

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	249
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (27X27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Routing Resources

The routing and interconnect resources of SX-A devices are in the top two metal layers above the logic modules (Figure 1-1 on page 1-1), providing optimal use of silicon, thus enabling the entire floor of the device to be spanned with an uninterrupted grid of logic modules. Interconnection between these logic modules is achieved using the Actel patented metal-to-metal programmable antifuse interconnect elements. The antifuses are normally open circuits and, when programmed, form a permanent low-impedance connection.

Clusters and SuperClusters can be connected through the use of two innovative local routing resources called FastConnect and DirectConnect, which enable extremely fast and predictable interconnection of modules within Clusters and SuperClusters (Figure 1-5 on page 1-4 and Figure 1-6 on page 1-4). This routing architecture also dramatically reduces the number of antifuses required to complete a circuit, ensuring the highest possible performance, which is often required in applications such as fast counters, state machines, and data path logic. The interconnect elements (i.e., the antifuses and metal tracks) have lower capacitance and lower resistance than any other device of similar capacity, leading to the fastest signal propagation in the industry.

DirectConnect is a horizontal routing resource that provides connections from a C-cell to its neighboring R-Cell in a given SuperCluster. DirectConnect uses a hardwired signal path requiring no programmable interconnection to achieve its fast signal propagation time of less than 0.1 ns.

FastConnect enables horizontal routing between any two logic modules within a given SuperCluster, and vertical routing with the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum pin-to-pin propagation time of 0.3 ns.

In addition to DirectConnect and FastConnect, the architecture makes use of two globally oriented routing resources known as segmented routing and high-drive routing. The Actel segmented routing structure provides a variety of track lengths for extremely fast routing between SuperClusters. The exact combination of track lengths and antifuses within each path is chosen by the 100% automatic place-and-route software to minimize signal propagation delays.

The general system of routing tracks allows any logic module in the array to be connected to any other logic or I/O module. Within this system, most connections typically require three or fewer antifuses, resulting in fast and predictable performance.

The unique local and general routing structure featured in SX-A devices allows 100% pin-locking with full logic utilization, enables concurrent printed circuit board (PCB) development, reduces design time, and allows designers to achieve performance goals with minimum effort.

Figure 1-4 • Cluster Organization

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Pin Description

CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption.

For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer builtin programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating).

QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating).

These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only.

GND Ground

Low supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software.

NC No Connection

This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device.

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset Pin** is not selected in Designer.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 2-2 on page 2-1. All V_{CCI} power pins in the device should be connected.

V_{CCA} Supply Voltage

Supply voltage for array. See Table 2-2 on page 2-1. All V_{CCA} power pins in the device should be connected.

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

			Comm	ercial	Indus	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -1 \text{ mA})$	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -8 mA)	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			0.8		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μA
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

			Comn	nercial	Indu	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{DD} = MIN,$	$(I_{OH} = -100 \ \mu A)$	2.1		2.1		V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	$V_{DD} = MIN,$ $V_{I} = V_{UI} \text{ or } V_{U}$	$(I_{OH} = -1 \text{ mA})$	2.0		2.0		V
		(l - 2mA)	17		17		V
	$V_{DD} = V_{IH}$ or V_{IL}	(I _{OH} =2 IIIA)	1.7		1.7		v
V _{OL}	$V_{DD} = MIN,$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	$V_{DD} = MIN,$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$	-					
	$V_{DD} = MIN,$	(I _{OL} = 2 mA)		0.7		0.7	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
V _{IL}	Input Low Voltage, $V_{OUT} \le V_{VOL(max)}$		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, $V_{OUT} \ge V_{VOH(min)}$		1.7	5.75	1.7	5.75	V
$I_{\rm IL}/I_{\rm IH}$	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

To determine the heat sink's thermal performance, use the following equation:

$$\theta_{JA(TOTAL)} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

EQ 2-14

where:

 $\theta_{CS} = 0.37^{\circ}C/W$

 thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = thermal resistance of the heat sink in °C/W

 $\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$ EQ 2-15 $\theta_{SA} = 13.33^{\circ}C/W - 3.20^{\circ}C/W - 0.37^{\circ}C/W$

$$\theta_{SA} = 9.76^{\circ}C/W$$

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

SX-A Timing Model

Note: *Values shown for A54SX72A, –2, worst-case commercial conditions at 5 V PCI with standard place-and-route. Figure 2-3 • SX-A Timing Model

