

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	6036
Number of Logic Elements/Cells	-
Total RAM Bits	
Number of I/O	213
Number of Gates	108000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	256-BFCQFP with Tie Bar
Supplier Device Package	256-CQFP (75x75)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx72a-1cq256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Other Architectural Features

Technology

The Actel SX-A family is implemented on a high-voltage, twin-well CMOS process using $0.22 \,\mu/0.25 \,\mu$ design rules. The metal-to-metal antifuse is comprised of a combination of amorphous silicon and dielectric material with barrier metals and has a programmed ('on' state) resistance of 25 Ω with capacitance of 1.0 fF for low signal impedance.

Performance

The unique architectural features of the SX-A family enable the devices to operate with internal clock frequencies of 350 MHz, causing very fast execution of even complex logic functions. The SX-A family is an optimal platform upon which to integrate the functionality previously contained in multiple complex programmable logic devices (CPLDs). In addition, designs that previously would have required a gate array to meet performance goals can be integrated into an SX-A device with dramatic improvements in cost and time-to-market. Using timing-driven place-and-route tools, designers can achieve highly deterministic device performance.

User Security

Reverse engineering is virtually impossible in SX-A devices because it is extremely difficult to distinguish between programmed and unprogrammed antifuses. In addition, since SX-A is a nonvolatile, single-chip solution, there is no configuration bitstream to intercept at device power-up.

The Actel FuseLock advantage ensures that unauthorized users will not be able to read back the contents of an Actel antifuse FPGA. In addition to the inherent strengths of the architecture, special security fuses that prevent internal probing and overwriting are hidden throughout the fabric of the device. They are located where they cannot be accessed or bypassed without destroying access to the rest of the device, making both invasive and more-subtle noninvasive attacks ineffective against Actel antifuse FPGAs.

Look for this symbol to ensure your valuable IP is secure (Figure 1-11).

Figure 1-11 • FuseLock

For more information, refer to Actel's *Implementation* of Security in Actel Antifuse FPGAs application note.

I/O Modules

For a simplified I/O schematic, refer to Figure 1 in the application note, *Actel eX, SX-A, and RTSX-S I/Os*.

Each user I/O on an SX-A device can be configured as an input, an output, a tristate output, or a bidirectional pin. Mixed I/O standards can be set for individual pins, though this is only allowed with the same voltage as the input. These I/Os, combined with array registers, can achieve clock-to-output-pad timing as fast as 3.8 ns, even without the dedicated I/O registers. In most FPGAs, I/O cells that have embedded latches and flip-flops, requiring instantiation in HDL code; this is a design complication not encountered in SX-A FPGAs. Fast pinto-pin timing ensures that the device is able to interface with any other device in the system, which in turn enables parallel design of system components and reduces overall design time. All unused I/Os are configured as tristate outputs by the Actel Designer software, for maximum flexibility when designing new boards or migrating existing designs.

SX-A I/Os should be driven by high-speed push-pull devices with a low-resistance pull-up device when being configured as tristate output buffers. If the I/O is driven by a voltage level greater than V_{CCI} and a fast push-pull device is NOT used, the high-resistance pull-up of the driver and the internal circuitry of the SX-A I/O may create a voltage divider. This voltage divider could pull the input voltage below specification for some devices connected to the driver. A logic '1' may not be correctly presented in this case. For example, if an open drain driver is used with a pull-up resistor to 5 V to provide the logic '1' input, and V_{CCI} is set to 3.3 V on the SX-A device, the input signal may be pulled down by the SX-A input.

Each I/O module has an available power-up resistor of approximately 50 k Ω that can configure the I/O in a known state during power-up. For nominal pull-up and pull-down resistor values, refer to Table 1-4 on page 1-8 of the application note *Actel eX, SX-A, and RTSX-S I/Os.* Just slightly before V_{CCA} reaches 2.5 V, the resistors are disabled, so the I/Os will be controlled by user logic. See Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for more information concerning available I/O features.

SX-A Family FPGAs

JTAG Instructions

Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.

Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'. Bits 11-1 are always '02F', which is the Actel manufacturer code.

Table 1-7	•	JTAG	Instruction	Code
-----------	---	------	-------------	------

Instructions (IR4:IR0)	Binary Code
EXTEST	00000
SAMPLE/PRELOAD	00001
INTEST	00010
USERCODE	00011
IDCODE	00100
HighZ	01110
CLAMP	01111
Diagnostic	10000
BYPASS	11111
Reserved	All others

Table 1-8 • JTAG Instruction Code

Device	Process	Revision	Bits 31-28	Bits 27-12
A54SX08A	0.22 µ	0	8, 9	40B4, 42B4
		1	А, В	40B4, 42B4
A54SX16A	0.22 μ	0	9	40B8, 42B8
		1	В	40B8, 42B8
	0.25 μ	1	В	22B8
A54SX32A	0.2 2µ	0	9	40BD, 42BD
		1	В	40BD, 42BD
	0.25 μ	1	В	22BD
A54SX72A	0.22 μ	0	9	40B2, 42B2
		1	В	40B2, 42B2
	0.25 μ	1	В	22B2

Design Environment

The SX-A family of FPGAs is fully supported by both Actel Libero[®] Integrated Design Environment (IDE) and Designer FPGA development software. Actel Libero IDE is design management environment. seamlessly а integrating design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Svnplify[®] for Actel from Synplicity[®], ViewDraw[®] for Actel from Mentor Graphics[®], ModelSim[®] HDL Simulator from Mentor Graphics, WaveFormer Lite™ from SynaptiCAD[™], and Designer software from Actel. Refer to the Libero IDE flow diagram for more information (located on the Actel website).

