

ĿXFl

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	111
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx32a-fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Related Documents

Application Notes

Global Clock Networks in Actel's Antifuse Devices http://www.actel.com/documents/GlobalClk_AN.pdf Using A54SX72A and RT54SX72S Quadrant Clocks http://www.actel.com/documents/QCLK_AN.pdf Implementation of Security in Actel Antifuse FPGAs http://www.actel.com/documents/Antifuse_Security_AN.pdf Actel eX, SX-A, and RTSX-S I/Os http://www.actel.com/documents/AntifuseIO_AN.pdf Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications http://www.actel.com/documents/HotSwapColdSparing_AN.pdf Programming Antifuse Devices http://www.actel.com/documents/AntifuseProgram_AN.pdf

Datasheets

HiRel SX-A Family FPGAs http://www.actel.com/documents/HRSXA_DS.pdf SX-A Automotive Family FPGAs http://www.actel.com/documents/SXA_Auto_DS.pdf

User's Guides

Silicon Sculptor User's Guide http://www.actel.com/documents/SiliSculptII_Sculpt3_ug.pdf

Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units
V _{CCI}	DC Supply Voltage for I/Os	-0.3 to +6.0	V
V _{CCA}	DC Supply Voltage for Arrays	-0.3 to +3.0	V
VI	Input Voltage	–0.5 to +5.75	V
V _O	Output Voltage	–0.5 to + V _{CCI} + 0.5	V
T _{STG}	Storage Temperature	–65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions".

Table 2-2 Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range	0 to +70	–40 to +85	°C
2.5 V Power Supply Range (V _{CCA} and V _{CCI})	2.25 to 2.75	2.25 to 2.75	V
3.3 V Power Supply Range (V _{CCI})	3.0 to 3.6	3.0 to 3.6	V
5 V Power Supply Range (V _{CCI})	4.75 to 5.25	4.75 to 5.25	V

Typical SX-A Standby Current

Table 2-3 • Typical Standby Current for SX-A at 25°C with $V_{CCA} = 2.5 V$

Product	V _{CCI} = 2.5 V	V _{CCI} = 3.3 V	V _{CCI} = 5 V
A54SX08A	0.8 mA	1.0 mA	2.9 mA
A54SX16A	0.8 mA	1.0 mA	2.9 mA
A54SX32A	0.9 mA	1.0 mA	3.0 mA
A54SX72A	3.6 mA	3.8 mA	4.5 mA

Table 2-4 • Supply Voltages

V _{CCA}	V _{CCI} *	Maximum Input Tolerance	Maximum Output Drive
2. 5 V	2.5 V	5.75 V	2.7 V
2.5 V	3.3 V	5.75 V	3.6 V
2.5 V	5 V	5.75 V	5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.

Figure 2-2 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-2 • 3.3 V PCI V/I Curve for SX-A Family

 $I_{OH} = (98.0/V_{CCI}) * (V_{OUT} - V_{CCI}) * (V_{OUT} + 0.4V_{CCI})$

for 0.7 $V_{CCI} < V_{OUT} < V_{CCI}$

 $I_{OL} = (256/V_{CCI}) * V_{OUT} * (V_{CCI} - V_{OUT})$ for 0V < V_{OUT} < 0.18 V_{CCI}

EQ 2-3

EQ 2-4

SX-A Family FPGAs

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Output Buffer Delays

AC Test Loads

Figure 2-5 • AC Test Loads

Timing Characteristics

Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

 Table 2-13
 Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, V_{CCA} = 2.25 V)

	Junction Temperature (T _J)								
V _{CCA}	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C		
2.250 V	0.79	0.80	0.87	0.89	1.00	1.04	1.14		
2.500 V	0.74	0.75	0.82	0.83	0.94	0.97	1.07		
2.750 V	0.68	0.69	0.75	0.77	0.87	0.90	0.99		