Sample Path Calculations

Hardwired Clock

External Setup	=	(t _{INYH} + t _{RD1} + t _{SUD}) – t _{HCKH}
	=	0.6 + 0.3 + 0.8 - 1.8 = - 0.1 ns
Clock-to-Out (Pad-to-Pad)	=	t _{HCKH} + t _{RCO} + t _{RD1} + t _{DHL}
	=	1.8 + 0.8 + 0.3 + 3.9 = 6.8 ns

Routed Clock

External Setup	$= (t_{INYH} + t_{RD1} + t_{SUD}) - t_{RC}$	СКН
	= 0.6 + 0.3 + 0.8 - 3.0 = -1.	3 ns
Clock-to-Out (Pad-to-Pad	$= t_{RCKH} + t_{RCO} + t_{RD1} + t_{DH}$	L
	= 3.0 + 0.8 + 0.3 + 3.9 = 8.0) ns

Timing Characteristics

Table 2-14 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	d Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propa	igation Delays ¹									
t _{PD}	Internal Array Module		0.9		1.1		1.2		1.7	ns
Predicted Ro	outing Delays ²			4						
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.4		0.6	ns
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.5		0.6	ns
t _{RD2}	FO = 2 Routing Delay		0.5		0.5		0.6		0.8	ns
t _{RD3}	FO = 3 Routing Delay		0.6		0.7		0.8		1.1	ns
t _{RD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{RD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{RD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns
R-Cell Timin	g									<u></u>
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.3	ns
t _{CLR}	Asynchronous Clear-to-Q		0.6		0.6		0.8		1.0	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.7		0.9		1.2	ns
t _{sud}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.2		ns
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns
t _{WASYN}	Asynchronous Pulse Width	1.4		1.5		1.8		2.5		ns
t _{recasyn}	Asynchronous Recovery Time	0.4		0.4		0.5		0.7		ns
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.4		0.6		ns
t _{MPW}	Clock Pulse Width	1.6		1.8		2.1		2.9		ns
Input Modu	le Propagation Delays			1						
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		1.0		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.6		0.7		1.0	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.3	ns
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.9		1.2	ns
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.1		1.3		1.8	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-14 A545X08A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 V$, $V_{CCI} = 3.0 V$, $T_J = 70^{\circ}$ C)

		-2 Spe	ed	-1 S	peed	Std. S	Speed	-F S	peed	
Parameter	Description	Min. N	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.8		0.9		1.1		1.5	ns
Input Modul	e Predicted Routing Delays ²									
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-20 A54SX08A Timing Characteristics

(Worst-Case Commercial C	Conditions V _{CCA} = 2.25	V, V _{CCI} = 4.75 V, T _J = 70°C)
--------------------------	------------------------------------	--

		-2 S	–2 Speed		peed	Std. S	Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Outp	ut Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}^2	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^2	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	ut Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-21 A54SX16A Timing Characteristics (Continued)

-		
(Moust Case Commonsial Conditions	V 225V	
(worst-case commercial conditions	. VccA = 2.23 V	$V_{CC} = 3.0 V_{c} = 10^{\circ} C_{c}$
·····	- CCA	,

		-3 Sp	beed ¹	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.7		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.7		0.8		0.9		1.1		1.5	ns
Input Modu	le Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		0.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-36 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	_ = 2.25 V, V _{CCl} = 2.25 V, Τ _J = 70°C
--	--

		-3 Sp	beed*	-2 S	peed	-1 S	peed	Std. Speed		d –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated ((Hardwired) Array Clock Netwo	rks										1
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{rckh}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		2.9		3.4		4.8	ns
t _{rckl}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.7		4.3		6.0	ns
t _{rckh}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.8		3.2		3.7		5.2	ns
t _{rckl}	Input High to Low (50% Load) (Pad to R-cell Input)		2.9		3.3		3.8		4.5		6.2	ns
t _{rckh}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{rckl}	Input High to Low (100% Load) (Pad to R-cell Input)		3.1		3.6		4.0		4.7		6.6	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.8		2.1		2.4		2.8		3.9	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.8		2.1		2.4		2.8		3.9	ns
Quadrant A	rray Clock Networks											
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.6		3.0		3.4		4.0		5.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.6		3.0		3.3		3.9		5.5	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{qchkl}	Input High to Low (50% Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.2		5.9	ns

Note: *All –3 speed grades have been discontinued.