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can select and lock package pins while only minimally impacting the results of place-and-route. Additionally, the back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmarGen core generator, which easily creates popular and commonly used logic functions for implementation in your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Device programming is supported through Silicon Sculptor series of programmers. In particular, Silicon Sculptor is compact, robust, single-site and multi-site device programmer for the PC.

With standalone software, Silicon Sculptor allows concurrent programming of multiple units from the same PC, ensuring the fastest programming times possible. Each fuse is subsequently verified by Silicon Sculptor II to insure correct programming. In addition, integrity tests ensure that no extra fuses are programmed. Silicon Sculptor also provides extensive hardware self-testing capability.

The procedure for programming an SX-A device using Silicon Sculptor is as follows:

- 1. Load the .AFM file
- 2. Select the device to be programmed
- 3. Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via in-house programming from the factory.

For detailed information on programming, read the following documents *Programming Antifuse Devices* and *Silicon Sculptor User's Guide*.

Related Documents

Application Notes

Global Clock Networks in Actel's Antifuse Devices http://www.actel.com/documents/GlobalClk_AN.pdf Using A54SX72A and RT54SX72S Quadrant Clocks http://www.actel.com/documents/QCLK_AN.pdf Implementation of Security in Actel Antifuse FPGAs http://www.actel.com/documents/Antifuse_Security_AN.pdf Actel eX, SX-A, and RTSX-S I/Os http://www.actel.com/documents/AntifuseIO_AN.pdf Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications http://www.actel.com/documents/HotSwapColdSparing_AN.pdf Programming Antifuse Devices http://www.actel.com/documents/AntifuseProgram_AN.pdf

Datasheets

HiRel SX-A Family FPGAs http://www.actel.com/documents/HRSXA_DS.pdf SX-A Automotive Family FPGAs http://www.actel.com/documents/SXA_Auto_DS.pdf

User's Guides

Silicon Sculptor User's Guide http://www.actel.com/documents/SiliSculptII_Sculpt3_ug.pdf

Pin Description

CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption.

For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer builtin programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating).

QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating).

These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only.

GND Ground

Low supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software.

NC No Connection

This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device.

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset Pin** is not selected in Designer.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 2-2 on page 2-1. All V_{CCI} power pins in the device should be connected.

V_{CCA} Supply Voltage

Supply voltage for array. See Table 2-2 on page 2-1. All V_{CCA} power pins in the device should be connected.

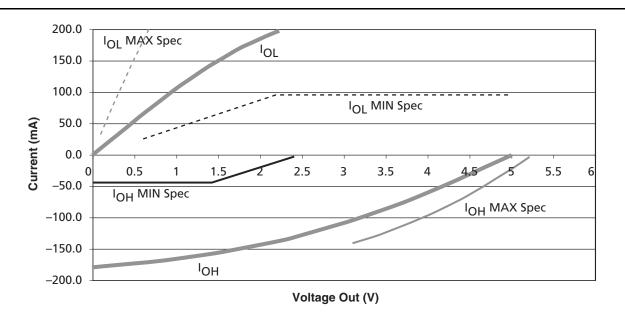


Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-1 • 5 V PCI V/I Curve for SX-A Family

 $I_{OH} = 11.9 * (V_{OUT} - 5.25) * (V_{OUT} + 2.45)$ for $V_{CCI} > V_{OUT} > 3.1V$ $I_{OL} = 78.5 * V_{OUT} * (4.4 - V_{OUT})$ for 0V < V_{OUT} < 0.71V

EQ 2-2

Table 2-9 • DC Specifications (3.3 V PCI Operation)

Symbol	Parameter	Condition	Min.	Max.	Units
V _{CCA}	Supply Voltage for Array		2.25	2.75	V
V _{CCI}	Supply Voltage for I/Os		3.0	3.6	V
V _{IH}	Input High Voltage		0.5V _{CCI}	V _{CCI} + 0.5	V
V _{IL}	Input Low Voltage		-0.5	0.3V _{CCI}	V
I _{IPU}	Input Pull-up Voltage ¹		0.7V _{CCI}	-	V
IIL	Input Leakage Current ²	$0 < V_{IN} < V_{CCI}$	-10	+10	μΑ
V _{OH}	Output High Voltage	I _{OUT} = -500 μA	0.9V _{CCI}	-	V
V _{OL}	Output Low Voltage	I _{OUT} = 1,500 μA		0.1V _{CCI}	V
C _{IN}	Input Pin Capacitance ³		-	10	pF
C _{CLK}	CLK Pin Capacitance		5	12	рF

EQ 2-1

Notes:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications sensitive to static power utilization.

