



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                     |
|--------------------------------|----------------------------------------------------------------------------|
| Number of LABs/CLBs            | 2880                                                                       |
| Number of Logic Elements/Cells | -                                                                          |
| Total RAM Bits                 | -                                                                          |
| Number of I/O                  | 249                                                                        |
| Number of Gates                | 48000                                                                      |
| Voltage - Supply               | 2.25V ~ 5.25V                                                              |
| Mounting Type                  | Surface Mount                                                              |
| Operating Temperature          | 0°C ~ 70°C (TA)                                                            |
| Package / Case                 | 484-BGA                                                                    |
| Supplier Device Package        | 484-FPBGA (27X27)                                                          |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-ffgg484 |
|                                |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



### **Boundary-Scan Testing (BST)**

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

#### **Dedicated Mode**

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

#### Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V<sub>CCI</sub> should be placed on the TMS pin to pull it High by default.** 

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

| Table 1-6 | ٠ | <b>Boundary-Scan Pin Configurations an</b> | d |
|-----------|---|--------------------------------------------|---|
|           |   | Functions                                  |   |

| Mode                | Designer<br>"Reserve JTAG"<br>Selection | TAP Controller<br>State         |
|---------------------|-----------------------------------------|---------------------------------|
| Dedicated (JTAG)    | Checked                                 | Any                             |
| Flexible (User I/O) | Unchecked                               | Test-Logic-Reset                |
| Flexible (JTAG)     | Unchecked                               | Any EXCEPT Test-<br>Logic-Reset |

#### Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

| Pin                        | Function                                                                                   |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Reserve JTAG               | Keeps pins from being used and<br>changes the behavior of JTAG pins (no<br>pull-up on TMS) |  |  |  |  |  |  |
| Reserve JTAG Test<br>Reset | Regular I/O or JTAG reset with an internal pull-up                                         |  |  |  |  |  |  |
| Reserve Probe              | Keeps pins from being used or regular<br>I/O                                               |  |  |  |  |  |  |

#### TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.



## **Probing Capabilities**

SX-A devices also provide an internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II diagnostic hardware is used to control the TDI, TCK, TMS, and TDO pins to select the desired nets for debugging. The user assigns the selected internal nets in Actel Silicon Explorer II software to the PRA/PRB output pins for observation. Silicon Explorer II automatically places the device into JTAG mode. However, probing functionality is only activated when the TRST pin is driven high or left floating, allowing the internal pull-up resistor to pull TRST High. If the TRST pin is held Low, the TAP controller remains in the Test-Logic-Reset state so no probing can be performed. However, the user must drive the TRST pin High or allow the internal pull-up resistor to pull TRST High. When selecting the **Reserve Probe Pin** box as shown in Figure 1-12 on page 1-9, direct the layout tool to reserve the PRA and PRB pins as dedicated outputs for probing. This **Reserve** option is merely a guideline. If the designer assigns user I/Os to the PRA and PRB pins and selects the **Reserve Probe Pin** option, Designer Layout will override the **Reserve Probe Pin** option and place the user I/Os on those pins.

To allow probing capabilities, the security fuse must not be programmed. Programming the security fuse disables the JTAG and probe circuitry. Table 1-9 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

| JTAG Mode | TRST <sup>1</sup> | Security Fuse Programmed | PRA, PRB <sup>2</sup> | TDI, TCK, TDO <sup>2</sup> |
|-----------|-------------------|--------------------------|-----------------------|----------------------------|
| Dedicated | Low               | No                       | User I/O <sup>3</sup> | JTAG Disabled              |
|           | High              | No                       | Probe Circuit Outputs | JTAG I/O                   |
| Flexible  | Low               | No                       | User I/O <sup>3</sup> | User I/O <sup>3</sup>      |
|           | High              | No                       | Probe Circuit Outputs | JTAG I/O                   |
|           |                   | Yes                      | Probe Circuit Secured | Probe Circuit Secured      |

Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved)

Notes:

1. If the TRST pin is not reserved, the device behaves according to TRST = High as described in the table.

2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by the Designer software.

#### **SX-A Probe Circuit Control Pins**

SX-A devices contain internal probing circuitry that provides built-in access to every node in a design, enabling 100% real-time observation and analysis of a device's internal logic nodes without design iteration. The probe circuitry is accessed by Silicon Explorer II, an easy to use, integrated verification and logic analysis tool that can sample data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

The Silicon Explorer II tool uses the boundary-scan ports (TDI, TCK, TMS, and TDO) to select the desired nets for verification. The selected internal nets are assigned to the

PRA/PRB pins for observation. Figure 1-13 illustrates the interconnection between Silicon Explorer II and the FPGA to perform in-circuit verification.

### **Design Considerations**

In order to preserve device probing capabilities, users should avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, critical input signals through these pins are not available. In addition, the security fuse must not be programmed to preserve probing capabilities. Actel recommends that you use a 70  $\Omega$  series termination resistor on every probe connector (TDI, TCK, TMS, TDO, PRA, PRB). The 70  $\Omega$  series termination is used to prevent data transmission corruption during probing and reading back the checksum.