Table 2-20 A54SX08A Timing Characteristics

(Worst-Case Commercial C	Conditions V _{CCA} = 2.25	V, V _{CCI} = 4.75 V, T _J = 70°C)
--------------------------	------------------------------------	--

		–2 Sp		–1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Output Module Timing ¹										
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}^2	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^2	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	ut Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-25 A54SX16A Timing Characteristics

		-3 Speed	1 -	2 Speed	–1 Sp	beed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min. Ma	c. Mi	n. Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMOS Output Module Timing ^{2, 3}											
t _{DLH}	Data-to-Pad Low to High	3.4		3.9		4.5		5.2		7.3	ns
t _{DHL}	Data-to-Pad High to Low	2.6		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	11.	5	13.4		15.2		17.9		25.0	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	11.	3	13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.4		3.9		4.5		5.2		7.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.6		3.0		3.3		3.9		5.5	ns
d_{TLH}^{4}	Delta Low to High	0.03	1	0.037		0.043		0.051		0.071	ns/pF
${\sf d_{THL}}^4$	Delta High to Low	0.0	7	0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^4	Delta High to Low—low slew	0.05	7	0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL]HLS]}$ is the worst case delta value from the datasheet in ns/pF.

SX-A Family FPGAs

Table 2-26 • A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	V _{CCA} = 2.25 V, V _{CCI} =	= 3.0 V, T _J = 70°C)
----------------------------------	---	---------------------------------

		-3 Speed ¹	-2 Speed	-1	1 Speed	Std. Speed	-F Speed	
Parameter	Description	Min. Max.	Min. Max	. Mi	in. Max.	Min. Max.	Min. Max.	Units
3.3 V PCI O	utput Module Timing ²							
t _{DLH}	Data-to-Pad Low to High	2.0	2.3		2.6	3.1	4.3	ns
t _{DHL}	Data-to-Pad High to Low	2.2	2.5		2.8	3.3	4.6	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.4	1.7		1.9	2.2	3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.0	2.3		2.6	3.1	4.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.5	2.8		3.2	3.8	5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.2	2.5		2.8	3.3	4.6	ns
d _{TLH} ³	Delta Low to High	0.025	0.0	3	0.03	0.04	0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.01	5	0.015	0.015	0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴						•	
t _{DLH}	Data-to-Pad Low to High	2.8	3.2		3.6	4.3	6.0	ns
t _{DHL}	Data-to-Pad High to Low	2.7	3.1		3.5	4.1	5.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	9.5	10.9	9	12.4	14.6	20.4	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.2	2.6		2.9	3.4	4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	15.8	18.9	9	21.3	25.4	34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.8	3.2		3.6	4.3	6.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.9	3.3		3.7	4.4	6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.7	3.1		3.5	4.1	5.7	ns
d _{TLH} ³	Delta Low to High	0.025	0.0	3	0.03	0.04	0.045	ns/pF
d _{THL} ³	Delta High to Low	0.015	0.01	5	0.015	0.015	0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.053	0.05	3	0.067	0.073	0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-32 A54SX32A Timing Characteristics

		–3 Spee	ed ¹	-2 S	peed	–1 S	peed	Std. 9	5peed	-F Speed		
Parameter	Description	Min. M	lax.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2,3}											
t _{DLH}	Data-to-Pad Low to High	3	3.3		3.8		4.2		5.0		7.0	ns
t _{DHL}	Data-to-Pad High to Low	2	2.5		2.9		3.2		3.8		5.3	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	1	1.1		12.8		14.5		17.0		23.8	ns
t _{ENZL}	Enable-to-Pad, Z to L	2	2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	1	1.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H	3	3.3		3.8		4.2		5.0		7.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2	2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2	2.5		2.9		3.2		3.8		5.3	ns
d_{TLH}^{4}	Delta Low to High	0.0	031		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^{4}	Delta High to Low	0.0	017		0.017		0.023		0.023		0.037	ns/pF
d_{THLS}^4	Delta High to Low—low slew	0.0	057		0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-34 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	$V_{CCA} = 2.25 V, V_{CC}$	_{Cl} = 4.75 V, T _J = 70°C)
-----------------------------------	----------------------------	--

