

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	6036
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	203
Number of Gates	108000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BFCQFP with Tie Bar
Supplier Device Package	256-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx72a-1cq256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offering

Package	A54SX08A	A54SX16A	A54SX32A	A54SX72A
PQ208	C,I,A,M	C,I,A,M	C,I,A,M	C,I,A,M
TQ100	C,I,A,M	C,I,A,M	C,I,A,M	
TQ144	C,I,A,M	C,I,A,M	C,I,A,M	
TQ176			C,I,M	
BG329			C,I,M	
FG144	C,I,A,M	C,I,A,M	C,I,A,M	
FG256		C,I,A,M	C,I,A,M	C,I,A,M
FG484			C,I,M	C,I,A,M
CQ208			C,M,B	C,M,B
CQ256			C,M,B	C,M,B

Notes:

- 1. C = Commercial
- 2. I = Industrial
- 3. A = Automotive
- 4. M = Military
- 5. B = MIL-STD-883 Class B
- 6. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.
- 7. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Speed Grade and Temperature Grade Matrix

	F	Std	-1	-2	-3
Commercial	✓	✓	✓	1	Discontinued
Industrial		✓	✓	1	Discontinued
Automotive		✓			
Military		✓	✓		
MIL-STD-883B		✓	✓		

Notes:

- 1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.
- 2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Contact your Actel Sales representative for more information on availability.

v5.3

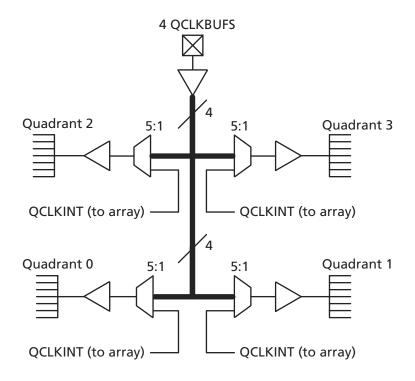


Figure 1-9 • SX-A QCLK Architecture

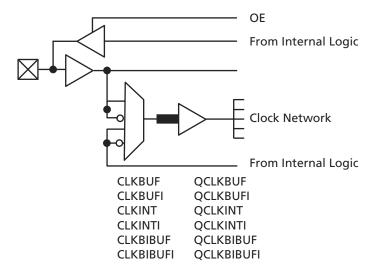


Figure 1-10 • A54SX72A Routed Clock and QCLK Buffer

1-6 v5.3

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using 0.22 μ / 0.25 μ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation of Security in Actel Antifuse FPGAs* application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, Actel eX, SX-A, and RTSX-S I/Os.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input. Each I/O module has an available power-up resistor of

approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os*. Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

v5.3 1-7

To determine the heat sink's thermal performance, use the following equation:

$$\theta_{JA(TOTAL)} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

EQ 2-14

where:

 $\theta_{CS} = 0.37^{\circ}\text{C/W}$

= thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = thermal resistance of the heat sink in °C/W

$$\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$$

EQ 2-15

$$\theta_{SA} = 13.33^{\circ}\text{C/W} - 3.20^{\circ}\text{C/W} - 0.37^{\circ}\text{C/W}$$

$$\theta_{SA} = 9.76$$
°C/W

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

v5.3 2-13

Table 2-18 • A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 2.3 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std.	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCMO	S Output Module Timing ^{1,2}	•								
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns
d_{TLH}^3	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF

Note:

- 1. Delays based on 35 pF loading.
- 2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})/(C_{load}*d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

v5.3 2-23

Table 2-20 • **A54SX08A Timing Characteristics** (Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 4.75 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-2 S	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Max.	Min.	Мах.	Units
5 V PCI Outp	ut Module Timing ¹									•
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}^2	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d _{THL} ²	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	out Module Timing ³									
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d_{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

- 1. Delays based on 50 pF loading.
- 2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1 * V_{CCI} – 0.9 * V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF
 - $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.
- 3. Delays based on 35 pF loading.

