

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	2880
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	113
Number of Gates	48000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx32a-tqg144m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

General Description

Introduction	1-1
SX-A Family Architecture	1-1
Other Architectural Features	1-7
Programming 1	-13
Related Documents 1	-14
Pin Description	-15

Detailed Specifications

Operating Conditions	2-1
Typical SX-A Standby Current	2-1
Electrical Specifications	2-2
PCI Compliance for the SX-A Family	2-3
Thermal Characteristics 2-	-11
SX-A Timing Model	-14
Sample Path Calculations 2-	-14
Output Buffer Delays 2-	-15
AC Test Loads	-15
Input Buffer Delays	-16
C-Cell Delays 2-	-16
Cell Timing Characteristics 2-	-16
Timing Characteristics 2-	-17
Temperature and Voltage Derating Factors 2-	-17
Timing Characteristics 2-	-18

Package Pin Assignments

208-Pin PQFP	 	 	 •	 •			 •	• •	• •	•	 •	 • •	 •	• •	 •		• •	 •	 •	 •			3-1
100-Pin TQFP		 •	 •				 •		• •	•	 •	 • •	 •		 •		• •			 • •			3-5
144-Pin TQFP	 	 •	 •				 •		• •	•	 •	 • •	 •		 •		• •			 • •			3-8
176-Pin TQFP	 	 •	 •				 	• •		•	 	 • •	 		 •		• •		 •	 • •		3	-11
329-Pin PBGA		 •	 •	 •		 •	 •		• •	•	 •	 	 •		 •				 •	 •	• •	3	-14
144-Pin FBGA		 •	 •	 •		 •	 •		• •	•	 •	 	 •	•	 •				 •	 •	• •	3	-18
256-Pin FBGA		 •		 •			 •			•	 	 	 	•	 •		• •		 •	 • •		3	-21
484-Pin FBGA		 									 	 	 							 •		3	-26

Datasheet Information

List of Changes	4-1
Datasheet Categories	4-3
International Traffic in Arms Regulations (ITAR) and Export Administration	
Regulations (EAR)	4-3

Logic Module Design

The SX-A family architecture is described as a "sea-ofmodules" architecture because the entire floor of the device is covered with a grid of logic modules with virtually no chip area lost to interconnect elements or routing. The Actel SX-A family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and clock enable, using the S0 and S1 lines control signals (Figure 1-2). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility while allowing mapping of synthesized functions into the SX-A FPGA. The clock source for the R-cell can be chosen from either the hardwired clock, the routed clocks, or internal logic.

The C-cell implements a range of combinatorial functions of up to five inputs (Figure 1-3). Inclusion of the DB input and its associated inverter function allows up to 4,000 different combinatorial functions to be implemented in a single module. An example of the flexibility enabled by the inversion capability is the ability to integrate a 3-input exclusive-OR function into a single C-cell. This facilitates construction of 9-bit parity-tree functions with 1.9 ns propagation delays.

Module Organization

All C-cell and R-cell logic modules are arranged into horizontal banks called Clusters. There are two types of Clusters: Type 1 contains two C-cells and one R-cell, while Type 2 contains one C-cell and two R-cells.

Clusters are grouped together into SuperClusters (Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide grouping of Type 1 Clusters. SuperCluster 2 is a two-wide group containing one Type 1 Cluster and one Type 2 Cluster. SX-A devices feature more SuperCluster 1 modules than SuperCluster 2 modules because designers typically require significantly more combinatorial logic than flip-flops.

Figure 1-2 • R-Cell

Figure 1-3 • C-Cell

Figure 1-5 • DirectConnect and FastConnect for Type 1 SuperClusters

Figure 1-6 • DirectConnect and FastConnect for Type 2 SuperClusters

Clock Resources

Actel's high-drive routing structure provides three clock networks (Table 1-1). The first clock, called HCLK, is hardwired from the HCLK buffer to the clock select multiplexor (MUX) in each R-cell. HCLK cannot be connected to combinatorial logic. This provides a fast propagation path for the clock signal. If not used, this pin must be set as Low or High on the board. It must not be left floating. Figure 1-7 describes the clock circuit used for the constant load HCLK and the macros supported.