		-3 Speed ¹	-2 Spe	ed	–1 Speed	k	Std. S	Speed	eed -F Speed		
Parameter	Description	Min. Max.	Min. M	lax.	Min. Ma	х.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²										
t _{DLH}	Data-to-Pad Low to High	2.1	2	2.4	2.8	3		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low	2.8	3	3.2	3.6	5		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.3	1	1.5	1.7	7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.1	2	2.4	2.8	3		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.0	3	3.5	3.9	9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.8	3	3.2	3.6	5		4.2		5.9	ns
d _{TLH} ³	Delta Low to High	0.016	0.	016	0.0	2		0.022		0.032	ns/pF
d _{THL} ³	Delta High to Low	0.026	0	.03	0.03	32		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴										
t _{DLH}	Data-to-Pad Low to High	1.9	2	2.2	2.5	5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low	2.5	Ź	2.9	3.3	3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	6.6	7	7.6	8.6	5		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.1	2	2.4	2.7	7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	7.4	8	8.4	9.5	5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H	1.9	2	2.2	2.!	5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.6	2	4.2	4.7	7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.5	Ź	2.9	3.3	3		3.9		5.4	ns
d _{TLH} ³	Delta Low to High	0.014	0.	017	0.0	17		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low	0.023	0.	029	0.03	31		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.043	0.	046	0.0	57		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-38 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 V$, $V_{CCI} = 4.75 V$, $T_J = 70^{\circ}$ C)

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.5	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{qcksw}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{qcksw}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

	2	08-Pin PQF	Р		208-Pin PQFP								
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function				
71	I/O	I/O	I/O	I/O	106	NC	I/O	I/O	I/O				
72	I/O	I/O	I/O	I/O	107	I/O	I/O	I/O	I/O				
73	NC	I/O	I/O	I/O	108	NC	I/O	I/O	I/O				
74	I/O	I/O	I/O	QCLKA	109	I/O	I/O	I/O	I/O				
75	NC	I/O	I/O	I/O	110	I/O	I/O	I/O	I/O				
76	PRB, I/O	PRB, I/O	PRB, I/O	PRB,I/O	111	I/O	I/O	I/O	I/O				
77	GND	GND	GND	GND	112	I/O	I/O	I/O	I/O				
78	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	113	I/O	I/O	I/O	I/O				
79	GND	GND	GND	GND	114	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}				
80	NC	NC	NC	NC	115	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}				
81	I/O	I/O	I/O	I/O	116	NC	I/O	I/O	GND				
82	HCLK	HCLK	HCLK	HCLK	117	I/O	I/O	I/O	V _{CCA}				
83	I/O	I/O	I/O	V _{CCI}	118	I/O	I/O	I/O	I/O				
84	I/O	I/O	I/O	QCLKB	119	NC	I/O	I/O	I/O				
85	NC	I/O	I/O	I/O	120	I/O	I/O	I/O	I/O				
86	I/O	I/O	I/O	I/O	121	I/O	I/O	I/O	I/O				
87	I/O	I/O	I/O	I/O	122	NC	I/O	I/O	I/O				
88	NC	I/O	I/O	I/O	123	I/O	I/O	I/O	I/O				
89	I/O	I/O	I/O	I/O	124	I/O	I/O	I/O	I/O				
90	I/O	I/O	I/O	I/O	125	NC	I/O	I/O	I/O				
91	NC	I/O	I/O	I/O	126	I/O	I/O	I/O	I/O				
92	I/O	I/O	I/O	I/O	127	I/O	I/O	I/O	I/O				
93	I/O	I/O	I/O	I/O	128	I/O	I/O	I/O	I/O				
94	NC	I/O	I/O	I/O	129	GND	GND	GND	GND				
95	I/O	I/O	I/O	I/O	130	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}				
96	I/O	I/O	I/O	I/O	131	GND	GND	GND	GND				
97	NC	I/O	I/O	I/O	132	NC	NC	NC	I/O				
98	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	133	I/O	I/O	I/O	I/O				
99	I/O	I/O	I/O	I/O	134	I/O	I/O	I/O	I/O				
100	I/O	I/O	I/O	I/O	135	NC	I/O	I/O	I/O				
101	I/O	I/O	I/O	I/O	136	I/O	I/O	I/O	I/O				
102	I/O	I/O	I/O	I/O	137	I/O	I/O	I/O	I/O				
103	TDO, I/O	TDO, I/O	TDO, I/O	TDO, I/O	138	NC	I/O	I/O	I/O				
104	I/O	I/O	I/O	I/O	139	I/O	I/O	I/O	I/O				
105	GND	GND	GND	GND	140	I/O	I/O	I/O	I/O				