Table 2-38 A54SX72A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	= 2.25 V, V _{CCl} = 4.75 V, T _J = 70°C
--	--

		-3 Sr	beed*	-2 S	peed	-1 S	peed	Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Netwo	rks										
t _{нскн}	Input Low to High (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.8	ns
t _{HPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{HPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{HCKSW}	Maximum Skew		1.4		1.6		1.8		2.1		3.3	ns
t _{HP}	Minimum Period	3.0		3.4		4.0		4.6		6.4		ns
f _{HMAX}	Maximum Frequency		333		294		250		217		156	MHz
Routed Arra	ay Clock Networks											
t _{rckh}	Input Low to High (Light Load) (Pad to R-cell Input)		2.3		2.6		3.0		3.5		4.9	ns
t _{rckl}	Input High to Low (Light Load) (Pad to R-cell Input)		2.8		3.2		3.6		4.3		6.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.5		2.9		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		3.0		3.4		3.9		4.6		6.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.6		3.0		3.4		3.9		5.5	ns
t _{rckl}	Input High to Low (100% Load) (Pad to R-cell Input)		3.2		3.6		4.1		4.8		6.8	ns
t _{RPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{RPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.9		2.2		2.5		3.0		4.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.9		2.2		2.5		3.0		4.1	ns
Quadrant A	rray Clock Networks											-
t _{QCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.6	ns
t _{QCHKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.3		1.4		1.6		1.9		2.7	ns
t _{QCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.4		1.6		1.8		2.1		3.0	ns
t _{QCHKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.4		1.7		1.9		2.2		3.1	ns

Note: *All –3 speed grades have been discontinued.

Table 2-38 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 V$, $V_{CCI} = 4.75 V$, $T_J = 70^{\circ}$ C)

		-3 Speed*		-2 Speed		-1 Speed		Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.4		3.4	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.9		2.1		2.5		3.5	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{qcksw}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{qcksw}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

	2	08-Pin PQF	Р			208-Pin PQFP				
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	A54SX72A Function	
71	I/O	I/O	I/O	I/O	106	NC	I/O	I/O	I/O	
72	I/O	I/O	I/O	I/O	107	I/O	I/O	I/O	I/O	
73	NC	I/O	I/O	I/O	108	NC	I/O	I/O	I/O	
74	I/O	I/O	I/O	QCLKA	109	I/O	I/O	I/O	I/O	
75	NC	I/O	I/O	I/O	110	I/O	I/O	I/O	I/O	
76	PRB, I/O	PRB, I/O	PRB, I/O	PRB,I/O	111	I/O	I/O	I/O	I/O	
77	GND	GND	GND	GND	112	I/O	I/O	I/O	I/O	
78	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	113	I/O	I/O	I/O	I/O	
79	GND	GND	GND	GND	114	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	
80	NC	NC	NC	NC	115	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	
81	I/O	I/O	I/O	I/O	116	NC	I/O	I/O	GND	
82	HCLK	HCLK	HCLK	HCLK	117	I/O	I/O	I/O	V _{CCA}	
83	I/O	I/O	I/O	V _{CCI}	118	I/O	I/O	I/O	I/O	
84	I/O	I/O	I/O	QCLKB	119	NC	I/O	I/O	I/O	
85	NC	I/O	I/O	I/O	120	I/O	I/O	I/O	I/O	
86	I/O	I/O	I/O	I/O	121	I/O	I/O	I/O	I/O	
87	I/O	I/O	I/O	I/O	122	NC	I/O	I/O	I/O	
88	NC	I/O	I/O	I/O	123	I/O	I/O	I/O	I/O	
89	I/O	I/O	I/O	I/O	124	I/O	I/O	I/O	I/O	
90	I/O	I/O	I/O	I/O	125	NC	I/O	I/O	I/O	
91	NC	I/O	I/O	I/O	126	I/O	I/O	I/O	I/O	
92	I/O	I/O	I/O	I/O	127	I/O	I/O	I/O	I/O	
93	I/O	I/O	I/O	I/O	128	I/O	I/O	I/O	I/O	
94	NC	I/O	I/O	I/O	129	GND	GND	GND	GND	
95	I/O	I/O	I/O	I/O	130	V _{CCA}	V _{CCA}	V _{CCA}	V _{CCA}	
96	I/O	I/O	I/O	I/O	131	GND	GND	GND	GND	
97	NC	I/O	I/O	I/O	132	NC	NC	NC	I/O	
98	V _{CCI}	V _{CCI}	V _{CCI}	V _{CCI}	133	I/O	I/O	I/O	I/O	
99	I/O	I/O	I/O	I/O	134	I/O	I/O	I/O	I/O	
100	I/O	I/O	I/O	I/O	135	NC	I/O	I/O	I/O	
101	I/O	I/O	I/O	I/O	136	I/O	I/O	I/O	I/O	
102	I/O	I/O	I/O	I/O	137	I/O	I/O	I/O	I/O	
103	TDO, I/O	TDO, I/O	TDO, I/O	TDO, I/O	138	NC	I/O	I/O	I/O	
104	I/O	I/O	I/O	I/O	139	I/O	I/O	I/O	I/O	
105	GND	GND	GND	GND	140	I/O	I/O	I/O	I/O	

