

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

2014	
Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	203
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using $0.22 \,\mu/0.25 \,\mu$ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation of* Security in Actel Antifuse FPGAs application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, *Actel eX, SX-A, and RTSX-S I/Os*.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input.

Each I/O module has an available power-up resistor of approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os.* Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-1 • 5 V PCI V/I Curve for SX-A Family

 $I_{OH} = 11.9 * (V_{OUT} - 5.25) * (V_{OUT} + 2.45)$ for $V_{CCI} > V_{OUT} > 3.1V$ $I_{OL} = 78.5 * V_{OUT} * (4.4 - V_{OUT})$ for 0V < V_{OUT} < 0.71V

EQ 2-2

Table 2-9 • DC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V _{CCA}	Supply Voltage for Array		2.25	2.75	V
V _{CCI}	Supply Voltage for I/Os		3.0	3.6	V
V _{IH}	Input High Voltage		0.5V _{CCI}	V _{CCI} + 0.5	V
V _{IL}	Input Low Voltage		-0.5	0.3V _{CCI}	V
I _{IPU}	Input Pull-up Voltage ¹		0.7V _{CCI}	-	V
IIL	Input Leakage Current ²	$0 < V_{IN} < V_{CCI}$	-10	+10	μΑ
V _{OH}	Output High Voltage	I _{OUT} = -500 μA	0.9V _{CCI}	-	V
V _{OL}	Output Low Voltage	I _{OUT} = 1,500 μA		0.1V _{CCI}	V
C _{IN}	Input Pin Capacitance ³		-	10	рF
C _{CLK}	CLK Pin Capacitance		5	12	рF

EQ 2-1

Notes:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization.

2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

Power Dissipation

A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature, the operating current, and the system's ability to dissipate heat.

A complete power evaluation should be performed early in the design process to help identify potential heat-related problems in the system and to prevent the system from exceeding the device's maximum allowed junction temperature.

The actual power dissipated by most applications is significantly lower than the power the package can dissipate. However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:

- 1. Estimate the power consumption of the application.
- 2. Calculate the maximum power allowed for the device and package.
- 3. Compare the estimated power and maximum power values.

Estimating Power Dissipation

The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:

$$P_{Total} = P_{DC} + P_{AC}$$

EQ 2-5

DC Power Dissipation

The power due to standby current is typically a small component of the overall power. An estimation of DC power dissipation under typical conditions is given by:

$$P_{DC} = I_{Standby} * V_{CCA}$$

EQ 2-6

Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power Calculator.

AC Power Dissipation

The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is defined as follows:

$$P_{AC} = P_{C-cells} + P_{R-cells} + P_{CLKA} + P_{CLKB} + P_{HCLK} + P_{Output Buffer} + P_{Input Buffer}$$

EQ 2-7

or:

 $P_{AC} = V_{CCA}^{2} * [(m * C_{EQCM} * fm)_{C-cells} + (m * C_{EQSM} * fm)_{R-cells} + (n * C_{EQI} * f_{n})_{Input Buffer} + (p * (C_{EQO} + C_{L}) * f_{p})_{Output Buffer} + (0.5 * (q_{1} * C_{EQCR} * f_{q1}) + (r_{1} * f_{q1}))_{CLKA} + (0.5 * (q_{2} * C_{EQCR} * f_{q2}) + (r_{2} * f_{q2}))_{CLKB} + (0.5 * (s_{1} * C_{EQHV} * f_{s1}) + (C_{EQHF} * f_{s1}))_{HCLK}]$

EQ 2-8

Where:

- C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF
- C_{EQSM} = Equivalent capacitance of sequential modules (R-Cells) in pF
- C_{EQI} = Equivalent capacitance of input buffers in pF
- C_{EQO} = Equivalent capacitance of output buffers in pF
- C_{EQCR} = Equivalent capacitance of CLKA/B in pF
- C_{EQHV} = Variable capacitance of HCLK in pF
- C_{EQHF} = Fixed capacitance of HCLK in pF
 - C_{L =} Output lead capacitance in pF
 - f_m = Average logic module switching rate in MHz
 - $f_n =$ Average input buffer switching rate in MHz
 - f_p = Average output buffer switching rate in MHz
 - $f_{a1} =$ Average CLKA rate in MHz
 - $f_{\alpha 2}$ = Average CLKB rate in MHz
 - f_{s1} = Average HCLK rate in MHz
 - m = Number of logic modules switching at fm
 - n = Number of input buffers switching at fn
 - p = Number of output buffers switching at fp
 - q₁ = Number of clock loads on CLKA
 - q₂ = Number of clock loads on CLKB
 - $r_1 =$ Fixed capacitance due to CLKA
 - r₂ = Fixed capacitance due to CLKB
 - s1 = Number of clock loads on HCLK
 - x = Number of I/Os at logic low
 - y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

