E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2000	
Product Status	Obsolete
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	147
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	176-LQFP
Supplier Device Package	176-TQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a54sx32a-ftqg176

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V_{CCI} should be placed on the TMS pin to pull it High by default.**

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-6	٠	Boundary-Scan Pin Configurations an	d
		Functions	

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin	Function			
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)			
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up			
Reserve Probe	Keeps pins from being used or regular I/O			

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

Probing Capabilities

SX-A devices also provide an internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II diagnostic hardware is used to control the TDI, TCK, TMS, and TDO pins to select the desired nets for debugging. The user assigns the selected internal nets in Actel Silicon Explorer II software to the PRA/PRB output pins for observation. Silicon Explorer II automatically places the device into JTAG mode. However, probing functionality is only activated when the TRST pin is driven high or left floating, allowing the internal pull-up resistor to pull TRST High. If the TRST pin is held Low, the TAP controller remains in the Test-Logic-Reset state so no probing can be performed. However, the user must drive the TRST pin High or allow the internal pull-up resistor to pull TRST High. When selecting the **Reserve Probe Pin** box as shown in Figure 1-12 on page 1-9, direct the layout tool to reserve the PRA and PRB pins as dedicated outputs for probing. This **Reserve** option is merely a guideline. If the designer assigns user I/Os to the PRA and PRB pins and selects the **Reserve Probe Pin** option, Designer Layout will override the **Reserve Probe Pin** option and place the user I/Os on those pins.

To allow probing capabilities, the security fuse must not be programmed. Programming the security fuse disables the JTAG and probe circuitry. Table 1-9 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

JTAG Mode	TRST ¹	Security Fuse Programmed	PRA, PRB ²	TDI, TCK, TDO ²
Dedicated	Low	ow No		JTAG Disabled
	High	No	Probe Circuit Outputs	JTAG I/O
Flexible	Low	No	User I/O ³	User I/O ³
	High	No	Probe Circuit Outputs	JTAG I/O
		Yes	Probe Circuit Secured	Probe Circuit Secured

Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved)

Notes:

1. If the TRST pin is not reserved, the device behaves according to TRST = High as described in the table.

2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by the Designer software.

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units
V _{CCI}	DC Supply Voltage for I/Os	-0.3 to +6.0	V
V _{CCA}	DC Supply Voltage for Arrays	-0.3 to +3.0	V
VI	Input Voltage	–0.5 to +5.75	V
V _O	Output Voltage	–0.5 to + V _{CCI} + 0.5	V
T _{STG}	Storage Temperature	–65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions".

Table 2-2 Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range	0 to +70	–40 to +85	°C
2.5 V Power Supply Range (V _{CCA} and V _{CCI})	2.25 to 2.75	2.25 to 2.75	V
3.3 V Power Supply Range (V _{CCI})	3.0 to 3.6	3.0 to 3.6	V
5 V Power Supply Range (V _{CCI})	4.75 to 5.25	4.75 to 5.25	V

Typical SX-A Standby Current

Table 2-3 • Typical Standby Current for SX-A at 25°C with $V_{CCA} = 2.5 V$

Product	V _{CCI} = 2.5 V	V _{CCI} = 3.3 V	V _{CCI} = 5 V
A54SX08A	0.8 mA	1.0 mA	2.9 mA
A54SX16A	0.8 mA	1.0 mA	2.9 mA
A54SX32A	0.9 mA	1.0 mA	3.0 mA
A54SX72A	3.6 mA	3.8 mA	4.5 mA

Table 2-4 • Supply Voltages

V _{CCA}	V _{CCI} *	Maximum Input Tolerance	Maximum Output Drive
2. 5 V	2.5 V	5.75 V	2.7 V
2.5 V	3.3 V	5.75 V	3.6 V
2.5 V	5 V	5.75 V	5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.