v5.3 2-25

Table 2-21 • A54SX16A Timing Characteristics (Continued) (Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	oeed ¹	-2 S	peed	-1 S	peed	Std. 9	peed	−F S _I	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.7		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.7		0.8		0.9		1.1		1.5	ns
Input Modu	nput Module Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		8.0		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		0.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. For dual-module macros, use t_{PD} + t_{RD1} + t_{PDn} , t_{RCO} + t_{RD1} + t_{PDn} , or t_{PD1} + t_{RD1} + t_{SUD} , whichever is appropriate.
- 3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

v5.3 2-27

Table 2-31 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std.	Speed	−F S	peed	
Parameter	Description	Min.	Мах.	Min.	Max.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
Dedicated (Dedicated (Hardwired) Array Clock Networks											
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.7		1.9		2.2		2.6		4.0	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.7		2.0		2.2		2.6		4.0	ns
t _{HPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.6		0.6		0.7		8.0		1.3	ns
t _{HP}	Minimum Period	2.8		3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		357		313		278		238		172	MHz
Routed Arr	ay Clock Networks											
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		2.2		2.5		2.8		3.3		4.7	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		2.1		2.5		2.8		3.3		4.5	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		2.4		2.7		3.1		3.6		5.1	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		2.2		2.6		2.9		3.4		4.7	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		2.5		2.8		3.2		3.8		5.3	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		2.4		2.8		3.1		3.7		5.2	ns
t _{RPWH}	Minimum Pulse Width High	1.4		1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.4		1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (50% Load)		1.0		1.1		1.3		1.5		2.1	ns
t _{RCKSW}	Maximum Skew (100% Load)		1.0		1.1		1.3		1.5		2.1	ns

Note: *All –3 speed grades have been discontinued.

2-38 v5.3

Table 2-33 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-3 Sp	eed ¹	-2 S	peed	-1 S	peed	Std. S	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Мах.	Min.	Мах.	Units
3.3 V PCI O	3.3 V PCI Output Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.4		2.9		4.0	ns
t _{DHL}	Data-to-Pad High to Low		2.0		2.3		2.6		3.1		4.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.4		2.9		4.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.0		2.3		2.6		3.1		4.3	ns
d_{TLH}^3	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.6		3.0		3.4		4.0		5.6	ns
t _{DHL}	Data-to-Pad High to Low		2.6		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		9.0		10.4		11.8		13.8		19.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.6		3.0		3.4		4.0		5.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.6		3.0		3.3		3.9		5.5	ns
d_{TLH}^3	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^3	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 10 pF loading and 25 Ω resistance.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load} * d_{T[LH|HL]HLS}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

2-40 v5.3

Table 2-34 • A54SX32A Timing Characteristics (Worst-Case Commercial Conditions V_{CCA} = 2.25 V, V_{CCI} = 4.75 V, T_J = 70°C)

		-3 Sp	eed ¹	-2 S	peed	-1 S	peed	Std. 9	Speed	−F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	5 V PCI Output Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.1		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.1		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^3	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^3	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.6		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d_{TLH}^3	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d_{THL}^3	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

- 1. All –3 speed grades have been discontinued.
- 2. Delays based on 50 pF loading.
- 3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1*V_{CCI} 0.9*V_{CCI})'$ ($C_{load} * d_{T[LH|HL]HLS}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