Output Buffer Delays

AC Test Loads

Figure 2-5 • AC Test Loads

Input Buffer Delays

t INY **C-Cell Delays**

Figure 2-6 • Input Buffer Delays

GND

Figure 2-7 • C-Cell Delays

Cell Timing Characteristics

t_{INY}

Figure 2-8 • Flip-Flops

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 5	peed	-1 S	peed	Std.	Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	itput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{2}	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ²	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-21 • A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	beed ¹	-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	agation Delays ²											4
t _{PD}	Internal Array Module		0.9		1.0		1.2		1.4		1.9	ns
Predicted R	outing Delays ³											-
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns
R-Cell Timir	ig											<u>.</u>
t _{RCO}	Sequential Clock-to-Q		0.6		0.7		0.8		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.5		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.8		0.8		1.0		1.4	ns
t _{sud}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.0		1.4		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.3		1.5		1.6		1.9		2.7		ns
t _{recasyn}	Asynchronous Recovery Time	0.3		0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Removal Time	0.3		0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Minimum Pulse Width	1.4		1.7		1.9		2.2		3.0		ns
Input Modu	le Propagation Delays											-
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.5		0.6		0.7		0.8		1.1	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		0.8		0.9		1.0		1.1		1.6	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.5		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.8		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		0.9		1.1		1.2		1.4		2.0	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions	$V_{CCA} = 2.25 V, V_{CCI}$	= 2.25 V, T _J = 70°C)
-----------------------------------	-----------------------------	----------------------------------

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. 9	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	orks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{hcksw}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		2.9		3.4		4.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.7		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.3		3.8		4.5		6.2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.0		4.7		6.6	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPVVL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{rcksw}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.8		2.1		2.4		2.8		3.9	ns
t _{rcksw}	Maximum Skew (100% Load)		1.8		2.1		2.4		2.8		3.9	ns
Quadrant A	Array Clock Networks	•		-		-				-		-
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.6		3.0		3.3		3.9		5.5	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.2		5.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-37 • A54SX72A Timing Characteristics (Continued)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-38 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 4.75 \text{ V}$, $T_J = 70^{\circ}\text{C}$)
--

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.4	ns
t _{qchkl}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.5	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{qcksw}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-40 A54SX72A Timing Characteristics

(Worst-Case Commercial	Conditions Vaca -	- 2 25 V V	$30VT_{1} - 70^{\circ}C$
(worst-case commercial	Conditions VCCA -	- 2.23 v, v _{CCl} –	3.0 v, 1 = 70 C)

		-3 S	beed ¹	-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.3		2.7		3.0		3.6		5.0	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.2		3.8		5.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.3		2.7		3.0		3.6		5.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.2		3.8		5.3	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		3.2		3.7		4.2		5.0		6.9	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.7		4.2		4.9		6.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.3		11.9		13.5		15.8		22.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.2		3.7		4.2		5.0		6.9	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.7		4.2		4.9		6.9	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