176-Pin TQFP

Figure 3-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pi	n FBGA		256-Pin FBGA				
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O	
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O	
E13	NC	I/O	I/O	H2	I/O	I/O	I/O	
E14	I/O	I/O	I/O	H3	V _{CCA}	V _{CCA}	V _{CCA}	
E15	I/O	I/O	I/O	H4	TRST, I/O	TRST, I/O	TRST, I/O	
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O	
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}	
F2	I/O	I/O	I/O	H7	GND	GND	GND	
F3	I/O	I/O	I/O	H8	GND	GND	GND	
F4	TMS	TMS	TMS	Н9	GND	GND	GND	
F5	I/O	I/O	I/O	H10	GND	GND	GND	
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}	
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O	
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O	
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O	
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O	
F11	I/O	I/O	I/O	H16	NC	I/O	I/O	
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O	
F13	I/O	I/O	I/O	J2	NC	I/O	I/O	
F14	I/O	I/O	I/O	J3	NC	I/O	I/O	
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O	
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O	
G1	NC	I/O	I/O	J6	V _{CCI}	V _{CCI}	V _{CCI}	
G2	I/O	I/O	I/O	J7	GND	GND	GND	
G3	NC	I/O	I/O	J8	GND	GND	GND	
G4	I/O	I/O	I/O	J9	GND	GND	GND	
G5	I/O	I/O	I/O	J10	GND	GND	GND	
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}	
G7	GND	GND	GND	J12	I/O	I/O	I/O	
G8	GND	GND	GND	J13	I/O	I/O	I/O	
G9	GND	GND	GND	J14	I/O	I/O	I/O	
G10	GND	GND	GND	J15	I/O	I/O	I/O	
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O	
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O	
G13	GND	GND	GND	K2	I/O	I/O	I/O	
G14	NC	I/O	I/O	К3	NC	I/O	I/O	
G15	V _{CCA}	V _{CCA}	V _{CCA}	K4	V _{CCA}	V _{CCA}	V _{CCA}	

	256-Pii	n FBGA		256-Pin FBGA				
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	
K5	I/O	I/O	I/O	M10	I/O	I/O	I/O	
К6	V _{CCI}	V _{CCI}	V _{CCI}	M11	I/O	I/O	I/O	
K7	GND	GND	GND	M12	NC	I/O	I/O	
K8	GND	GND	GND	M13	I/O	I/O	I/O	
К9	GND	GND	GND	M14	NC	I/O	I/O	
K10	GND	GND	GND	M15	I/O	I/O	I/O	
K11	V _{CCI}	V _{CCI}	V _{CCI}	M16	I/O	I/O	I/O	
K12	I/O	I/O	I/O	N1	I/O	I/O	I/O	
K13	I/O	I/O	I/O	N2	I/O	I/O	I/O	
K14	I/O	I/O	I/O	N3	I/O	I/O	I/O	
K15	NC	I/O	I/O	N4	I/O	I/O	I/O	
K16	I/O	I/O	I/O	N5	I/O	I/O	I/O	
L1	I/O	I/O	I/O	N6	I/O	I/O	I/O	
L2	I/O	I/O	I/O	N7	I/O	I/O	I/O	
L3	I/O	I/O	I/O	N8	I/O	I/O	I/O	
L4	I/O	I/O	I/O	N9	I/O	I/O	I/O	
L5	I/O	I/O	I/O	N10	I/O	I/O	I/O	
L6	I/O	I/O	I/O	N11	I/O	I/O	I/O	
L7	V _{CCI}	V _{CCI}	V _{CCI}	N12	I/O	I/O	I/O	
L8	V _{CCI}	V _{CCI}	V _{CCI}	N13	I/O	I/O	I/O	
L9	V _{CCI}	V _{CCI}	V _{CCI}	N14	I/O	I/O	I/O	
L10	V _{CCI}	V _{CCI}	V _{CCI}	N15	I/O	I/O	I/O	
L11	I/O	I/O	I/O	N16	I/O	I/O	I/O	
L12	I/O	I/O	I/O	P1	I/O	I/O	I/O	
L13	I/O	I/O	I/O	P2	GND	GND	GND	
L14	I/O	I/O	I/O	P3	I/O	I/O	I/O	
L15	I/O	I/O	I/O	P4	I/O	I/O	I/O	
L16	NC	I/O	I/O	P5	NC	I/O	I/O	
M1	I/O	I/O	I/O	P6	I/O	I/O	I/O	
M2	I/O	I/O	I/O	P7	I/O	I/O	I/O	
M3	I/O	I/O	I/O	P8	I/O	I/O	I/O	
M4	I/O	I/O	I/O	P9	I/O	I/O	I/O	
M5	I/O	I/O	I/O	P10	NC	I/O	I/O	
M6	I/O	I/O	I/O	P11	I/O	I/O	I/O	
M7	I/O	I/O	QCLKA	P12	I/O	I/O	I/O	
M8	PRB, I/O	PRB, I/O	PRB, I/O	P13	V _{CCA}	V _{CCA}	V _{CCA}	
M9	I/O	I/O	1/0	P14	I/O	I/O	I/O	