v5.3 2-41

100-Pin TQFP

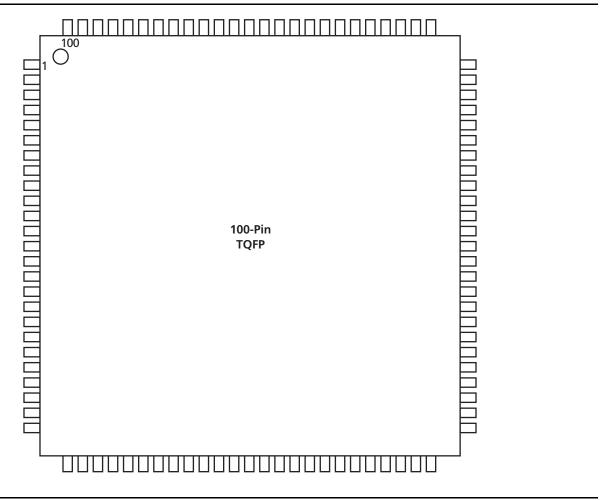


Figure 3-2 • 100-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

100-TQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function				
1	GND	GND	GND				
2	TDI, I/O	TDI, I/O	TDI, I/O				
3	I/O	I/O	I/O				
4	I/O	I/O	I/O				
5	I/O	1/0	I/O				
6	I/O	I/O	I/O				
7	TMS	TMS	TMS				
8	V _{CCI}	V _{CCI}	V _{CCI}				
9	GND	GND	GND				
10	I/O	I/O	I/O				
11	I/O	I/O	I/O				
12	I/O	I/O	I/O				
13	I/O	1/0	1/0				
14	I/O	I/O	I/O				
15	I/O	1/0	1/0				
16	TRST, I/O	TRST, I/O	TRST, I/O				
17	I/O	I/O	I/O				
18	I/O	1/0	I/O				
19	I/O	1/0	1/0				
20	V _{CCI}	V _{CCI}	V _{CCI}				
21	I/O	I/O	I/O				
22	I/O	I/O	I/O				
23	I/O	I/O	I/O				
24	I/O	1/0	1/0				
25	I/O	I/O	I/O				
26	I/O	I/O	I/O				
27	I/O	1/0	I/O				
28	I/O	I/O	I/O				
29	I/O	I/O	I/O				
30	I/O	I/O	I/O				
31	I/O	I/O	I/O				
32	I/O	I/O	I/O				
33	I/O	I/O	1/0				
34	PRB, I/O	PRB, I/O	PRB, I/O				
35	V _{CCA}	V _{CCA}	V _{CCA}				

100-TQFP							
Pin Number	A54SX08A Function	A54SX16A Function	A54SX32A Function				
36	GND	GND	GND				
37	NC	NC	NC				
38	I/O	I/O	I/O				
39	HCLK	HCLK	HCLK				
40	I/O	I/O	I/O				
41	I/O	I/O	I/O				
42	I/O	1/0	I/O				
43	I/O	I/O	I/O				
44	V _{CCI}	V _{CCI}	V_{CCI}				
45	I/O	I/O	I/O				
46	I/O	I/O	I/O				
47	I/O	1/0	I/O				
48	I/O	1/0	I/O				
49	TDO, I/O	TDO, I/O	TDO, I/O				
50	I/O	1/0	I/O				
51	GND	GND	GND				
52	I/O	I/O	I/O				
53	I/O	I/O	I/O				
54	I/O	I/O	I/O				
55	I/O	I/O	I/O				
56	I/O	1/0	I/O				
57	V_{CCA}	V_{CCA}	V_{CCA}				
58	V _{CCI}	V _{CCI}	V_{CCI}				
59	I/O	I/O	I/O				
60	I/O	1/0	I/O				
61	I/O	I/O	I/O				
62	I/O	I/O	I/O				
63	I/O	I/O	I/O				
64	I/O	I/O	I/O				
65	I/O	I/O	I/O				
66	I/O	I/O	I/O				
67	V_{CCA}	V_{CCA}	V_{CCA}				
68	GND	GND	GND				
69	GND	GND	GND				
70	I/O	1/0	I/O				

3-6 v5.3

176-Pin TQFP

Figure 3-4 • 176-Pin TQFP (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pin PBGA						
Pin	A54SX32A					
Number	Function					
V22	1/0					
V23	I/O					
W1	1/0					
W2	1/0					
W3	1/0					
W4	1/0					
W20	I/O					
W21	1/0					
W22	1/0					
W23	NC					
Y1	NC					
Y2	1/0					
Y3	1/0					
Y4	GND					
Y5	1/0					
Y6	1/0					
Y7	1/0					
Y8	1/0					
Y9	1/0					
Y10	1/0					
Y11	1/0					
Y12	V_{CCA}					
Y13	NC					
Y14	1/0					
Y15	1/0					
Y16	I/O					
Y17	I/O					
Y18	I/O					
Y19	I/O					
Y20	GND					
Y21	I/O					
Y22	I/O					
Y23	I/O					