HCLK does not function until the fourth clock cycle each time the device is powered up to prevent false output levels due to any possible slow power-on-reset signal and fast start-up clock circuit. To activate HCLK from the first cycle, the TRST pin must be reserved in the Design software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that can be sourced from external pins or from internal logic signals within the SX-A device. CLKA and CLKB may be connected to sequential cells or to combinational logic. If CLKA or CLKB pins are not used or sourced from signals, these pins must be set as Low or High on the board. They must not be left floating. Figure 1-8 describes the CLKA and CLKB circuit used and the macros supported in SX-A devices with the exception of A54SX72A.

In addition, the A54SX72A device provides four quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD corresponding to bottom-left, bottom-right, top-left, and top-right locations on the die, respectively), which can be sourced from external pins or from internal logic signals within the device. Each of these clocks can individually drive up to an entire quadrant of the chip, or they can be grouped together to drive multiple quadrants (Figure 1-9 on page 1-6). QCLK pins can function as user I/O pins. If not used, the QCLK pins must be tied Low or High on the board and must not be left floating.

For more information on how to use quadrant clocks in the A54SX72A device, refer to the *Global Clock Networks in Actel's Antifuse Devices* and *Using A54SX72A and RT54SX72S Quadrant Clocks* application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well as the macros supported are shown in Figure 1-10 on page 1-6. Note that bidirectional clock buffers are only available in A54SX72A. For more information, refer to the "Pin Description" section on page 1-15.

Table 1-1 • SX-A Clock Resources

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Routed Clocks (CLKA, CLKB)	2	2	2	2
Hardwired Clocks (HCLK)	1	1	1	1
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)	0	0	0	4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, *Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications*.

Table 1-2	• 1/0	D Features
-----------	-------	-------------------

Function	Description
Input Buffer Threshold Selections	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Output Buffer	 "Hot-Swap" Capability (3.3 V PCI is not hot swappable) I/O on an unpowered device does not sink current Can be used for "cold-sparing" Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device V_{CCA} and V_{CCI} can be powered in any order

Table 1-3 • I/O Characteristics for All I/O Configurations

	Hot Swappable	Slew Rate Control	Power-Up Resistor
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μs	5 V/ms	2.5 V/ms	0.5 V/ms	0.25 V/ms	0.1 V/ms	0.025 V/ms
Units	μ s	μs	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

_ 0	eserue Pine	
	eserve Fins	
	Reserve JTAG	
	Reserve JTAG Test Reset	
I	Reserve Probe	

Figure 1-12 • Device Selection Wizard

Table 1-5• Reserve Pin Definitions

Pin	Function
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up
Reserve Probe	Keeps pins from being used or regular I/O

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V_{CCI} should be placed on the TMS pin to pull it High by default.**

Table 1-6describesthedifferentconfigurationrequirementsofBSTpinsandtheirfunctionalityindifferentmodes.

Table 1-6	•	Boundary-Scan Pin Configurations and
		Functions

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

Probing Capabilities

SX-A devices also provide an internal probing capability that is accessed with the JTAG pins. The Silicon Explorer II diagnostic hardware is used to control the TDI, TCK, TMS, and TDO pins to select the desired nets for debugging. The user assigns the selected internal nets in Actel Silicon Explorer II software to the PRA/PRB output pins for observation. Silicon Explorer II automatically places the device into JTAG mode. However, probing functionality is only activated when the TRST pin is driven high or left floating, allowing the internal pull-up resistor to pull TRST High. If the TRST pin is held Low, the TAP controller remains in the Test-Logic-Reset state so no probing can be performed. However, the user must drive the TRST pin High or allow the internal pull-up resistor to pull TRST High. When selecting the **Reserve Probe Pin** box as shown in Figure 1-12 on page 1-9, direct the layout tool to reserve the PRA and PRB pins as dedicated outputs for probing. This **Reserve** option is merely a guideline. If the designer assigns user I/Os to the PRA and PRB pins and selects the **Reserve Probe Pin** option, Designer Layout will override the **Reserve Probe Pin** option and place the user I/Os on those pins.