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
K10	GND	GND				
K11	GND	GND				
K12	GND	GND				
K13	GND	GND				
K14	GND	GND				
K15	GND	GND				
K16	GND	GND				
K17	GND	GND				
K22	I/O	I/O				
K23	I/O	I/O				
K24	NC*	NC				
K25	NC*	I/O				
K26	NC*	I/O				
L1	NC*	I/O				
L2	NC*	I/O				
L3	I/O	I/O				
L4	I/O	I/O				
L5	I/O	I/O				
L10	GND	GND				
L11	GND	GND				
L12	GND	GND				
L13	GND	GND				
L14	GND	GND				
L15	GND	GND				
L16	GND	GND				
L17	GND	GND				
L22	I/O	I/O				
L23	I/O	I/O				
L24	I/O	I/O				
L25	I/O	I/O				
L26	I/O	I/O				
M1	NC*	NC				
M2	I/O	I/O				
M3	I/O	I/O				
M4	I/O	I/O				

484-Pin FBGA								
Pin Number	A54SX32A Function	A54SX72A Function						
M5	I/O	I/O						
M10	GND	GND						
M11	GND	GND						
M12	GND	GND						
M13	GND	GND						
M14	GND	GND						
M15	GND	GND						
M16	GND	GND						
M17	GND	GND						
M22	I/O	I/O						
M23	I/O	I/O						
M24	I/O	I/O						
M25	NC*	I/O						
M26	NC*	I/O						
N1	I/O	I/O						
N2	V _{CCI}	V _{CCI}						
N3	I/O	I/O						
N4	I/O	I/O						
N5	I/O	I/O						
N10	GND	GND						
N11	GND	GND						
N12	GND	GND						
N13	GND	GND						
N14	GND	GND						
N15	GND	GND						
N16	GND	GND						
N17	GND	GND						
N22	V _{CCA}	V _{CCA}						
N23	I/O	I/O						
N24	I/O	I/O						
N25	I/O	I/O						
N26	NC*	NC						
P1	NC*	I/O						
P2	NC*	I/O						
P3	I/O	I/O						

484-Pin FBGA							
Pin Number	A54SX32A Function	A54SX72A Function					
P4	I/O	I/O					
P5	V _{CCA}	V _{CCA}					
P10	GND	GND					
P11	GND	GND					
P12	GND	GND					
P13	GND	GND					
P14	GND	GND					
P15	GND	GND					
P16	GND	GND					
P17	GND	GND					
P22	I/O	I/O					
P23	Ι/O	ΙΟ					
P24	V _{CCI}	V _{CCI}					
P25	I/O	I/O					
P26	I/O	I/O					
R1	NC*	I/O					
R2	NC*	I/O					
R3	I/O	I/O					
R4	I/O	I/O					
R5	TRST, I/O	TRST, I/O					
R10	GND	GND					
R11	GND	GND					
R12	GND	GND					
R13	GND	GND					
R14	GND	GND					
R15	GND	GND					
R16	GND	GND					
R17	GND	GND					
R22	I/O	I/O					
R23	I/O	I/O					
R24	I/O	I/O					
R25	NC*	I/O					
R26	NC*	I/O					
T1	NC*	I/O					
T2	NC*	I/O					

Note: *These pins must be left floating on the A54SX32A device.

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

International Traffic in Arms Regulations (ITAR) and Export Administration Regulations (EAR)

The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export can include a release or disclosure to a foreign national inside or outside the United States.