Figure 1-13 • Probe Setup

## **Related Documents**

## **Application Notes**

Global Clock Networks in Actel's Antifuse Devices http://www.actel.com/documents/GlobalClk\_AN.pdf Using A54SX72A and RT54SX72S Quadrant Clocks http://www.actel.com/documents/QCLK\_AN.pdf Implementation of Security in Actel Antifuse FPGAs http://www.actel.com/documents/Antifuse\_Security\_AN.pdf Actel eX, SX-A, and RTSX-S I/Os http://www.actel.com/documents/AntifuseIO\_AN.pdf Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications http://www.actel.com/documents/HotSwapColdSparing\_AN.pdf Programming Antifuse Devices http://www.actel.com/documents/AntifuseProgram\_AN.pdf

## Datasheets

HiRel SX-A Family FPGAs http://www.actel.com/documents/HRSXA\_DS.pdf SX-A Automotive Family FPGAs http://www.actel.com/documents/SXA\_Auto\_DS.pdf

## **User's Guides**

Silicon Sculptor User's Guide http://www.actel.com/documents/SiliSculptII\_Sculpt3\_ug.pdf



## PCI Compliance for the SX-A Family

The SX-A family supports 3.3 V and 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

#### Table 2-7 • DC Specifications (5 V PCI Operation)

| Symbol           | Parameter                               | Condition                     | Min. | Max. | Units |
|------------------|-----------------------------------------|-------------------------------|------|------|-------|
| V <sub>CCA</sub> | Supply Voltage for Array                |                               | 2.25 | 2.75 | V     |
| V <sub>CCI</sub> | Supply Voltage for I/Os                 |                               | 4.75 | 5.25 | V     |
| V <sub>IH</sub>  | Input High Voltage                      |                               | 2.0  | 5.75 | V     |
| V <sub>IL</sub>  | Input Low Voltage                       |                               | -0.5 | 0.8  | V     |
| I <sub>IH</sub>  | Input High Leakage Current <sup>1</sup> | V <sub>IN</sub> = 2.7         | -    | 70   | μΑ    |
| IIL              | Input Low Leakage Current <sup>1</sup>  | V <sub>IN</sub> = 0.5         | -    | -70  | μΑ    |
| V <sub>OH</sub>  | Output High Voltage                     | I <sub>OUT</sub> = -2 mA      | 2.4  | -    | V     |
| V <sub>OL</sub>  | Output Low Voltage <sup>2</sup>         | I <sub>OUT</sub> = 3 mA, 6 mA | -    | 0.55 | V     |
| C <sub>IN</sub>  | Input Pin Capacitance <sup>3</sup>      |                               | -    | 10   | pF    |
| C <sub>CLK</sub> | CLK Pin Capacitance                     |                               | 5    | 12   | pF    |

Notes:

1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

### **Guidelines for Estimating Power**

The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper limits of power dissipation:

Logic Modules (m) = 20% of modules Inputs Switching (n) = Number inputs/4 Outputs Switching (p) = Number of outputs/4 CLKA Loads (q1) = 20% of R-cells CLKB Loads (q2) = 20% of R-cells Load Capacitance (CL) = 35 pF Average Logic Module Switching Rate (fm) = f/10 Average Input Switching Rate (fn) = f/5 Average Output Switching Rate (fp) = f/10 Average CLKA Rate (fq1) = f/2 Average CLKB Rate (fq2) = f/2 Average HCLK Rate (fs1) = f HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S Power Calculator worksheet.



To determine the heat sink's thermal performance, use the following equation:

$$\theta_{JA(TOTAL)} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

EQ 2-14

where:

 $\theta_{CS} = 0.37^{\circ}C/W$ 

 thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 $\theta_{SA}$  = thermal resistance of the heat sink in °C/W

 $\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$ EQ 2-15  $\theta_{SA} = 13.33^{\circ}C/W - 3.20^{\circ}C/W - 0.37^{\circ}C/W$ 

$$\theta_{SA} = 9.76^{\circ}C/W$$

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

#### Table 2-21 A54SX16A Timing Characteristics (Continued)

| -                                 |                 |                                         |
|-----------------------------------|-----------------|-----------------------------------------|
| (Moust Case Commonsial Conditions | V 225V          |                                         |
| (worst-case commercial conditions | . VccA = 2.23 V | $V_{CC} = 3.0 V_{c} = 10^{\circ} C_{c}$ |
| ·····                             | - CCA           | ,                                       |

|                    |                                          | -3 Sp | beed <sup>1</sup> | ed <sup>1</sup> –2 Speed |      | –1 Speed |      | -1 Speed Std. Speed |      | -F Speed |      |       |
|--------------------|------------------------------------------|-------|-------------------|--------------------------|------|----------|------|---------------------|------|----------|------|-------|
| Parameter          | Description                              | Min.  | Max.              | Min.                     | Max. | Min.     | Max. | Min.                | Max. | Min.     | Max. | Units |
| t <sub>INYH</sub>  | Input Data Pad to Y High 5 V PCI         |       | 0.5               |                          | 0.5  |          | 0.6  |                     | 0.7  |          | 0.9  | ns    |
| t <sub>INYL</sub>  | Input Data Pad to Y Low 5 V PCI          |       | 0.7               |                          | 0.8  |          | 0.9  |                     | 1.1  |          | 1.5  | ns    |
| t <sub>INYH</sub>  | Input Data Pad to Y High 5 V TTL         |       | 0.5               |                          | 0.5  |          | 0.6  |                     | 0.7  |          | 0.9  | ns    |
| t <sub>INYL</sub>  | Input Data Pad to Y Low 5 V TTL          |       | 0.7               |                          | 0.8  |          | 0.9  |                     | 1.1  |          | 1.5  | ns    |
| Input Modu         | le Predicted Routing Delays <sup>2</sup> |       |                   |                          |      |          |      |                     |      |          |      |       |
| t <sub>IRD1</sub>  | FO = 1 Routing Delay                     |       | 0.3               |                          | 0.3  |          | 0.3  |                     | 0.4  |          | 0.6  | ns    |
| t <sub>IRD2</sub>  | FO = 2 Routing Delay                     |       | 0.4               |                          | 0.5  |          | 0.5  |                     | 0.6  |          | 0.8  | ns    |
| t <sub>IRD3</sub>  | FO = 3 Routing Delay                     |       | 0.5               |                          | 0.6  |          | 0.7  |                     | 0.8  |          | 1.1  | ns    |
| t <sub>IRD4</sub>  | FO = 4 Routing Delay                     |       | 0.7               |                          | 0.8  |          | 0.9  |                     | 1.0  |          | 1.4  | ns    |
| t <sub>IRD8</sub>  | FO = 8 Routing Delay                     |       | 1.2               |                          | 1.4  |          | 1.5  |                     | 0.8  |          | 2.5  | ns    |
| t <sub>IRD12</sub> | FO = 12 Routing Delay                    |       | 1.7               |                          | 2.0  |          | 2.2  |                     | 2.6  |          | 3.6  | ns    |