To allow probing capabilities, the security fuse must not be programmed. Programming the security fuse disables the JTAG and probe circuitry. Table 1-9 summarizes the possible device configurations for probing once the device leaves the Test-Logic-Reset JTAG state.

JTAG Mode	TRST ¹	Security Fuse Programmed	PRA, PRB ²	TDI, TCK, TDO ²
Dedicated	Low	No	User I/O ³	JTAG Disabled
	High	No	Probe Circuit Outputs	JTAG I/O
Flexible	Low	No	User I/O ³	User I/O ³
	High	No	Probe Circuit Outputs	JTAG I/O
		Yes	Probe Circuit Secured	Probe Circuit Secured

Table 1-9 •	Device Configuration C	ptions for Probe Ca	pability (TRST Pin	Reserved)
	Device configuration o			neservea

Notes:

1. If the TRST pin is not reserved, the device behaves according to TRST = High as described in the table.

2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by the Designer software.

To determine the heat sink's thermal performance, use the following equation:

$$\theta_{JA(TOTAL)} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

EQ 2-14

where:

 $\theta_{CS} = 0.37^{\circ}C/W$

 thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = thermal resistance of the heat sink in °C/W

 $\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$ EQ 2-15 $\theta_{SA} = 13.33^{\circ}C/W - 3.20^{\circ}C/W - 0.37^{\circ}C/W$

$$\theta_{SA} = 9.76^{\circ}C/W$$

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

SX-A Timing Model

Note: *Values shown for A54SX72A, –2, worst-case commercial conditions at 5 V PCI with standard place-and-route. Figure 2-3 • SX-A Timing Model

Sample Path Calculations

Hardwired Clock

External Setup	=	(t _{INYH} + t _{RD1} + t _{SUD}) – t _{HCKH}
	=	0.6 + 0.3 + 0.8 - 1.8 = - 0.1 ns
Clock-to-Out (Pad-to-Pad)	=	t _{HCKH} + t _{RCO} + t _{RD1} + t _{DHL}
	=	1.8 + 0.8 + 0.3 + 3.9 = 6.8 ns

Routed Clock

External Setup	$= (t_{INYH} + t_{RD1} + t_{SUD}) - t_{RCKH}$	
	= 0.6 + 0.3 + 0.8 - 3.0 = -1.3 ns	;
Clock-to-Out (Pad-to-Pad) = $t_{RCKH} + t_{RCO} + t_{RD1} + t_{DHL}$	
	= 3.0 + 0.8 + 0.3 + 3.9 = 8.0 ns	

Timing Characteristics

Timing characteristics for SX-A devices fall into three categories: family-dependent, device-dependent, and design-dependent. The input and output buffer characteristics are common to all SX-A family members. Internal routing delays are device-dependent. Design dependency means actual delays are not determined until after placement and routing of the user's design are complete. The timing characteristics listed in this datasheet represent sample timing numbers of the SX-A devices. Design-specific delay values may be determined by using Timer or performing simulation after successful place-and-route with the Designer software.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to placement and routing. Up to 6 percent of the nets in a design may be designated as critical, while 90 percent of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special routing resources that span multiple rows, columns, or modules. Long tracks employ three to five antifuse connections. This increases capacitance and resistance, resulting in longer net delays for macros connected to long tracks. Typically, up to 6 percent of nets in a fully utilized device require long tracks. Long tracks contribute approximately 4 ns to 8.4 ns delay. This additional delay is represented statistically in higher fanout routing delays.