100-TQFP												
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function									
71	I/O	I/O	I/O									
72	I/O	I/O	I/O									
73	I/O	I/O	I/O									
74	I/O	I/O	I/O									
75	I/O	I/O	I/O									
76	I/O	I/O	I/O									
77	I/O	I/O	I/O									
78	I/O	I/O	I/O									
79	I/O	I/O	I/O									
80	I/O	I/O	I/O									
81	I/O	I/O	I/O									
82	V _{CCI}	V _{CCI}	V _{CCI}									
83	I/O	I/O	I/O									
84	I/O	I/O	I/O									
85	I/O	I/O	I/O									
86	I/O	I/O	I/O									
87	CLKA	CLKA	CLKA									
88	CLKB	CLKB	CLKB									
89	NC	NC	NC									
90	V _{CCA}	V _{CCA}	V _{CCA}									
91	GND	GND	GND									
92	PRA, I/O	PRA, I/O	PRA, I/O									
93	I/O	I/O	I/O									
94	I/O	I/O	I/O									
95	I/O	I/O	I/O									
96	I/O	I/O	I/O									
97	I/O	I/O	I/O									
98	I/O	I/O	I/O									
99	I/O	I/O	I/O									
100	TCK, I/O	TCK, I/O	TCK, I/O									

329-Pin PBGA

		12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Α	(00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\overline{0}$
В	C	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
С	(00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D		$\frac{1}{2}$	0	0	0	0	0	Ο	0	Ο	Ο	0	0	Ο	0	0	Ο	0	0	0	0	0	0
E) 0	0	0																0	Ő	0	0
г G		$\frac{1}{2}$	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $																				\bigcirc
Н		$\frac{1}{2}$	$\overline{0}$	0																$\hat{0}$	0	$\hat{0}$	$\tilde{0}$
J	Ċ	50	Õ	õ																ŏ	ŏ	õ	õ
к	C	00	0	0						0	0	Ο	0	0						Ο	Ο	Ο	0
L	C	00	0	0						0	0	0	0	0						0	Ο	Ο	0
M		$\sum_{i=1}^{i}$	0	0						Õ	Õ	Õ	Õ	Õ						Õ	Õ	Õ	0
N P		$\frac{1}{2}$		0								0								0	0	\bigcirc	\mathbf{O}
R		$\frac{1}{2}$	$\overline{0}$	õ						0	0	0	0	0						0	õ	õ	0
т	C	00	Õ	Õ																Õ	õ	Õ	Õ
U	C	00	0	0																0	0	0	0
V	C	00	0	0																0	0	0	0
W		$\frac{1}{2}$	0	0	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	0	Õ	0	0
Y A A) 0	\mathbf{O}	0	0	0	0	0	0	0	0	0 O	O	O	0	0	0	0	0	0	\mathbf{O}	0	0
AB		$\frac{1}{2}$	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $								0	0		0									0
AC	$\left(\right)$	$\frac{1}{2}$	$\overline{0}$	0	0	0	õ	õ	0	0	õ	õ	õ	õ	0	0	0	0	0	0	õ	õ	õ
).		Ũ	-	Ŭ	-	-	-	Ŭ	Ŭ	Ŭ	Ŭ	-	-	Ŭ	-	-	-	-	Ŭ	Ŭ	Ŭ	- (