Electrical Specifications

Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

			Comm	ercial	Indus	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	$(I_{OH} = -1 \text{ mA})$	0.9 V _{CCI}		0.9 V _{CCI}		V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OH} = -8 mA)	2.4		2.4		V
V _{OL}	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{CCI} = Minimum$ $V_I = V_{IH} \text{ or } V_{IL}$	(I _{OL} = 12 mA)		0.4		0.4	V
V _{IL}	Input Low Voltage			0.8		0.8	V
V _{IH}	Input High Voltage		2.0	5.75	2.0	5.75	V
I _{IL} /I _{IH}	Input Leakage Current, V _{IN} = V _{CCI} or GND		-10	10	-10	10	μA
I _{OZ}	Tristate Output Leakage Current		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

			Comn	nercial	Indu	strial	
Symbol	Parameter		Min.	Max.	Min.	Max.	Units
V _{OH}	$V_{DD} = MIN,$	$(I_{OH} = -100 \ \mu A)$	2.1		2.1		V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	$V_{DD} = MIN,$ $V_{I} = V_{UI} \text{ or } V_{U}$	$(I_{OH} = -1 \text{ mA})$	2.0		2.0		V
		(l - 2mA)	17		17		V
	$V_{DD} = V_{IH}$ or V_{IL}	(I _{OH} =2 IIIA)	1.7		1.7		v
V _{OL}	$V_{DD} = MIN,$	(I _{OL} = 100 μA)		0.2		0.2	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	$V_{DD} = MIN,$	(I _{OL} = 1 mA)		0.4		0.4	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$	-					
	$V_{DD} = MIN,$	(I _{OL} = 2 mA)		0.7		0.7	V
	$V_{I} = V_{IH} \text{ or } V_{IL}$						
V _{IL}	Input Low Voltage, $V_{OUT} \le V_{VOL(max)}$		-0.3	0.7	-0.3	0.7	V
V _{IH}	Input High Voltage, $V_{OUT} \ge V_{VOH(min)}$		1.7	5.75	1.7	5.75	V
$I_{\rm IL}/I_{\rm IH}$	Input Leakage Current, $V_{IN} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
I _{OZ}	Tristate Output Leakage Current, $V_{OUT} = V_{CCI}$ or GND		-10	10	-10	10	μΑ
t _R , t _F	Input Transition Time t _R , t _F			10		10	ns
C _{IO}	I/O Capacitance			10		10	pF
I _{CC}	Standby Current			10		20	mA
IV Curve*	Can be derived from the IBIS model on the web.						

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-1 • 5 V PCI V/I Curve for SX-A Family

 $I_{OH} = 11.9 * (V_{OUT} - 5.25) * (V_{OUT} + 2.45)$ for $V_{CCI} > V_{OUT} > 3.1V$ $I_{OL} = 78.5 * V_{OUT} * (4.4 - V_{OUT})$ for 0V < V_{OUT} < 0.71V

EQ 2-2

Table 2-9 • DC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V _{CCA}	Supply Voltage for Array		2.25	2.75	V
V _{CCI}	Supply Voltage for I/Os		3.0	3.6	V
V _{IH}	Input High Voltage		0.5V _{CCI}	V _{CCI} + 0.5	V
V _{IL}	Input Low Voltage		-0.5	0.3V _{CCI}	V
I _{IPU}	Input Pull-up Voltage ¹		0.7V _{CCI}	-	V
IIL	Input Leakage Current ²	0 < V _{IN} < V _{CCI}	-10	+10	μΑ
V _{OH}	Output High Voltage	I _{OUT} = -500 μA	0.9V _{CCI}	-	V
V _{OL}	Output Low Voltage	I _{OUT} = 1,500 μA		0.1V _{CCI}	V
C _{IN}	Input Pin Capacitance ³		-	10	pF
C _{CLK}	CLK Pin Capacitance		5	12	pF

EQ 2-1

Notes:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization.