Timing Derating

SX-A devices are manufactured with a CMOS process. Therefore, device performance varies according to temperature, voltage, and process changes. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and best-case processing. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case processing.

Temperature and Voltage Derating Factors

 Table 2-13
 Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, T_J = 70°C, V_{CCA} = 2.25 V)

	Junction Temperature (T _J)							
V _{CCA}	–55°C	–40°C	0°C	25°C	70°C	85°C	125°C	
2.250 V	0.79	0.80	0.87	0.89	1.00	1.04	1.14	
2.500 V	0.74	0.75	0.82	0.83	0.94	0.97	1.07	
2.750 V	0.68	0.69	0.75	0.77	0.87	0.90	0.99	

Table 2-17 • A54SX08A Timing Characteristics

(Worst-Case Commercial Condition	s V _{CCA} = 2.25 V, V _{CCI}	= 4.75 V, T _J = 70°C)
----------------------------------	---	----------------------------------

		-2 S	peed	-1 S	peed	Std. Speed		–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (H	lardwired) Array Clock Networks									
t _{НСКН}	Input Low to High (Pad to R-cell Input)		1.2		1.3		1.5		2.3	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.0		1.2		1.4		2.0	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.4		0.5		0.8	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	y Clock Networks									
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		0.9		1.0		1.2		1.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.5		1.7		2.0		2.7	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		0.9		1.0		1.2		1.7	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.5		1.7		2.0		2.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.3		1.5		2.1	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.6		1.8		2.1		2.9	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPVVL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.8		0.9		1.1		1.5	ns
t _{RCKSW}	Maximum Skew (50% Load)		0.8		1.0		1.1		1.5	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.9		1.0		1.2		1.7	ns

Table 2-20 A54SX08A Timing Characteristics

		-2 S	peed	-1 S	peed	Std. S	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Outp	ut Module Timing ¹									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}^2	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^2	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	ut Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-34 A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4.75 V, T _J = 70°C)
-----------------------------------	--

		-3 Speed ¹ -2 Speed -1 Speed Std. Spee		Speed	–F S						
Parameter	Description	Min. Max	. Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²				•						
t _{DLH}	Data-to-Pad Low to High	2.1		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low	2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L	1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H	2.1		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.8		3.2		3.6		4.2		5.9	ns
d _{TLH} ³	Delta Low to High	0.01	5	0.016		0.02		0.022		0.032	ns/pF
d _{THL} ³	Delta High to Low	0.02	5	0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴				•						
t _{DLH}	Data-to-Pad Low to High	1.9		2.2		2.5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low	2.5		2.9		3.3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	6.6		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew	7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H	1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z	3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.5		2.9		3.3		3.9		5.4	ns
d _{TLH} ³	Delta Low to High	0.01	1	0.017		0.017		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low	0.02	3	0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew	0.04	3	0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