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use  $t_{PD} + t_{RD1} + t_{PDn}$ ,  $t_{RCO} + t_{RD1} + t_{PDn}$ , or  $t_{PD1} + t_{RD1} + t_{SUD}$ , whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

#### Table 2-22 A54SX16A Timing Characteristics

| (Worst-Case Commercial Condition | s V <sub>CCA</sub> = 2.25 V, | V <sub>CCI</sub> = 2.25 V, | T <sub>J</sub> = 70°C) |
|----------------------------------|------------------------------|----------------------------|------------------------|
|----------------------------------|------------------------------|----------------------------|------------------------|

|                    |                                                         | -3 Sp | beed* | -2 S | peed | -1 S | peed | Std. | Speed | –F S | peed |       |
|--------------------|---------------------------------------------------------|-------|-------|------|------|------|------|------|-------|------|------|-------|
| Parameter          | Description                                             | Min.  | Max.  | Min. | Max. | Min. | Max. | Min. | Max.  | Min. | Max. | Units |
| Dedicated          | (Hardwired) Array Clock Networ                          | 'ks   |       |      |      |      |      |      |       |      |      |       |
| t <sub>HCKH</sub>  | Input Low to High<br>(Pad to R-cell Input)              |       | 1.2   |      | 1.4  |      | 1.6  |      | 1.8   |      | 2.8  | ns    |
| t <sub>HCKL</sub>  | Input High to Low<br>(Pad to R-cell Input)              |       | 1.0   |      | 1.1  |      | 1.2  |      | 1.5   |      | 2.2  | ns    |
| t <sub>HPWH</sub>  | Minimum Pulse Width High                                | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>HPWL</sub>  | Minimum Pulse Width Low                                 | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>HCKSW</sub> | Maximum Skew                                            |       | 0.3   |      | 0.3  |      | 0.4  |      | 0.4   |      | 0.7  | ns    |
| t <sub>HP</sub>    | Minimum Period                                          | 2.8   |       | 3.4  |      | 3.8  |      | 4.4  |       | 6.0  |      | ns    |
| f <sub>HMAX</sub>  | Maximum Frequency                                       |       | 357   |      | 294  |      | 263  |      | 227   |      | 167  | MHz   |
| Routed Arr         | ay Clock Networks                                       |       |       | -    |      | -    |      |      |       | -    |      |       |
| t <sub>RCKH</sub>  | Input Low to High (Light Load)<br>(Pad to R-cell Input) |       | 1.0   |      | 1.2  |      | 1.3  |      | 1.6   |      | 2.2  | ns    |
| t <sub>RCKL</sub>  | Input High to Low (Light Load)<br>(Pad to R-cell Input) |       | 1.1   |      | 1.3  |      | 1.5  |      | 1.7   |      | 2.4  | ns    |
| t <sub>RCKH</sub>  | Input Low to High (50% Load)<br>(Pad to R-cell Input)   |       | 1.1   |      | 1.3  |      | 1.5  |      | 1.7   |      | 2.4  | ns    |
| t <sub>RCKL</sub>  | Input High to Low (50% Load)<br>(Pad to R-cell Input)   |       | 1.1   |      | 1.3  |      | 1.5  |      | 1.7   |      | 2.4  | ns    |
| t <sub>RCKH</sub>  | Input Low to High (100% Load)<br>(Pad to R-cell Input)  |       | 1.3   |      | 1.5  |      | 1.7  |      | 2.0   |      | 2.8  | ns    |
| t <sub>RCKL</sub>  | Input High to Low (100% Load)<br>(Pad to R-cell Input)  |       | 1.3   |      | 1.5  |      | 1.7  |      | 2.0   |      | 2.8  | ns    |
| t <sub>RPWH</sub>  | Minimum Pulse Width High                                | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>RPWL</sub>  | Minimum Pulse Width Low                                 | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (Light Load)                               |       | 0.8   |      | 0.9  |      | 1.0  |      | 1.2   |      | 1.7  | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (50% Load)                                 |       | 0.8   |      | 0.9  |      | 1.0  |      | 1.2   |      | 1.7  | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (100% Load)                                |       | 1.0   |      | 1.1  |      | 1.3  |      | 1.5   |      | 2.1  | ns    |

*Note:* \*All –3 speed grades have been discontinued.