2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

Figure 2-2 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-2 • 3.3 V PCI V/I Curve for SX-A Family

 $I_{OH} = (98.0/V_{CCI}) * (V_{OUT} - V_{CCI}) * (V_{OUT} + 0.4V_{CCI})$

for 0.7 $V_{CCI} < V_{OUT} < V_{CCI}$

 $I_{OL} = (256/V_{CCI}) * V_{OUT} * (V_{CCI} - V_{OUT})$ for 0V < V_{OUT} < 0.18 V_{CCI}

EQ 2-3

EQ 2-4

To determine the heat sink's thermal performance, use the following equation:

$$\theta_{JA(TOTAL)} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

EQ 2-14

where:

 $\theta_{CS} = 0.37^{\circ}C/W$

 thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = thermal resistance of the heat sink in °C/W

 $\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$ EQ 2-15 $\theta_{SA} = 13.33^{\circ}C/W - 3.20^{\circ}C/W - 0.37^{\circ}C/W$

$$\theta_{SA} = 9.76^{\circ}C/W$$

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

Input Buffer Delays

t INY **C-Cell Delays**

Figure 2-6 • Input Buffer Delays

GND

Figure 2-7 • C-Cell Delays

Cell Timing Characteristics

t_{INY}

Figure 2-8 • Flip-Flops

Table 2-15 • A54SX08A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _C	_{CI} = 2.25 V, T _J = 70°C)
----------------------------------	---	--

		-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	lardwired) Array Clock Networks			8				8		
t _{НСКН}	Input Low to High (Pad to R-cell Input)		1.4		1.6		1.8		2.6	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.3		1.5		1.7		2.4	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.4		0.5		0.7	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	Routed Array Clock Networks									
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.1		1.3		1.8	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.0		1.1		1.3		1.8	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2.0	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.4	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.7	ns

Table 2-16 A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CC}	₁ = 3.0 V, T _J = 70°C)
-----------------------------------	--	--

		-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	lardwired) Array Clock Networks									
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.3		1.5		1.7		2.6	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.1		1.3		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPVVL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.5		0.5		0.8	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Array Clock Networks										
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.2		1.4		1.9	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.2		1.3		1.6		2.2	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPVVL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.8		0.9		1.1		1.5	ns

Table 2-19 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Ou	tput Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.3		2.6		3.1		4.3	ns
d_{TLH}^2	Delta Low to High		0.03		0.03	0.04			0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL O	Dutput Module Timing ³							-		
t _{DLH}	Data-to-Pad Low to High		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		3		3.4		4		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3		3.3		3.9		5.5	ns
d_{TLH}^{2}	Delta Low to High		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^2	Delta High to Low		0.015		0.015		0.015		0.025	ns/pF
d_{THLS}^2	Delta High to Low—low slew		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. Delays based on 10 pF loading and 25 Ω resistance.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate $[V/ns] = (0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-24 A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _{CCI} =4.75 V	', Τ _J = 70°C)
----------------------------------	---	---------------------------

		-3 Sp	peed*	-2 S	peed	-1 S	peed	Std.	Speed	-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated	Hardwired) Array Clock Netwo	rks										1
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.2		1.4		1.6		1.8		2.8	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.1		1.2		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{HPVVL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{HCKSW}	Maximum Skew		0.3		0.3		0.4		0.4		0.7	ns
t _{HP}	Minimum Period	2.8		3.4		3.8		4.4		6.0		ns
f _{HMAX}	Maximum Frequency		357		294		263		227		167	MHz
Routed Arr	Routed Array Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		1.0		1.2		1.3		1.6		2.2	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.3		1.5		1.7		2.4	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.3		1.5		1.7		2.0		2.8	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.7		1.9		2.2		3.0		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.7		1.9		2.2		3.0		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		0.9		1.0		1.2		1.7	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: **All* –3 speed grades have been discontinued.