256-Pin FBGA

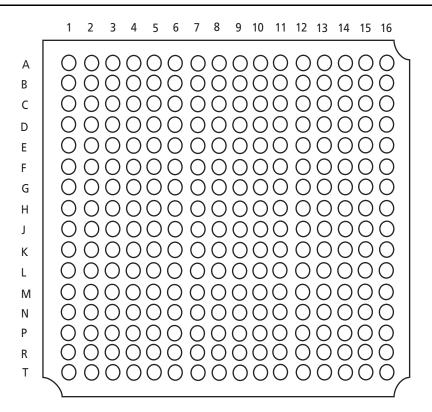


Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

256-Pin FBGA			
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
A1	GND	GND	GND
A2	TCK, I/O	TCK, I/O	TCK, I/O
А3	I/O	1/0	1/0
A4	I/O	1/0	1/0
A5	I/O	1/0	1/0
A6	I/O	1/0	1/0
Α7	I/O	1/0	I/O
A8	I/O	1/0	1/0
A9	CLKB	CLKB	CLKB
A10	I/O	1/0	1/0
A11	I/O	1/0	1/0
A12	NC	1/0	1/0
A13	I/O	1/0	I/O
A14	I/O	1/0	1/0
A15	GND	GND	GND
A16	GND	GND	GND
B1	I/O	1/0	1/0
В2	GND	GND	GND
В3	I/O	1/0	I/O
В4	I/O	1/0	I/O
B5	I/O	1/0	I/O
В6	NC	1/0	I/O
В7	I/O	1/0	I/O
В8	V_{CCA}	V_{CCA}	V_{CCA}
В9	I/O	1/0	I/O
B10	I/O	1/0	I/O
B11	NC	1/0	I/O
B12	I/O	1/0	I/O
B13	I/O	1/0	I/O
B14	1/0	1/0	I/O
B15	GND	GND	GND
B16	I/O	1/0	I/O
C1	1/0	1/0	I/O
C2	TDI, I/O	TDI, I/O	TDI, I/O
C3	GND	GND	GND
C4	I/O	1/0	I/O
C5	NC	1/0	I/O

256-Pin FBGA			
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
C6	I/O	I/O	I/O
C7	I/O	I/O	I/O
C8	I/O	I/O	I/O
С9	CLKA	CLKA	CLKA
C10	I/O	I/O	1/0
C11	I/O	I/O	I/O
C12	I/O	I/O	I/O
C13	I/O	I/O	I/O
C14	I/O	I/O	I/O
C15	I/O	I/O	I/O
C16	I/O	I/O	I/O
D1	I/O	I/O	I/O
D2	I/O	I/O	I/O
D3	I/O	I/O	I/O
D4	I/O	I/O	I/O
D5	I/O	I/O	I/O
D6	I/O	1/0	1/0
D7	I/O	1/0	1/0
D8	PRA, I/O	PRA, I/O	PRA, I/O
D9	I/O	I/O	QCLKD
D10	I/O	I/O	I/O
D11	NC	I/O	I/O
D12	I/O	I/O	I/O
D13	I/O	I/O	I/O
D14	I/O	I/O	I/O
D15	I/O	I/O	I/O
D16	I/O	I/O	I/O
E1	I/O	I/O	I/O
E2	I/O	I/O	1/0
E3	I/O	I/O	1/0
E4	I/O	I/O	1/0
E5	I/O	I/O	1/0
E6	I/O	I/O	1/0
E7	I/O	I/O	QCLKC
E8	I/O	I/O	1/0
E9	I/O	I/O	1/0
E10	I/O	I/O	I/O

3-22 v5.3

Pin Number A54SX32A Function A54SXX Function A1 NC* NC A2 NC* NC A3 NC* I/O A4 NC* I/O A5 NC* I/O A6 I/O I/O A7 I/O I/O A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* I/O A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A20 I/O I/O	
A2 NC* NC A3 NC* I/O A4 NC* I/O A5 NC* I/O A6 I/O I/O A7 I/O I/O A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A3 NC* I/O A4 NC* I/O A5 NC* I/O A6 I/O I/O A7 I/O I/O A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O	
A4 NC* I/O A5 NC* I/O A6 I/O I/O A7 I/O I/O A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A5 NC* I/O A6 I/O I/O A7 I/O I/O A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O	
A6 I/O I/O A7 I/O I/O A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A7 I/O I/O A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A8 I/O I/O A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O	
A9 I/O I/O A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O	
A10 I/O I/O A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A11 NC* I/O A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A12 NC* I/O A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A13 I/O I/O A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A14 NC* NC A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A15 NC* I/O A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A16 NC* I/O A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A17 I/O I/O A18 I/O I/O A19 I/O I/O	
A18 I/O I/O A19 I/O I/O	
A19 I/O I/O	
120 110 11-	
A20 I/O I/O	
A21 NC* I/O	
A22 NC* I/O	
A23 NC* I/O	
A24 NC* I/O	
A25 NC* NC	
A26 NC* NC	
AA1 NC* I/O	
AA2 NC* I/O	
AA3 V _{CCA} V _{CCA}	Α
AA4 I/O I/O	
AA5 I/O I/O	
AA22 I/O I/O	
AA23 I/O I/O	
AA24 I/O I/O	
AA25 NC* I/O	