Figure 3-5 • 329-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pi	n FBGA		256-Pin FBGA							
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function				
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O				
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O				
E13	NC	I/O	I/O	H2	I/O	I/O	I/O				
E14	I/O	I/O	I/O	H3	V _{CCA}	V _{CCA}	V _{CCA}				
E15	I/O	I/O	I/O	H4	TRST, I/O	TRST, I/O	TRST, I/O				
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O				
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}				
F2	I/O	I/O	I/O	H7	GND	GND	GND				
F3	I/O	I/O	I/O	H8	GND	GND	GND				
F4	TMS	TMS	TMS	Н9	GND	GND	GND				
F5	I/O	I/O	I/O	H10	GND	GND	GND				
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}				
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O				
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O				
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O				
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O				
F11	I/O	I/O	I/O	H16	NC	I/O	I/O				
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O				
F13	I/O	I/O	I/O	J2	NC	I/O	I/O				
F14	I/O	I/O	I/O	J3	NC	I/O	I/O				
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O				
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O				
G1	NC	I/O	I/O	J6	V _{CCI}	V _{CCI}	V _{CCI}				
G2	I/O	I/O	I/O	J7	GND	GND	GND				
G3	NC	I/O	I/O	J8	GND	GND	GND				
G4	I/O	I/O	I/O	J9	GND	GND	GND				
G5	I/O	I/O	I/O	J10	GND	GND	GND				
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}				
G7	GND	GND	GND	J12	I/O	I/O	I/O				
G8	GND	GND	GND	J13	I/O	I/O	I/O				
G9	GND	GND	GND	J14	I/O	I/O	I/O				
G10	GND	GND	GND	J15	I/O	I/O	I/O				
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O				
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O				
G13	GND	GND	GND	K2	I/O	I/O	I/O				
G14	NC	I/O	I/O	К3	NC	I/O	I/O				
G15	V _{CCA}	V _{CCA}	V _{CCA}	K4	V _{CCA}	V _{CCA}	V _{CCA}				

SX-A Family FPGAs

484-Pin FBGA

	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	252	6
ABCDEFGHJKLMNPRTUV	- 0000000000000000000000000000000000000	2 000000000000000000000000000000000000	₃ 000000000000000000000000000000000000	4 0000000000000000000000000000000000000	♪ 000000000000000000000000000000000000	00000	/ 00000	× 00000	9 00000		000000 00000000	000000 00000000	000000 00000000	000000 00000000000000000000000000000000	000000 00000000	000000 00000000	000000 00000000	00000	00000	00000	00000	2 0000000000000000000000000000000000000	2 0000000000000000000000000000000000000	4 000000000000000000000000000000000000		
H J	00	000	00	00	00																	00	00	00		2
K L	00	000	00	00	00					000	00	00	000	00	00	000	00					00	00	0))
M N	00	000	00	00	00					00	00	00	00	00	00	000	00					00	0	0		2
P R	00	00	00	00	00					00	00	00	00	00	00	000	00					00	0	0)
T U	000	000	000	000	000					000	00	00	00	00	00	00	00					000	000	000	0000	
w	000	000	000	000	000																	000	000	000)
AA AR	000	000	000	000	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000	000	000		
AC AD	000	õõ	õ	00	000	000	000	000	000	000	000	000	õ	00	õ	õ	000	õ	õ	õ	000	õ	õ	000		$\hat{\mathbf{b}}$
AE AF	000	000	000	000	000	000	000	000	000	0 0	000	000	000	000	000	000	000	000	000	000	000	000	ŏ o	000		5
Ļ																										1

Figure 3-8 • 484-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	-3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.