	100-	TQFP		100-TQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function				
1	GND	GND	GND	36	GND	GND	GND				
2	TDI, I/O	TDI, I/O	TDI, I/O	37	NC	NC	NC				
3	I/O	I/O	I/O	38	I/O	I/O	I/O				
4	I/O	I/O	I/O	39	HCLK	HCLK	HCLK				
5	I/O	I/O	I/O	40	I/O	I/O	I/O				
6	I/O	I/O	I/O	41	I/O	I/O	I/O				
7	TMS	TMS	TMS	42	I/O	I/O	I/O				
8	V _{CCI}	V _{CCI}	V _{CCI}	43	I/O	I/O	I/O				
9	GND	GND	GND	44	V _{CCI}	V _{CCI}	V _{CCI}				
10	I/O	I/O	I/O	45	I/O	I/O	I/O				
11	I/O	I/O	I/O	46	I/O	I/O	I/O				
12	I/O	I/O	I/O	47	I/O	I/O	I/O				
13	I/O	I/O	I/O	48	I/O	I/O	I/O				
14	I/O	I/O	I/O	49	TDO, I/O	TDO, I/O	TDO, I/O				
15	I/O	I/O	I/O	50	I/O	I/O	I/O				
16	TRST, I/O	trst, I/O	trst, I/O	51	GND	GND	GND				
17	I/O	I/O	I/O	52	I/O	I/O	I/O				
18	I/O	I/O	I/O	53	I/O	I/O	I/O				
19	I/O	I/O	I/O	54	I/O	I/O	I/O				
20	V _{CCI}	V _{CCI}	V _{CCI}	55	I/O	I/O	I/O				
21	I/O	I/O	I/O	56	I/O	I/O	I/O				
22	I/O	I/O	I/O	57	V _{CCA}	V _{CCA}	V _{CCA}				
23	I/O	I/O	I/O	58	V _{CCI}	V _{CCI}	V _{CCI}				
24	I/O	I/O	I/O	59	I/O	I/O	I/O				
25	I/O	I/O	I/O	60	I/O	I/O	I/O				
26	I/O	I/O	I/O	61	I/O	I/O	I/O				
27	I/O	I/O	I/O	62	I/O	I/O	I/O				
28	I/O	I/O	I/O	63	I/O	I/O	I/O				
29	I/O	I/O	I/O	64	I/O	I/O	I/O				
30	I/O	I/O	I/O	65	I/O	I/O	I/O				
31	I/O	I/O	I/O	66	I/O	I/O	I/O				
32	I/O	I/O	I/O	67	V _{CCA}	V _{CCA}	V _{CCA}				
33	I/O	I/O	I/O	68	GND	GND	GND				
34	PRB, I/O	PRB, I/O	PRB, I/O	69	GND	GND	GND				
35	V _{CCA}	V _{CCA}	V _{CCA}	70	I/O	I/O	I/O				

	144-Pi	n TQFP		144-Pin TQFP								
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function	Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function					
1	GND	GND	GND	38	I/O	I/O	I/O					
2	TDI, I/O	TDI, I/O	TDI, I/O	39	I/O	I/O	I/O					
3	I/O	I/O	I/O	40	I/O	I/O	I/O					
4	I/O	I/O	I/O	41	I/O	I/O	I/O					
5	I/O	I/O	I/O	42	I/O	I/O	I/O					
6	I/O	I/O	I/O	43	I/O	I/O	I/O					
7	I/O	I/O	I/O	44	V _{CCI}	V _{CCI}	V _{CCI}					
8	I/O	I/O	I/O	45	I/O	I/O	I/O					
9	TMS	TMS	TMS	46	I/O	I/O	I/O					
10	V _{CCI}	V _{CCI}	V _{CCI}	47	I/O	I/O	I/O					
11	GND	GND	GND	48	I/O	I/O	I/O					
12	I/O	I/O	I/O	49	I/O	I/O	I/O					
13	I/O	I/O	I/O	50	I/O	I/O	I/O					
14	I/O	I/O	I/O	51	I/O	I/O	I/O					
15	I/O	I/O	I/O	52	I/O	I/O	I/O					
16	I/O	I/O	I/O	53	I/O	I/O	I/O					
17	I/O	I/O	I/O	54	PRB, I/O	PRB, I/O	PRB, I/O					
18	I/O	I/O	I/O	55	I/O	I/O	I/O					
19	NC	NC	NC	56	V _{CCA}	V _{CCA}	V _{CCA}					
20	V _{CCA}	V _{CCA}	V _{CCA}	57	GND	GND	GND					
21	I/O	I/O	I/O	58	NC	NC	NC					
22	TRST, I/O	trst, I/O	TRST, I/O	59	I/O	I/O	I/O					
23	I/O	I/O	I/O	60	HCLK	HCLK	HCLK					
24	I/O	I/O	I/O	61	I/O	I/O	I/O					
25	I/O	I/O	I/O	62	I/O	I/O	I/O					
26	I/O	I/O	I/O	63	I/O	I/O	I/O					
27	I/O	I/O	I/O	64	I/O	I/O	I/O					
28	GND	GND	GND	65	I/O	I/O	I/O					
29	V _{CCI}	V _{CCI}	V _{CCI}	66	I/O	I/O	I/O					
30	V _{CCA}	V _{CCA}	V _{CCA}	67	I/O	I/O	I/O					
31	I/O	I/O	I/O	68	V _{CCI}	V _{CCI}	V _{CCI}					
32	I/O	I/O	I/O	69	I/O	I/O	I/O					
33	I/O	I/O	I/O	70	I/O	I/O	I/O					
34	I/O	I/O	I/O	71	TDO, I/O	TDO, I/O	TDO, I/O					
35	I/O	I/O	I/O	72	I/O	I/O	I/O					
36	GND	GND	GND	73	GND	GND	GND					
37	I/O	I/O	I/O	74	I/O	I/O	I/O					

