CCA}	V _{CCA}	
M8	I/O	I/O	I/O	
M9	I/O	I/O	I/O	
M10	I/O	I/O	I/O	
M11	TDO, I/O	TDO, I/O	TDO, I/O	
M12	I/O	I/O	I/O	

3-20 v5.3

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
K10	GND	GND		
K11	GND	GND		
K12	GND	GND		
K13	GND	GND		
K14	GND	GND		
K15	GND	GND		
K16	GND	GND		
K17	GND	GND		
K22	I/O	I/O		
K23	I/O	I/O		
K24	NC*	NC		
K25	NC*	I/O		
K26	NC*	I/O		
L1	NC*	I/O		
L2	NC*	I/O		
L3	I/O	I/O		
L4	I/O	I/O		
L5	I/O	I/O		
L10	GND	GND		
L11	GND	GND		
L12	GND	GND		
L13	GND	GND		
L14	GND	GND		
L15	GND	GND		
L16	GND	GND		
L17	GND	GND		
L22	I/O	I/O		
L23	1/0	I/O		
L24	1/0	I/O		
L25	I/O	I/O		
L26	I/O	I/O		
M1	NC*	NC		
M2	I/O	I/O		
M3	I/O	I/O		
M4	1/0	I/O		

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
M5	I/O	I/O		
M10	GND	GND		
M11	GND	GND		
M12	GND	GND		
M13	GND	GND		
M14	GND	GND		
M15	GND	GND		
M16	GND	GND		
M17	GND	GND		
M22	I/O	I/O		
M23	I/O	I/O		
M24	I/O	I/O		
M25	NC*	I/O		
M26	NC*	I/O		
N1	I/O	I/O		
N2	V _{CCI}	V _{CCI}		
N3	I/O	I/O		
N4	I/O	I/O		
N5	I/O	I/O		
N10	GND	GND		
N11	GND	GND		
N12	GND	GND		
N13	GND	GND		
N14	GND	GND		
N15	GND	GND		
N16	GND	GND		
N17	GND	GND		
N22	V_{CCA}	V_{CCA}		
N23	I/O	I/O		
N24	I/O	I/O		
N25	I/O	I/O		
N26	NC*	NC		
P1	NC*	I/O		
P2	NC*	I/O		
Р3	I/O	I/O		

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
P4	I/O	I/O		
P5	V_{CCA}	V_{CCA}		
P10	GND	GND		
P11	GND	GND		
P12	GND	GND		
P13	GND	GND		
P14	GND	GND		
P15	GND	GND		
P16	GND	GND		
P17	GND	GND		
P22	I/O	I/O		
P23	I/O	I/O		
P24	V _{CCI}	V _{CCI}		
P25	I/O	I/O		
P26	I/O	I/O		
R1	NC*	I/O		
R2	NC*	I/O		
R3	1/0	I/O		
R4	I/O	I/O		
R5	TRST, I/O	TRST, I/O		
R10	GND	GND		
R11	GND	GND		
R12	GND	GND		
R13	GND	GND		
R14	GND	GND		
R15	GND	GND		
R16	GND	GND		
R17	GND	GND		
R22	I/O	I/O		
R23	I/O	I/O		
R24	I/O	I/O		
R25	NC*	I/O		
R26	NC*	I/O		
T1	NC*	I/O		
T2	NC*	I/O		

Note: *These pins must be left floating on the A54SX32A device.

3-30 v5.3