#### Table 2-24 A54SX16A Timing Characteristics

| (Worst-Case Commercial Condition | s V <sub>CCA</sub> = 2.25 V, V <sub>CCI</sub> =4.75 V | ', Τ <sub>J</sub> = 70°C) |
|----------------------------------|-------------------------------------------------------|---------------------------|
|----------------------------------|-------------------------------------------------------|---------------------------|

|                    |                                                         | -3 Sp | peed* | -2 S | peed | -1 S | peed | Std. | Speed | –F S | peed |       |
|--------------------|---------------------------------------------------------|-------|-------|------|------|------|------|------|-------|------|------|-------|
| Parameter          | Description                                             | Min.  | Max.  | Min. | Max. | Min. | Max. | Min. | Max.  | Min. | Max. | Units |
| Dedicated          | Hardwired) Array Clock Netwo                            | rks   |       |      |      |      |      |      |       |      |      | 1     |
| t <sub>HCKH</sub>  | Input Low to High<br>(Pad to R-cell Input)              |       | 1.2   |      | 1.4  |      | 1.6  |      | 1.8   |      | 2.8  | ns    |
| t <sub>HCKL</sub>  | Input High to Low<br>(Pad to R-cell Input)              |       | 1.0   |      | 1.1  |      | 1.2  |      | 1.5   |      | 2.2  | ns    |
| t <sub>HPWH</sub>  | Minimum Pulse Width High                                | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>HPVVL</sub> | Minimum Pulse Width Low                                 | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>HCKSW</sub> | Maximum Skew                                            |       | 0.3   |      | 0.3  |      | 0.4  |      | 0.4   |      | 0.7  | ns    |
| t <sub>HP</sub>    | Minimum Period                                          | 2.8   |       | 3.4  |      | 3.8  |      | 4.4  |       | 6.0  |      | ns    |
| f <sub>HMAX</sub>  | Maximum Frequency                                       |       | 357   |      | 294  |      | 263  |      | 227   |      | 167  | MHz   |
| Routed Arr         | ay Clock Networks                                       |       |       |      |      |      |      |      |       |      |      |       |
| t <sub>RCKH</sub>  | Input Low to High (Light Load)<br>(Pad to R-cell Input) |       | 1.0   |      | 1.2  |      | 1.3  |      | 1.6   |      | 2.2  | ns    |
| t <sub>RCKL</sub>  | Input High to Low (Light Load)<br>(Pad to R-cell Input) |       | 1.1   |      | 1.3  |      | 1.5  |      | 1.7   |      | 2.4  | ns    |
| t <sub>RCKH</sub>  | Input Low to High (50% Load)<br>(Pad to R-cell Input)   |       | 1.1   |      | 1.3  |      | 1.5  |      | 1.7   |      | 2.4  | ns    |
| t <sub>RCKL</sub>  | Input High to Low (50% Load)<br>(Pad to R-cell Input)   |       | 1.1   |      | 1.3  |      | 1.5  |      | 1.7   |      | 2.4  | ns    |
| t <sub>RCKH</sub>  | Input Low to High (100% Load)<br>(Pad to R-cell Input)  |       | 1.3   |      | 1.5  |      | 1.7  |      | 2.0   |      | 2.8  | ns    |
| t <sub>RCKL</sub>  | Input High to Low (100% Load)<br>(Pad to R-cell Input)  |       | 1.3   |      | 1.5  |      | 1.7  |      | 2.0   |      | 2.8  | ns    |
| t <sub>RPWH</sub>  | Minimum Pulse Width High                                | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>RPWL</sub>  | Minimum Pulse Width Low                                 | 1.4   |       | 1.7  |      | 1.9  |      | 2.2  |       | 3.0  |      | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (Light Load)                               |       | 0.8   |      | 0.9  |      | 1.0  |      | 1.2   |      | 1.7  | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (50% Load)                                 |       | 0.8   |      | 0.9  |      | 1.0  |      | 1.2   |      | 1.7  | ns    |
| t <sub>RCKSW</sub> | Maximum Skew (100% Load)                                |       | 1.0   |      | 1.1  |      | 1.3  |      | 1.5   |      | 2.1  | ns    |

*Note:* \**All* –3 speed grades have been discontinued.

#### Table 2-28 A545X32A Timing Characteristics (Continued)

|                    |                                          |      |                   | -    |      |      |      |        |       |      |      |       |
|--------------------|------------------------------------------|------|-------------------|------|------|------|------|--------|-------|------|------|-------|
|                    |                                          | -3 S | peed <sup>1</sup> | -2 S | peed | -1 S | peed | Std. 9 | Speed | –F S | peed |       |
| Parameter          | Description                              | Min. | Max.              | Min. | Max. | Min. | Max. | Min.   | Max.  | Min. | Max. | Units |
| t <sub>INYH</sub>  | Input Data Pad to Y High 5 V PCI         |      | 0.7               |      | 0.8  |      | 0.9  |        | 1.0   |      | 1.4  | ns    |
| t <sub>INYL</sub>  | Input Data Pad to Y Low 5 V PCI          |      | 0.9               |      | 1.1  |      | 1.2  |        | 1.4   |      | 1.9  | ns    |
| t <sub>INYH</sub>  | Input Data Pad to Y High 5 V TTL         |      | 0.9               |      | 1.1  |      | 1.2  |        | 1.4   |      | 1.9  | ns    |
| t <sub>INYL</sub>  | Input Data Pad to Y Low 5 V TTL          |      | 1.4               |      | 1.6  |      | 1.8  |        | 2.1   |      | 2.9  | ns    |
| Input Modu         | le Predicted Routing Delays <sup>3</sup> |      |                   |      |      |      |      |        |       |      |      |       |
| t <sub>IRD1</sub>  | FO = 1 Routing Delay                     |      | 0.3               |      | 0.3  |      | 0.3  |        | 0.4   |      | 0.6  | ns    |
| t <sub>IRD2</sub>  | FO = 2 Routing Delay                     |      | 0.4               |      | 0.5  |      | 0.5  |        | 0.6   |      | 0.8  | ns    |
| t <sub>IRD3</sub>  | FO = 3 Routing Delay                     |      | 0.5               |      | 0.6  |      | 0.7  |        | 0.8   |      | 1.1  | ns    |
| t <sub>IRD4</sub>  | FO = 4 Routing Delay                     |      | 0.7               |      | 0.8  |      | 0.9  |        | 1     |      | 1.4  | ns    |
| t <sub>IRD8</sub>  | FO = 8 Routing Delay                     |      | 1.2               |      | 1.4  |      | 1.5  |        | 1.8   |      | 2.5  | ns    |
| t <sub>IRD12</sub> | FO = 12 Routing Delay                    |      | 1.7               |      | 2    |      | 2.2  |        | 2.6   |      | 3.6  | ns    |