	2	08-Pin PQF	P			2	08-Pin PQF	Ρ	
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function
71	I/O	I/O	I/O	I/O	106	NC	I/O	I/O	I/O
72	I/O	I/O	I/O	I/O	107	I/O	ΙΟ	I/O	I/O
73	NC	I/O	I/O	I/O	108	NC	I/O	I/O	I/O
74	I/O	I/O	I/O	QCLKA	109	I/O	ΙΟ	I/O	I/O
75	NC	I/O	I/O	I/O	110	I/O	ΙΟ	I/O	I/O
76	PRB, I/O	PRB, I/O	PRB, I/O	PRB,I/O	111	I/O	ΙΟ	I/O	I/O
77	GND	GND	GND	GND	112	I/O	ΙΟ	I/O	I/O
78	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	113	I/O	I/O	I/O	I/O
79	GND	GND	GND	GND	114	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}
80	NC	NC	NC	NC	115	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}
81	I/O	I/O	I/O	I/O	116	NC	I/O	I/O	GND
82	HCLK	HCLK	HCLK	HCLK	117	I/O	I/O	I/O	V _{CCA}
83	I/O	I/O	I/O	V _{CCI}	118	I/O	I/O	I/O	I/O
84	I/O	I/O	I/O	QCLKB	119	NC	I/O	I/O	I/O
85	NC	I/O	I/O	I/O	120	I/O	I/O	I/O	I/O
86	I/O	I/O	I/O	I/O	121	I/O	I/O	I/O	I/O
87	I/O	I/O	I/O	I/O	122	NC	I/O	I/O	I/O
88	NC	I/O	I/O	I/O	123	I/O	I/O	I/O	I/O
89	I/O	I/O	I/O	I/O	124	I/O	I/O	I/O	I/O
90	I/O	I/O	I/O	I/O	125	NC	I/O	I/O	I/O
91	NC	I/O	I/O	I/O	126	I/O	I/O	I/O	I/O
92	I/O	I/O	I/O	I/O	127	I/O	I/O	I/O	I/O
93	I/O	I/O	I/O	I/O	128	I/O	I/O	I/O	I/O
94	NC	I/O	I/O	I/O	129	GND	GND	GND	GND
95	I/O	I/O	I/O	I/O	130	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}
96	I/O	I/O	I/O	I/O	131	GND	GND	GND	GND
97	NC	I/O	I/O	I/O	132	NC	NC	NC	I/O
98	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	133	I/O	I/O	I/O	I/O
99	I/O	I/O	I/O	I/O	134	I/O	I/O	I/O	I/O
100	I/O	I/O	I/O	I/O	135	NC	I/O	I/O	I/O
101	I/O	I/O	I/O	I/O	136	I/O	I/O	I/O	I/O
102	I/O	I/O	I/O	I/O	137	I/O	I/O	I/O	I/O
103	TDO, I/O	TDO, I/O	TDO, I/O	TDO, I/O	138	NC	I/O	I/O	I/O
104	I/O	I/O	I/O	I/O	139	I/O	I/O	I/O	I/O
105	GND	GND	GND	GND	140	I/O	I/O	I/O	I/O

329-Pin PBGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
в	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0	~	~	~	0	~	0	Õ	0	0	0	0	0	~	0
D	0	0	0	0	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	0	~	~	0
E F	0	<u> </u>	0	<u> </u>																0	-	0	0
G	0	<u> </u>	0	\sim																0	\sim	ž	0
н	ŏ	-	õ	-																õ	· ·	õ	0
ſ	Ō	Õ	Õ	Ō																Õ	Õ	Õ	Õ
к	0	Ο	Ο	Ο						Ο	Ο	Ο	0	Ο						Ο	Ο	Ο	0
L	0	0	0	~						-	-	-	0	Ξ						0	0	0	0
M N	0		~	0						<u> </u>	$\tilde{}$	$\tilde{}$	O	~						0	~	~	0
P	0	0	0	0						-	-	-		-						\bigcirc	\sim	$\tilde{}$	\mathbf{O}
R	-	-	õ	<u> </u>						0	0	\cup		\cup						õ	-	õ	Ŭ
т	Õ	Õ	Õ	Õ																Õ	õ	õ	Õ
υ	0	0	0	0																0	Ο	0	0
V	0	Ο	Ο	Ο																Ο	Ο	Ο	0
W	-	-	0	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	\sim	0	\sim
Y	0	0	0	0	\sim	~	-	_	-	-	-	-	-	_	_	_	-	-	\sim	0	-	~	~
AA AB	0	0	0	0	0	0	-	<u> </u>	-	-	-	-		-	<u> </u>	-	<u> </u>	-	0	0		0	0
AC	0	0		~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0	-	-	-
L	\searrow	_	_	_	_	_	_	_	_	_		$\overline{}$		\sim	_	_	_	_	_	_		\sim	\leq