Table 2-28 A545X32A Timing Characteristics (Continued)

		-3 S	peed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.7		0.8		0.9		1.0		1.4	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.9		1.1		1.2		1.4		1.9	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.9		1.1		1.2		1.4		1.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		1.4		1.6		1.8		2.1		2.9	ns
Input Modu	le Predicted Routing Delays ³											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		1.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2		2.2		2.6		3.6	ns

(Worst-Case Commercial Conditions, $V_{CCA} = 2.25 \text{ V}_{CCI} = 3.0 \text{ V}, T_J = 70^{\circ}\text{C}$)

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

100-Pin TQFP

Figure 3-2 • 100-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

144-Pin TQFP

Figure 3-3 • 144-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pi	n PBGA						
Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function
D11	V _{CCA}	H1	I/O	L14	GND	P12	GND
D12	NC	H2	I/O	L20	NC	P13	GND
D13	I/O	H3	I/O	L21	I/O	P14	GND
D14	I/O	H4	I/O	L22	I/O	P20	I/O
D15	I/O	H20	V _{CCA}	L23	NC	P21	I/O
D16	I/O	H21	I/O	M1	I/O	P22	I/O
D17	I/O	H22	I/O	M2	I/O	P23	I/O
D18	I/O	H23	I/O	M3	I/O	R1	I/O
D19	I/O	J1	NC	M4	V _{CCA}	R2	I/O
D20	I/O	J2	I/O	M10	GND	R3	I/O
D21	I/O	J3	I/O	M11	GND	R4	I/O
D22	I/O	J4	I/O	M12	GND	R20	I/O
D23	I/O	J20	I/O	M13	GND	R21	I/O
E1	V _{CCI}	J21	I/O	M14	GND	R22	I/O
E2	I/O	J22	I/O	M20	V _{CCA}	R23	I/O
E3	I/O	J23	I/O	M21	I/O	T1	I/O
E4	I/O	K1	I/O	M22	I/O	T2	I/O
E20	I/O	К2	I/O	M23	V _{CCI}	T3	I/O
E21	I/O	К3	I/O	N1	I/O	T4	I/O
E22	I/O	К4	I/O	N2	TRST, I/O	T20	I/O
E23	I/O	K10	GND	N3	I/O	T21	I/O
F1	I/O	K11	GND	N4	I/O	T22	I/O
F2	TMS	K12	GND	N10	GND	T23	I/O
F3	I/O	K13	GND	N11	GND	U1	I/O
F4	I/O	K14	GND	N12	GND	U2	I/O
F20	I/O	K20	I/O	N13	GND	U3	V _{CCA}
F21	I/O	K21	I/O	N14	GND	U4	I/O
F22	I/O	K22	I/O	N20	NC	U20	I/O
F23	I/O	K23	I/O	N21	I/O	U21	V _{CCA}
G1	I/O	L1	I/O	N22	I/O	U22	I/O
G2	I/O	L2	I/O	N23	I/O	U23	I/O
G3	I/O	L3	I/O	P1	I/O	V1	V _{CCI}
G4	I/O	L4	NC	P2	I/O	V2	I/O
G20	I/O	L10	GND	P3	I/O	V3	I/O
G21	I/O	L11	GND	P4	I/O	V4	I/O
G22	I/O	L12	GND	P10	GND	V20	I/O
G23	GND	L13	GND	P11	GND	V21	I/O