176-Pin TQFP									
Pin Number	A54SX32A Function								
145	I/O								
146	I/O								
147	I/O								
148	I/O								
149	I/O								
150	I/O								
151	I/O								
152	CLKA								
153	CLKB								
154	NC								
155	GND								
156	V _{CCA}								
157	PRA, I/O								
158	I/O								
159	I/O								
160	I/O								
161	I/O								
162	I/O								
163	I/O								
164	I/O								
165	I/O								
166	I/O								
167	I/O								
168	I/O								
169	V _{CCI}								
170	I/O								
171	I/O								
172	I/O								
173	I/O								
174	I/O								
175	I/O								
176	TCK, I/O								

329-Pin PBGA

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
в	0	0	Ο	0	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	0	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	0
c	0	0	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	0	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	0
D	0	0	Ο	Ο	Ο	Ο	0	Ο	Ο	Ο	Ο	Ο	0	Ο	Ο	Ο	Ο	Ο	0	Ο	Ο	Ο	0
E	0	0	Ο	Ο																Ο	Ο	Ο	0
F	0	0	0	0																0	0	0	0
G	0	0	Õ	0																O	0	0	0
н	O	O	0	Õ																0	Õ	0	0
L L	O	$\frac{1}{2}$	Ö	\mathbf{O}						\sim	\sim	\sim	\sim	\sim						\mathbf{O}	\odot	Ö	0
			\mathbf{S}										\sim										0
м			$\overline{0}$							$\overline{\bigcirc}$	$\overline{\bigcirc}$	$\overline{\bigcirc}$	$\overline{\bigcirc}$	$\overline{\bigcirc}$						\mathbf{S}	\sim		$\tilde{\mathbf{O}}$
N		\tilde{O}	õ	õ						0	õ	õ	$\tilde{0}$	$\tilde{0}$						õ	$\tilde{0}$	0	$\tilde{0}$
Р	ŏ	ŏ	ŏ	ŏ						ŏ	ŏ	ŏ	ŏ	ŏ						ŏ	ŏ	ŏ	ŏ
R	0	0	Ο	0																Ō	Ō	Ō	Ō
т	0	0	Ο	Ο																Ο	Ο	Ο	0
U	0	0	Ο	Ο																Ο	Ο	0	0
V	0	0	Ο	Ο																Ο	Ο	Ο	0
W	0	0	Ο	Ο																Ο	Ο	Ο	0
Y	0	0	Ο	0	0	0	0	0	0	0	Ο	Ο	0	Ο	Ο	0	0	0	0	Ο	Ο	Ο	0
AA	0	Õ	0	Õ	Õ	0	0	Õ	Õ	Õ	Õ	Õ	0	Õ	0	Õ	Õ	Õ	0	0	Õ	0	0
AB	O	Õ	0	0	Ő	Ő	0	Ő	Ő	Ő	Ő	Õ	Ö	Õ	0	Ő	Ő	Ő	0	0	Ö	0	0 O
AC [$ \subset \mathcal{O} $	0	0	0	0	0	0	0	0	Ο	Ο	O	O	O	Ο	0	0	0	0	Ο	Ο	Ο	$^{\circ}$