Figure 3-5 • 329-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	144-Pi	n FBGA			144-Pi	n FBGA	
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function
A1	I/O	I/O	I/O	D1	I/O	I/O	I/O
A2	I/O	I/O	I/O	D2	V _{CCI}	V _{CCI}	V _{CCI}
A3	I/O	I/O	I/O	D3	TDI, I/O	TDI, I/O	TDI, I/O
A4	I/O	I/O	I/O	D4	I/O	I/O	I/O
A5	V _{CCA}	V _{CCA}	V _{CCA}	D5	I/O	I/O	I/O
A6	GND	GND	GND	D6	I/O	I/O	I/O
A7	CLKA	CLKA	CLKA	D7	I/O	I/O	I/O
A8	I/O	I/O	I/O	D8	I/O	I/O	I/O
A9	I/O	I/O	I/O	D9	I/O	I/O	I/O
A10	I/O	I/O	I/O	D10	I/O	I/O	I/O
A11	I/O	I/O	I/O	D11	I/O	I/O	I/O
A12	I/O	I/O	I/O	D12	I/O	I/O	I/O
B1	I/O	I/O	I/O	E1	I/O	I/O	I/O
B2	GND	GND	GND	E2	I/O	I/O	I/O
B3	I/O	I/O	I/O	E3	I/O	I/O	I/O
B4	I/O	I/O	I/O	E4	I/O	I/O	I/O
B5	I/O	I/O	I/O	E5	TMS	TMS	TMS
B6	I/O	I/O	I/O	E6	V _{CCI}	V _{CCI}	V _{CCI}
B7	CLKB	CLKB	CLKB	E7	V _{CCI}	V _{CCI}	V _{CCI}
B8	I/O	I/O	I/O	E8	V _{CCI}	V _{CCI}	V _{CCI}
B9	I/O	I/O	I/O	E9	V _{CCA}	V _{CCA}	V _{CCA}
B10	I/O	I/O	I/O	E10	I/O	I/O	I/O
B11	GND	GND	GND	E11	GND	GND	GND
B12	I/O	I/O	I/O	E12	I/O	I/O	I/O
C1	I/O	I/O	I/O	F1	I/O	I/O	I/O
C2	I/O	I/O	I/O	F2	I/O	I/O	I/O
С3	TCK, I/O	TCK, I/O	TCK, I/O	F3	NC	NC	NC
C4	I/O	I/O	I/O	F4	I/O	I/O	I/O
C5	I/O	I/O	I/O	F5	GND	GND	GND
C6	pra, I/o	pra, I/o	PRA, I/O	F6	GND	GND	GND
C7	I/O	I/O	I/O	F7	GND	GND	GND
C8	I/O	I/O	I/O	F8	V _{CCI}	V _{CCI}	V _{CCI}
С9	I/O	I/O	I/O	F9	I/O	I/O	I/O
C10	I/O	I/O	I/O	F10	GND	GND	GND
C11	I/O	I/O	I/O	F11	I/O	I/O	I/O
C12	I/O	I/O	I/O	F12	I/O	I/O	I/O

	256-Pi	n FBGA			256-Pi	n FBGA	
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O
E13	NC	I/O	I/O	H2	I/O	I/O	I/O
E14	I/O	I/O	I/O	H3	V _{CCA}	V _{CCA}	V _{CCA}
E15	I/O	I/O	I/O	H4	TRST, I/O	TRST, I/O	TRST, I/O
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}
F2	I/O	I/O	I/O	H7	GND	GND	GND
F3	I/O	I/O	I/O	H8	GND	GND	GND
F4	TMS	TMS	TMS	H9	GND	GND	GND
F5	I/O	I/O	I/O	H10	GND	GND	GND
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O
F11	I/O	I/O	I/O	H16	NC	I/O	I/O
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O
F13	I/O	I/O	I/O	J2	NC	I/O	I/O
F14	I/O	I/O	I/O	J3	NC	I/O	I/O
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O
G1	NC	I/O	I/O	J6	V _{CCI}	V _{CCI}	V _{CCI}
G2	I/O	I/O	I/O	J7	GND	GND	GND
G3	NC	I/O	I/O	J8	GND	GND	GND
G4	I/O	I/O	I/O	J9	GND	GND	GND
G5	I/O	I/O	I/O	J10	GND	GND	GND
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}
G7	GND	GND	GND	J12	I/O	I/O	I/O
G8	GND	GND	GND	J13	I/O	I/O	I/O
G9	GND	GND	GND	J14	I/O	I/O	I/O
G10	GND	GND	GND	J15	I/O	I/O	I/O
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O
G13	GND	GND	GND	К2	I/O	I/O	I/O
G14	NC	I/O	I/O	К3	NC	I/O	I/O
G15	V _{CCA}	V _{CCA}	V _{CCA}	К4	V _{CCA}	V _{CCA}	V _{CCA}