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
AA26	NC*	I/O
AB1	NC*	NC
AB2	V _{CCI}	V _{CCI}
AB3	1/0	I/O
AB4	1/0	I/O
AB5	NC*	I/O
AB6	I/O	I/O
AB7	I/O	I/O
AB8	I/O	I/O
AB9	I/O	I/O
AB10	I/O	I/O
AB11	I/O	I/O
AB12	PRB, I/O	PRB, I/O
AB13	V_{CCA}	V_{CCA}
AB14	I/O	1/0
AB15	I/O	I/O
AB16	I/O	I/O
AB17	I/O	I/O
AB18	I/O	I/O
AB19	I/O	I/O
AB20	TDO, I/O	TDO, I/O
AB21	GND	GND
AB22	NC*	I/O
AB23	I/O	I/O
AB24	I/O	I/O
AB25	NC*	I/O
AB26	NC*	I/O
AC1	I/O	I/O
AC2	I/O	I/O
AC3	I/O	1/0
AC4	NC*	1/0
AC5	V _{CCI}	V _{CCI}
AC6	I/O	I/O
AC7	V _{CCI}	V _{CCI}
AC8	I/O	I/O

484-Pin FBGA		
Pin Number	A54SX32A Function	A54SX72A Function
AC9	I/O	I/O
AC10	I/O	I/O
AC11	I/O	I/O
AC12	I/O	QCLKA
AC13	I/O	I/O
AC14	I/O	I/O
AC15	I/O	I/O
AC16	I/O	I/O
AC17	I/O	I/O
AC18	I/O	I/O
AC19	I/O	I/O
AC20	V _{CCI}	V _{CCI}
AC21	I/O	I/O
AC22	I/O	I/O
AC23	NC*	I/O
AC24	I/O	1/0
AC25	NC*	I/O
AC26	NC*	I/O
AD1	I/O	I/O
AD2	I/O	I/O
AD3	GND	GND
AD4	I/O	I/O
AD5	I/O	I/O
AD6	I/O	I/O
AD7	I/O	I/O
AD8	I/O	I/O
AD9	V _{CCI}	V _{CCI}
AD10	I/O	I/O
AD11	I/O	I/O
AD12	I/O	I/O
AD13	V _{CCI}	V _{CCI}
AD14	I/O	I/O
AD15	I/O	I/O
AD16	I/O	I/O
AD17	V_{CCI}	V _{CCI}

Note: *These pins must be left floating on the A54SX32A device.

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
T3	I/O	I/O	
T4	I/O	I/O	
T5	I/O	I/O	
T10	GND	GND	
T11	GND	GND	
T12	GND	GND	
T13	GND	GND	
T14	GND	GND	
T15	GND	GND	
T16	GND	GND	
T17	GND	GND	
T22	1/0	I/O	
T23	I/O	I/O	
T24	I/O	I/O	
T25	NC*	I/O	
T26	NC*	I/O	
U1	I/O	I/O	
U2	V _{CCI}	V _{CCI}	
U3	I/O	I/O	
U4	I/O	I/O	
U5	I/O	I/O	
U10	GND	GND	
U11	GND	GND	
U12	GND	GND	
U13	GND	GND	
U14	GND	GND	
U15	GND	GND	
U16	GND	GND	
U17	GND	GND	
U22	I/O	I/O	
U23	I/O	I/O	
U24	I/O	I/O	
U25	V _{CCI}	V _{CCI}	
U26	I/O	I/O	
V1	NC*	I/O	

484-Pin FBGA			
Pin Number	A54SX32A Function	A54SX72A Function	
V2	NC*	I/O	
V3	I/O	I/O	
V4	I/O	I/O	
V5	I/O	I/O	
V22	V_{CCA}	V_{CCA}	
V23	I/O	I/O	
V24	I/O	I/O	
V25	NC*	I/O	
V26	NC*	I/O	
W1	I/O	I/O	
W2	I/O	I/O	
W3	I/O	I/O	
W4	I/O	I/O	
W5	1/0	I/O	
W22	I/O	I/O	
W23	V_{CCA}	V_{CCA}	
W24	I/O	I/O	
W25	NC*	I/O	
W26	NC*	I/O	
Y1	NC*	I/O	
Y2	NC*	I/O	
Y3	I/O	I/O	
Y4	I/O	I/O	
Y5	NC*	I/O	
Y22	I/O	I/O	
Y23	I/O	I/O	
Y24	V _{CCI}	V _{CCI}	
Y25	1/0	I/O	
Y26	I/O	I/O	

Note: *These pins must be left floating on the A54SX32A device.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	–3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9

v5.3 4

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section"was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

4-2 v5.3