	256-Piı	n FBGA	
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
P15	I/O	I/O	I/O
P16	I/O	I/O	I/O
R1	I/O	I/O	I/O
R2	GND	GND	GND
R3	I/O	I/O	I/O
R4	NC	I/O	I/O
R5	I/O	I/O	I/O
R6	I/O	I/O	I/O
R7	I/O	I/O	I/O
R8	I/O	I/O	I/O
R9	HCLK	HCLK	HCLK
R10	I/O	I/O	QCLKB
R11	I/O	I/O	I/O
R12	I/O	I/O	I/O
R13	I/O	I/O	I/O
R14	I/O	I/O	I/O
R15	GND	GND	GND
R16	GND	GND	GND
T1	GND	GND	GND
T2	I/O	I/O	I/O
Т3	I/O	I/O	I/O
T4	NC	I/O	I/O
T5	I/O	I/O	I/O
T6	I/O	I/O	I/O
Τ7	I/O	I/O	I/O
Т8	I/O	I/O	I/O
Т9	V _{CCA}	V _{CCA}	V _{CCA}
T10	I/O	I/O	I/O
T11	I/O	I/O	I/O
T12	NC	I/O	I/O
T13	I/O	I/O	I/O
T14	I/O	I/O	I/O
T15	TDO, I/O	TDO, I/O	TDO, I/O
T16	GND	GND	GND

	4	484-Pin FBG	
P	A54SX72A	A54SX32A	Pin
Nur	Function	Function	Number
	I/O	1/0	C19
I	V _{CCI}	V _{CCI}	C20
I	I/O	I/O	C21
I	I/O	I/O	C22
I	I/O	I/O	C23
	I/O	I/O	C24
	I/O	NC*	C25
l	I/O	NC*	C26
E	I/O	NC*	D1
E	TMS	TMS	D2
E	I/O	I/O	D3
E	V _{CCI}	V _{CCI}	D4
E	I/O	NC*	D5
E	TCK, I/O	TCK, I/O	D6
E	I/O	I/O	D7
E	I/O	I/O	D8
E	I/O	I/O	D9
E	I/O	I/O	D10
E	I/O	I/O	D11
E	QCLKC	I/O	D12
E	I/O	I/O	D13
E	I/O	I/O	D14
E	I/O	I/O	D15
E	I/O	I/O	D16
E	I/O	I/O	D17
	I/O	I/O	D18
	I/O	I/O	D19
	I/O	I/O	D20
	V _{CCI}	V _{CCI}	D21
	GND	GND	D22
F	I/O	I/O	D23
F	I/O	I/O	D24
F	I/O	NC*	D25
F	I/O	NC*	D26
F	I/O	NC*	E1

484-Pin FBGA								
Pin Number	A54SX32A Function	A54SX72A Function						
E2	NC*	I/O						
E3	I/O	I/O						
E4	I/O	I/O						
E5	GND	GND						
E6	TDI, IO	TDI, IO						
E7	I/O	I/O						
E8	I/O	I/O						
E9	I/O	I/O						
E10	I/O	I/O						
E11	I/O	I/O						
E12	I/O	I/O						
E13	V _{CCA}	V _{CCA}						
E14	CLKB	CLKB						
E15	I/O	I/O						
E16	I/O	I/O						
E17	I/O	I/O						
E18	I/O	I/O						
E19	I/O	I/O						
E20	I/O	I/O						
E21	I/O	I/O						
E22	I/O	I/O						
E23	I/O	I/O						
E24	I/O	I/O						
E25	V _{CCI}	V _{CCI}						
E26	GND	GND						
F1	V _{CCI}	V _{CCI}						
F2	NC*	I/O						
F3	NC*	I/O						
F4	I/O	I/O						
F5	I/O	I/O						
F22	I/O	I/O						
F23	I/O	I/O						
F24	I/O	I/O						
F25	I/O	I/O						
F26	NC*	I/O						