	484-Pin FBG	Α	
Pin Number	A54SX32A Function	A54SX72A Function	P Nur
A1	NC*	NC	AA
A2	NC*	NC	А
A3	NC*	I/O	А
A4	NC*	I/O	А
A5	NC*	I/O	A
A6	I/O	I/O	A
A7	I/O	I/O	A
A8	I/O	I/O	A
A9	I/O	I/O	A
A10	I/O	I/O	A
A11	NC*	I/O	AE
A12	NC*	I/O	AE
A13	I/O	I/O	A
A14	NC*	NC	A
A15	NC*	I/O	A
A16	NC*	I/O	A
A17	I/O	I/O	A
A18	I/O	I/O	A
A19	I/O	I/O	AE
A20	I/O	I/O	A
A21	NC*	I/O	A
A22	NC*	I/O	A
A23	NC*	I/O	A
A24	NC*	I/O	A
A25	NC*	NC	A
A26	NC*	NC	A
AA1	NC*	I/O	A
AA2	NC*	I/O	A
AA3	V _{CCA}	V _{CCA}	A
AA4	I/O	I/O	A
AA5	I/O	I/O	A
AA22	I/O	I/O	A
AA23	I/O	I/O	A
AA24	I/O	I/O	A
AA25	NC*	I/O	А

	484-Pin FBG	Α
Pin Number	A54SX32A Function	A54SX72A Function
AA26	NC*	I/O
AB1	NC*	NC
AB2	V _{CCI}	V _{CCI}
AB3	I/O	I/O
AB4	I/O	I/O
AB5	NC*	I/O
AB6	I/O	I/O
AB7	I/O	I/O
AB8	I/O	I/O
AB9	I/O	I/O
AB10	I/O	I/O
AB11	I/O	I/O
AB12	PRB, I/O	PRB, I/O
AB13	V _{CCA}	V _{CCA}
AB14	I/O	I/O
AB15	I/O	I/O
AB16	I/O	I/O
AB17	I/O	I/O
AB18	I/O	I/O
AB19	I/O	I/O
AB20	TDO, I/O	TDO, I/O
AB21	GND	GND
AB22	NC*	I/O
AB23	I/O	I/O
AB24	I/O	I/O
AB25	NC*	I/O
AB26	NC*	I/O
AC1	I/O	I/O
AC2	I/O	I/O
AC3	I/O	I/O
AC4	NC*	I/O
AC5	V _{CCI}	V _{CCI}
AC6	I/O	I/O
AC7	V _{CCI}	V _{CCI}
AC8	I/O	I/O

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
AC9	I/O	I/O
AC10	I/O	I/O
AC11	I/O	I/O
AC12	I/O	QCLKA
AC13	I/O	I/O
AC14	I/O	I/O
AC15	I/O	I/O
AC16	I/O	I/O
AC17	I/O	I/O
AC18	I/O	I/O
AC19	I/O	I/O
AC20	V _{CCI}	V _{CCI}
AC21	I/O	I/O
AC22	I/O	I/O
AC23	NC*	I/O
AC24	I/O	I/O
AC25	NC*	I/O
AC26	NC*	I/O
AD1	I/O	I/O
AD2	I/O	I/O
AD3	GND	GND
AD4	I/O	I/O
AD5	I/O	I/O
AD6	I/O	I/O
AD7	I/O	I/O
AD8	I/O	I/O
AD9	V _{CCI}	V _{CCI}
AD10	I/O	I/O
AD11	I/O	I/O
AD12	I/O	I/O
AD13	V _{CCI}	V _{CCI}
AD14	I/O	I/O
AD15	I/O	I/O
AD16	I/O	I/O
AD17	V _{CCI}	V _{CCI}

Actel°

SX-A Family FPGAs

Note: *These pins must be left floating on the A54SX32A device.

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.