#### (Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}_{CCI} = 3.0 \text{ V}, T_J = 70^{\circ}\text{C}$ )

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use  $t_{PD} + t_{RD1} + t_{PDn}$ ,  $t_{RCO} + t_{RD1} + t_{PDn}$ , or  $t_{PD1} + t_{RD1} + t_{SUD}$ , whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

## Table 2-37 • A54SX72A Timing Characteristics (Continued)

| (Worst-Case Commercial Conditions $V_{CCA}$ = 2.25 V, $V_{CCI}$ = 3.0 V, $T_{J}$ = | : 70°C) |
|------------------------------------------------------------------------------------|---------|
|------------------------------------------------------------------------------------|---------|

|                    |                                                        | -3 Speed* |      | -2 S | peed | -1 S | peed | Std. | Speed | -F Speed |      |       |
|--------------------|--------------------------------------------------------|-----------|------|------|------|------|------|------|-------|----------|------|-------|
| Parameter          | Description                                            | Min.      | Max. | Min. | Max. | Min. | Max. | Min. | Max.  | Min.     | Max. | Units |
| t <sub>QCKH</sub>  | Input Low to High (100% Load)<br>(Pad to R-cell Input) |           | 1.7  |      | 1.9  |      | 2.2  |      | 2.5   |          | 3.5  | ns    |
| t <sub>QCHKL</sub> | Input High to Low (100% Load)<br>(Pad to R-cell Input) |           | 1.7  |      | 2    |      | 2.2  |      | 2.6   |          | 3.6  | ns    |
| t <sub>QPWH</sub>  | Minimum Pulse Width High                               | 1.5       |      | 1.7  |      | 2.0  |      | 2.3  |       | 3.2      |      | ns    |
| t <sub>QPWL</sub>  | Minimum Pulse Width Low                                | 1.5       |      | 1.7  |      | 2.0  |      | 2.3  |       | 3.2      |      | ns    |
| t <sub>QCKSW</sub> | Maximum Skew (Light Load)                              |           | 0.2  |      | 0.3  |      | 0.3  |      | 0.3   |          | 0.5  | ns    |
| t <sub>QCKSW</sub> | Maximum Skew (50% Load)                                |           | 0.4  |      | 0.5  |      | 0.5  |      | 0.6   |          | 0.9  | ns    |
| t <sub>QCKSW</sub> | Maximum Skew (100% Load)                               |           | 0.4  |      | 0.5  |      | 0.5  |      | 0.6   |          | 0.9  | ns    |

Note: \*All –3 speed grades have been discontinued.

#### Table 2-39 A54SX72A Timing Characteristics

### (Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$ , $V_{CCI} = 2.3 \text{ V}$ , $T_J = 70^{\circ}\text{C}$ )

|                      |                                         | -3 Speed | I <sup>1</sup> | -2 S | peed  | -1 S | peed  | Std. S | Speed | d –F Speed |       |       |
|----------------------|-----------------------------------------|----------|----------------|------|-------|------|-------|--------|-------|------------|-------|-------|
| Parameter            | Description                             | Min. Ma  | х.             | Min. | Max.  | Min. | Max.  | Min.   | Max.  | Min.       | Max.  | Units |
| 2.5 V LVCM           | OS Output Module Timing <sup>2, 3</sup> |          |                |      |       |      |       |        |       |            |       |       |
| t <sub>DLH</sub>     | Data-to-Pad Low to High                 | 3.       | 9              |      | 4.5   |      | 5.1   |        | 6.0   |            | 8.4   | ns    |
| t <sub>DHL</sub>     | Data-to-Pad High to Low                 | 3.       | 1              |      | 3.6   |      | 4.1   |        | 4.8   |            | 6.7   | ns    |
| t <sub>DHLS</sub>    | Data-to-Pad High to Low—low slew        | 12       | .7             |      | 14.6  |      | 16.5  |        | 19.4  |            | 27.2  | ns    |
| t <sub>ENZL</sub>    | Enable-to-Pad, Z to L                   | 2.       | 4              |      | 2.8   |      | 3.2   |        | 3.7   |            | 5.2   | ns    |
| t <sub>ENZLS</sub>   | Data-to-Pad, Z to L—low slew            | 11       | .8             |      | 13.7  |      | 15.5  |        | 18.2  |            | 25.5  | ns    |
| t <sub>ENZH</sub>    | Enable-to-Pad, Z to H                   | 3.       | 9              |      | 4.5   |      | 5.1   |        | 6.0   |            | 8.4   | ns    |
| t <sub>ENLZ</sub>    | Enable-to-Pad, L to Z                   | 2.       | 1              |      | 2.5   |      | 2.8   |        | 3.3   |            | 4.7   | ns    |
| t <sub>ENHZ</sub>    | Enable-to-Pad, H to Z                   | 3.       | 1              |      | 3.6   |      | 4.1   |        | 4.8   |            | 6.7   | ns    |
| $d_{\text{TLH}}^{4}$ | Delta Low to High                       | 0.0      | 31             |      | 0.037 |      | 0.043 |        | 0.051 |            | 0.071 | ns/pF |
| $d_{\text{THL}}^4$   | Delta High to Low                       | 0.0      | 17             |      | 0.017 |      | 0.023 |        | 0.023 |            | 0.037 | ns/pF |
| $d_{\text{THLS}}^4$  | Delta High to Low—low slew              | 0.0      | 57             |      | 0.06  |      | 0.071 |        | 0.086 |            | 0.117 | ns/pF |

#### Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the  $V_{CCI}$  value into the following equation: Slew Rate [V/ns] =  $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where  $C_{load}$  is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$  is the worst case delta value from the datasheet in ns/pF.

#### Table 2-40 A54SX72A Timing Characteristics

| (Worst-Case Commercial | Conditions $V_{CCA} = 2.25$ | $V_{V_{CCI}} = 3.0$ | $I_{1} = 70^{\circ}C$ |
|------------------------|-----------------------------|---------------------|-----------------------|
| (                      |                             |                     | .,.,,                 |

|                                | –3 Speed <sup>1</sup> –2 Speed    |           | ed     | –1 Spee | ed     | Std. 9 | Speed | –F S  |      |       |       |
|--------------------------------|-----------------------------------|-----------|--------|---------|--------|--------|-------|-------|------|-------|-------|
| Parameter                      | Description                       | Min. Max. | Min. M | ax.     | Min. M | ax.    | Min.  | Max.  | Min. | Max.  | Units |
| 3.3 V PCI O                    | utput Module Timing <sup>2</sup>  |           |        |         |        |        |       |       |      |       |       |
| t <sub>DLH</sub>               | Data-to-Pad Low to High           | 2.3       | 2      | .7      | 3      | .0     |       | 3.6   |      | 5.0   | ns    |
| t <sub>DHL</sub>               | Data-to-Pad High to Low           | 2.5       | 2      | .9      | 3      | .2     |       | 3.8   |      | 5.3   | ns    |
| t <sub>ENZL</sub>              | Enable-to-Pad, Z to L             | 1.4       | 1      | .7      | 1      | .9     |       | 2.2   |      | 3.1   | ns    |
| t <sub>ENZH</sub>              | Enable-to-Pad, Z to H             | 2.3       | 2      | .7      | 3      | .0     |       | 3.6   |      | 5.0   | ns    |
| t <sub>ENLZ</sub>              | Enable-to-Pad, L to Z             | 2.5       | 2      | .8      | 3      | .2     |       | 3.8   |      | 5.3   | ns    |
| t <sub>ENHZ</sub>              | Enable-to-Pad, H to Z             | 2.5       | 2      | .9      | 3      | .2     |       | 3.8   |      | 5.3   | ns    |
| d <sub>TLH</sub> <sup>3</sup>  | Delta Low to High                 | 0.025     | 0.     | 03      | 0.     | 03     |       | 0.04  |      | 0.045 | ns/pF |
| d <sub>THL</sub> <sup>3</sup>  | Delta High to Low                 | 0.015     | 0.0    | 015     | 0.0    | 015    |       | 0.015 |      | 0.025 | ns/pF |
| 3.3 V LVTTL                    | Output Module Timing <sup>4</sup> |           |        |         | •      |        |       |       |      |       |       |
| t <sub>DLH</sub>               | Data-to-Pad Low to High           | 3.2       | 3      | .7      | 4      | .2     |       | 5.0   |      | 6.9   | ns    |
| t <sub>DHL</sub>               | Data-to-Pad High to Low           | 3.2       | 3      | .7      | 4      | .2     |       | 4.9   |      | 6.9   | ns    |
| t <sub>DHLS</sub>              | Data-to-Pad High to Low—low slew  | 10.3      | 11     | 1.9     | 13     | 3.5    |       | 15.8  |      | 22.2  | ns    |
| t <sub>ENZL</sub>              | Enable-to-Pad, Z to L             | 2.2       | 2      | .6      | 2      | .9     |       | 3.4   |      | 4.8   | ns    |
| t <sub>ENZLS</sub>             | Enable-to-Pad, Z to L—low slew    | 15.8      | 18     | 3.9     | 2      | 1.3    |       | 25.4  |      | 34.9  | ns    |
| t <sub>ENZH</sub>              | Enable-to-Pad, Z to H             | 3.2       | 3      | .7      | 4      | .2     |       | 5.0   |      | 6.9   | ns    |
| t <sub>ENLZ</sub>              | Enable-to-Pad, L to Z             | 2.9       | 3      | .3      | 3      | .7     |       | 4.4   |      | 6.2   | ns    |
| t <sub>ENHZ</sub>              | Enable-to-Pad, H to Z             | 3.2       | 3      | .7      | 4      | .2     |       | 4.9   |      | 6.9   | ns    |
| d <sub>TLH</sub> <sup>3</sup>  | Delta Low to High                 | 0.025     | 0.     | 03      | 0.     | 03     |       | 0.04  |      | 0.045 | ns/pF |
| d <sub>THL</sub> <sup>3</sup>  | Delta High to Low                 | 0.015     | 0.0    | )15     | 0.0    | 015    |       | 0.015 |      | 0.025 | ns/pF |
| d <sub>THLS</sub> <sup>3</sup> | Delta High to Low—low slew        | 0.053     | 0.0    | )53     | 0.0    | 067    |       | 0.073 |      | 0.107 | ns/pF |

#### Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25  $\Omega$  resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the  $V_{CCI}$  value into the following equation: Slew Rate [V/ns] = (0.1\* $V_{CCI}$  – 0.9\* $V_{CCI}$ / ( $C_{load}$  \*  $d_{T[LH|HL|HLS]}$ ) where  $C_{load}$  is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$  is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.



| 100-TQFP   |                      |                      |                      |  |  |  |  |  |  |  |  |
|------------|----------------------|----------------------|----------------------|--|--|--|--|--|--|--|--|
| Pin Number | A54SX08A<br>Function | A54SX16A<br>Function | A54SX32A<br>Function |  |  |  |  |  |  |  |  |
| 71         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 72         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 73         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 74         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 75         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 76         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 77         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 78         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 79         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 80         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 81         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 82         | V <sub>CCI</sub>     | V <sub>CCI</sub>     | V <sub>CCI</sub>     |  |  |  |  |  |  |  |  |
| 83         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 84         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 85         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 86         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 87         | CLKA                 | CLKA                 | CLKA                 |  |  |  |  |  |  |  |  |
| 88         | CLKB                 | CLKB                 | CLKB                 |  |  |  |  |  |  |  |  |
| 89         | NC                   | NC                   | NC                   |  |  |  |  |  |  |  |  |
| 90         | V <sub>CCA</sub>     | V <sub>CCA</sub>     | V <sub>CCA</sub>     |  |  |  |  |  |  |  |  |
| 91         | GND                  | GND                  | GND                  |  |  |  |  |  |  |  |  |
| 92         | PRA, I/O             | PRA, I/O             | PRA, I/O             |  |  |  |  |  |  |  |  |
| 93         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 94         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 95         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 96         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 97         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 98         | 98 I/O I/O I/O       |                      |                      |  |  |  |  |  |  |  |  |
| 99         | I/O                  | I/O                  | I/O                  |  |  |  |  |  |  |  |  |
| 100        | TCK, I/O             | TCK, I/O             | TCK, I/O             |  |  |  |  |  |  |  |  |



## 176-Pin TQFP



Figure 3-4 • 176-Pin TQFP (Top View)

### Note

## 329-Pin PBGA

|          |                  | 12               | 3                                                    | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12     | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20        | 21     | 22         | 23             |
|----------|------------------|------------------|------------------------------------------------------|---|---|---|---|---|---|----|----|--------|----|----|----|----|----|----|----|-----------|--------|------------|----------------|
| Α        | (                | 00               | 0                                                    | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0          | $\overline{0}$ |
| В        | C                | 00               | 0                                                    | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0          | 0              |
| С        | (                | 00               | 0                                                    | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0          | 0              |
| D        |                  | $\frac{1}{2}$    | 0                                                    | 0 | 0 | 0 | Ο | 0 | 0 | Ο  | Ο  | 0      | 0  | Ο  | 0  | 0  | Ο  | 0  | Ο  | 0         | 0      | 0          | 0              |
| E        |                  | ) 0              | 0                                                    | 0 |   |   |   |   |   |    |    |        |    |    |    |    |    |    |    | 0         | Ő      | 0          | 0              |
| г<br>G   |                  | $\frac{1}{2}$    | $\left  \begin{array}{c} 0 \\ 0 \end{array} \right $ |   |   |   |   |   |   |    |    |        |    |    |    |    |    |    |    |           |        |            | $\bigcirc$     |
| H        |                  | $\frac{1}{2}$    | $\overline{0}$                                       | 0 |   |   |   |   |   |    |    |        |    |    |    |    |    |    |    | $\hat{0}$ | 0<br>0 | $\hat{0}$  | $\tilde{O}$    |
| J        | Ċ                | 50               | Õ                                                    | õ |   |   |   |   |   |    |    |        |    |    |    |    |    |    |    | ŏ         | ŏ      | õ          | õ              |
| к        | C                | 00               | 0                                                    | 0 |   |   |   |   |   | Ο  | 0  | Ο      | 0  | 0  |    |    |    |    |    | Ο         | Ο      | Ο          | 0              |
| L        | C                | 00               | 0                                                    | 0 |   |   |   |   |   | 0  | 0  | 0      | 0  | 0  |    |    |    |    |    | 0         | Ο      | Ο          | 0              |
| M        |                  | $\sum_{i=1}^{i}$ | 0                                                    | 0 |   |   |   |   |   | Õ  | Õ  | Õ      | Õ  | Õ  |    |    |    |    |    | Õ         | Õ      | Õ          | 0              |
| N<br>P   |                  | $\frac{1}{2}$    | $\left  \begin{array}{c} 0 \\ 0 \end{array} \right $ | 0 |   |   |   |   |   |    |    | 0      |    |    |    |    |    |    |    | 0         | 0      | $\bigcirc$ | $\mathbf{O}$   |
| R        |                  | $\frac{1}{2}$    | $\overline{0}$                                       | õ |   |   |   |   |   | 0  | 0  | 0      | 0  | 0  |    |    |    |    |    | 0         | õ      | õ          | 0              |
| т        | C                | 00               | Õ                                                    | Õ |   |   |   |   |   |    |    |        |    |    |    |    |    |    |    | Õ         | Õ      | Õ          | Õ              |
| U        | C                | 00               | 0                                                    | 0 |   |   |   |   |   |    |    |        |    |    |    |    |    |    |    | 0         | 0      | 0          | 0              |
| V        | C                | 00               | 0                                                    | 0 |   |   |   |   |   |    |    |        |    |    |    |    |    |    |    | 0         | 0      | 0          | 0              |
| W        |                  | $\frac{1}{2}$    | 0                                                    | 0 | ~ | ~ | ~ | ~ | ~ | ~  | ~  | ~      | ~  | ~  | ~  | ~  | ~  | ~  | ~  | 0         | Õ      | 0          | 0              |
| Y<br>A A |                  | ) 0              | $\mathbf{O}$                                         | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0<br>O | O  | O  | 0  | 0  | 0  | 0  | 0  | 0         | 0      | 0          | 0              |
| AB       |                  | $\frac{1}{2}$    | $\left  \begin{array}{c} 0 \\ 0 \end{array} \right $ |   |   |   |   |   |   |    | 0  | 0      |    | 0  |    |    |    |    |    |           |        |            | <b>0</b>       |
| AC       | $\left( \right)$ | $\frac{1}{2}$    | $\overline{0}$                                       | 0 | 0 | 0 | õ | 0 | 0 | 0  | õ  | õ      | õ  | õ  | 0  | 0  | 0  | 0  | õ  | 0         | õ      | õ          | õ              |
|          | ).               |                  | Ũ                                                    | - | Ŭ | - | - | - | Ŭ | Ŭ  | Ŭ  | Ŭ      | -  | -  | Ŭ  | -  | -  | -  | -  | Ŭ         | Ŭ      | Ŭ          | - (            |