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
G1	NC*	I/O		
G2	NC*	I/O		
G3	NC*	I/O		
G4	I/O	I/O		
G5	I/O	I/O		
G22	I/O	ΙΟ		
G23	V _{CCA}	V _{CCA}		
G24	I/O	I/O		
G25	NC*	I/O		
G26	NC*	I/O		
H1	NC*	I/O		
H2	NC*	I/O		
H3	I/O	I/O		
H4	I/O	I/O		
H5	I/O	I/O		
H22	I/O	I/O		
H23	I/O	Ι/O		
H24	I/O	Ι/O		
H25	NC*	I/O		
H26	NC*	I/O		
J1	NC*	I/O		
J2	NC*	I/O		
J3	I/O	I/O		
J4	I/O	I/O		
J5	I/O	I/O		
J22	I/O	Ι/O		
J23	I/O	Ι/O		
J24	I/O	Ι/O		
J25	V _{CCI}	V _{CCI}		
J26	NC*	I/O		
K1	I/O	I/O		
K2	V _{CCI}	V _{CCI}		
К3	I/O	I/O		
K4	I/O	I/O		
K5	V _{CCA}	V _{CCA}		

Actel°

SX-A Family FPGAs

Note: *These pins must be left floating on the A54SX32A device.

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
K10	GND	GND		
K11	GND	GND		
K12	GND	GND		
K13	GND	GND		
K14	GND	GND		
K15	GND	GND		
K16	GND	GND		
K17	GND	GND		
K22	I/O	I/O		
K23	I/O	I/O		
K24	NC*	NC		
K25	NC*	I/O		
K26	NC*	I/O		
L1	NC*	I/O		
L2	NC*	I/O		
L3	I/O	I/O		
L4	I/O	I/O		
L5	I/O	I/O		
L10	GND	GND		
L11	GND	GND		
L12	GND	GND		
L13	GND	GND		
L14	GND	GND		
L15	GND	GND		
L16	GND	GND		
L17	GND	GND		
L22	I/O	I/O		
L23	I/O	I/O		
L24	I/O	I/O		
L25	I/O	I/O		
L26	I/O	I/O		
M1	NC*	NC		
M2	I/O	I/O		
M3	I/O	I/O		
M4	I/O	I/O		

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
M5	I/O	I/O		
M10	GND	GND		
M11	GND	GND		
M12	GND	GND		
M13	GND	GND		
M14	GND	GND		
M15	GND	GND		
M16	GND	GND		
M17	GND	GND		
M22	I/O	I/O		
M23	I/O	I/O		
M24	I/O	I/O		
M25	NC*	I/O		
M26	NC*	I/O		
N1	I/O	I/O		
N2	V _{CCI}	V _{CCI}		
N3	I/O	I/O		
N4	I/O	I/O		
N5	I/O	I/O		
N10	GND	GND		
N11	GND	GND		
N12	GND	GND		
N13	GND	GND		
N14	GND	GND		
N15	GND	GND		
N16	GND	GND		
N17	GND	GND		
N22	V _{CCA}	V _{CCA}		
N23	I/O	I/O		
N24	I/O	I/O		
N25	I/O	I/O		
N26	NC*	NC		
P1	NC*	I/O		
P2	NC*	I/O		
P3	I/O	I/O		

484-Pin FBGA				
Pin Number	A54SX32A Function	A54SX72A Function		
P4	I/O	I/O		
P5	V _{CCA}	V _{CCA}		
P10	GND	GND		
P11	GND	GND		
P12	GND	GND		
P13	GND	GND		
P14	GND	GND		
P15	GND	GND		
P16	GND	GND		
P17	GND	GND		
P22	I/O	I/O		
P23	Ι/O	I/O		
P24	V _{CCI}	V _{CCI}		
P25	I/O	I/O		
P26	I/O	I/O		
R1	NC*	I/O		
R2	NC*	I/O		
R3	I/O	I/O		
R4	I/O	I/O		
R5	TRST, I/O	TRST, I/O		
R10	GND	GND		
R11	GND	GND		
R12	GND	GND		
R13	GND	GND		
R14	GND	GND		
R15	GND	GND		
R16	GND	GND		
R17	GND	GND		
R22	I/O	I/O		
R23	I/O	I/O		
R24	I/O	I/O		
R25	NC*	I/O		
R26	NC*	I/O		
T1	NC*	I/O		
T2	NC*	Ι/O		

Note: *These pins must be left floating on the A54SX32A device.