Figure 3-5 • 329-Pin PBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pii	n FBGA		256-Pin FBGA							
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function				
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O				
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O				
E13	NC	I/O	I/O	H2	I/O	I/O	I/O				
E14	I/O	I/O	I/O	Н3	V _{CCA}	V _{CCA}	V _{CCA}				
E15	I/O	I/O	I/O	H4	TRST, I/O	trst, I/O	TRST, I/O				
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O				
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}				
F2	I/O	I/O	I/O	Н7	GND	GND	GND				
F3	I/O	I/O	I/O	H8	GND	GND	GND				
F4	TMS	TMS	TMS	Н9	GND	GND	GND				
F5	I/O	I/O	I/O	H10	GND	GND	GND				
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}				
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O				
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O				
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O				
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O				
F11	I/O	I/O	I/O	H16	NC	I/O	I/O				
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O				
F13	I/O	I/O	I/O	J2	NC	I/O	I/O				
F14	I/O	I/O	I/O	J3	NC	I/O	I/O				
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O				
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O				
G1	NC	I/O	I/O	JG	V _{CCI}	V _{CCI}	V _{CCI}				
G2	I/O	I/O	I/O	J7	GND	GND	GND				
G3	NC	I/O	I/O	8L	GND	GND	GND				
G4	I/O	I/O	I/O	J9	GND	GND	GND				
G5	I/O	I/O	I/O	J10	GND	GND	GND				
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}				
G7	GND	GND	GND	J12	I/O	I/O	I/O				
G8	GND	GND	GND	J13	I/O	I/O	I/O				
G9	GND	GND	GND	J14	I/O	I/O	I/O				
G10	GND	GND	GND	J15	I/O	I/O	I/O				
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O				
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O				
G13	GND	GND	GND	K2	I/O	I/O	I/O				
G14	NC	I/O	I/O	К3	NC	I/O	I/O				
G15	V _{CCA}	V _{CCA}	V _{CCA}	K4	V _{CCA}	V _{CCA}	V _{CCA}				

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	-3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	:
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9

Previous Version	Changes in Current Version (v5.3)	Page					
v4.0	Table 2-12 was updated.	2-11					
(continued)	The was updated.	2-14					
	The "Sample Path Calculations" were updated.	2-14					
	Table 2-13 was updated.	2-17					
	Table 2-13 was updated.	2-17					
	All timing tables were updated.	2-18 to 2-52					
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.						
	The "Ordering Information" section was updated.	1-ii					
	The "Temperature Grade Offering" section was updated.	1-iii					
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1					
	The ""Clock Resources" section" was updated	1-5					
	The Table 1-1 • SX-A Clock Resources is new.	1-5					
	The "User Security" section is new.	1-7					
	The "I/O Modules" section was updated.	1-7					
	The Table 1-2 • I/O Features was updated.	1-8					
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8					
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8					
	The Figure 1-12 • Device Selection Wizard is new.	1-9					
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9					
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11					
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12					
	The "Design Considerations" section was updated.	1-12					
	The Figure 1-13 • Probe Setup was updated.	1-12					
	The Design Environment was updated.	1-13					
	The Figure 1-13 • Design Flow is new.	1-11					
	The "Absolute Maximum Ratings*" section was updated.	1-12					
	The "Recommended Operating Conditions" section was updated.	1-12					
	The "Electrical Specifications" section was updated.	1-12					
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13					
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23					
	The "Pin Description" section was updated.	1-15					
v2.0.1	The "Design Environment" section has been updated.	1-13					
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8					
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23					