Figure 3-5 • 329-Pin PBGA (Top View)

#### Note

## 144-Pin FBGA



Figure 3-6 • 144-Pin FBGA (Top View)

#### Note



## 256-Pin FBGA



Figure 3-7 • 256-Pin FBGA (Top View)

#### Note



# **Datasheet Information**

## List of Changes

The following table lists critical changes that were made in the current version of the document.

| <b>Previous Version</b> | Changes in Current Version (v5.3)                                                                             | Page  |  |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| v5.2                    | -3 speed grades have been discontinued.                                                                       | N/A   |  |  |  |  |  |  |
| (June 2006)             | The "SX-A Timing Model" was updated with –2 data.                                                             | 2-14  |  |  |  |  |  |  |
| v5.1                    | RoHS information was added to the "Ordering Information".                                                     | ii    |  |  |  |  |  |  |
| February 2005           | The "Programming" section was updated.                                                                        | 1-13  |  |  |  |  |  |  |
| v5.0                    | Revised Table 1 and the timing data to reflect the phase out of the $-3$ speed grade for the A54SX08A device. | i     |  |  |  |  |  |  |
|                         | The "Thermal Characteristics" section was updated.                                                            | 2-11  |  |  |  |  |  |  |
|                         | The "176-Pin TQFP" was updated to add pins 81 to 90.                                                          | 3-11  |  |  |  |  |  |  |
|                         | The "484-Pin FBGA" was updated to add pins R4 to Y26                                                          |       |  |  |  |  |  |  |
| v4.0                    | The "Temperature Grade Offering" is new.                                                                      | 1-iii |  |  |  |  |  |  |
|                         | The "Speed Grade and Temperature Grade Matrix" is new.                                                        | 1-iii |  |  |  |  |  |  |
|                         | "SX-A Family Architecture" was updated.                                                                       | 1-1   |  |  |  |  |  |  |
|                         | "Clock Resources" was updated.                                                                                | 1-5   |  |  |  |  |  |  |
|                         | "User Security" was updated.                                                                                  | 1-7   |  |  |  |  |  |  |
|                         | "Power-Up/Down and Hot Swapping" was updated.                                                                 | 1-7   |  |  |  |  |  |  |
|                         | "Dedicated Mode" is new                                                                                       | 1-9   |  |  |  |  |  |  |
|                         | Table 1-5 is new.                                                                                             | 1-9   |  |  |  |  |  |  |
|                         | "JTAG Instructions" is new                                                                                    | 1-10  |  |  |  |  |  |  |
|                         | "Design Considerations" was updated.                                                                          | 1-12  |  |  |  |  |  |  |
|                         | The "Programming" section is new.                                                                             | 1-13  |  |  |  |  |  |  |
|                         | "Design Environment" was updated.                                                                             | 1-13  |  |  |  |  |  |  |
|                         | "Pin Description" was updated.                                                                                | 1-15  |  |  |  |  |  |  |
|                         | Table 2-1 was updated.                                                                                        | 2-1   |  |  |  |  |  |  |
|                         | Table 2-2 was updated.                                                                                        | 2-1   |  |  |  |  |  |  |
|                         | Table 2-3 is new.                                                                                             | 2-1   |  |  |  |  |  |  |
|                         | Table 2-4 is new.                                                                                             | 2-1   |  |  |  |  |  |  |
|                         | Table 2-5 was updated.                                                                                        | 2-2   |  |  |  |  |  |  |
|                         | Table 2-6 was updated.                                                                                        | 2-2   |  |  |  |  |  |  |
|                         | "Power Dissipation" is new.                                                                                   | 2-8   |  |  |  |  |  |  |
|                         | Table 2-11 was updated.                                                                                       | 2-9   |  |  |  |  |  |  |