2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).

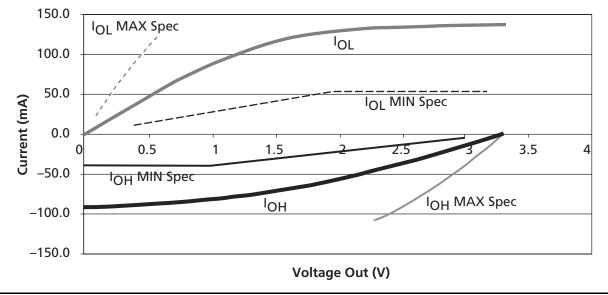


Figure 2-2 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

Figure 2-2 • 3.3 V PCI V/I Curve for SX-A Family

 $I_{OH} = (98.0/V_{CCI}) * (V_{OUT} - V_{CCI}) * (V_{OUT} + 0.4V_{CCI})$

for 0.7 $V_{CCI} < V_{OUT} < V_{CCI}$

 $I_{OL} = (256/V_{CCI}) * V_{OUT} * (V_{CCI} - V_{OUT})$ for 0V < V_{OUT} < 0.18 V_{CCI}

EQ 2-3

EQ 2-4

Where:

- C_{EQCM} = Equivalent capacitance of combinatorial modules (C-cells) in pF
- C_{EQSM} = Equivalent capacitance of sequential modules (R-Cells) in pF
- C_{EQI} = Equivalent capacitance of input buffers in pF
- C_{EQO} = Equivalent capacitance of output buffers in pF
- C_{EQCR} = Equivalent capacitance of CLKA/B in pF
- C_{EQHV} = Variable capacitance of HCLK in pF
- C_{EQHF} = Fixed capacitance of HCLK in pF
 - C_{L =} Output lead capacitance in pF
 - f_m = Average logic module switching rate in MHz
 - $f_n =$ Average input buffer switching rate in MHz
 - f_p = Average output buffer switching rate in MHz
 - $f_{a1} =$ Average CLKA rate in MHz
 - $f_{\alpha 2}$ = Average CLKB rate in MHz
 - f_{s1} = Average HCLK rate in MHz
 - m = Number of logic modules switching at fm
 - n = Number of input buffers switching at fn
 - p = Number of output buffers switching at fp
 - q₁ = Number of clock loads on CLKA
 - q₂ = Number of clock loads on CLKB
 - $r_1 =$ Fixed capacitance due to CLKA
 - r₂ = Fixed capacitance due to CLKB
 - s1 = Number of clock loads on HCLK
 - x = Number of I/Os at logic low
 - y = Number of I/Os at logic high

Table 2-11 • CEQ Values for SX-A Devices

	A54SX08A	A54SX16A	A54SX32A	A54SX72A
Combinatorial modules (C _{EQCM})	1.70 pF	2.00 pF	2.00 pF	1.80 pF
Sequential modules (C _{EQCM})	1.50 pF	1.50 pF	1.30 pF	1.50 pF
Input buffers (C _{EQI})	1.30 pF	1.30 pF	1.30 pF	1.30 pF
Output buffers (C _{EQO})	7.40 pF	7.40 pF	7.40 pF	7.40 pF
Routed array clocks (C _{EQCR})	1.05 pF	1.05 pF	1.05 pF	1.05 pF
Dedicated array clocks – variable (C _{EQHV})	0.85 pF	0.85 pF	0.85 pF	0.85 pF
Dedicated array clocks – fixed (C _{EQHF})	30.00 pF	55.00 pF	110.00 pF	240.00 pF
Routed array clock A (r ₁)	35.00 pF	50.00 pF	90.00 pF	310.00 pF

Table 2-20 A54SX08A Timing Characteristics

	-2 S	peed	-1 S	–1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Outp	out Module Timing ¹	1								1
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH} ²	Delta Low to High		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^2	Delta High to Low		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Outp	out Module Timing ³	1								1
t _{DLH}	Data-to-Pad Low to High		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		3.2		3.6		4.2		5.9	ns
d _{TLH}	Delta Low to High		0.017		0.017		0.023		0.031	ns/pF
d _{THL}	Delta High to Low		0.029		0.031		0.037		0.051	ns/pF
d _{THLS}	Delta High to Low—low slew		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. Delays based on 50 pF loading.

2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

3. Delays based on 35 pF loading.

Table 2-21 A54SX16A Timing Characteristics (Continued)

(Worst-Case Commercial C	Conditions	V	///20// 1	[. — 70°C)
(worst-case commercial c	Lonunuons,	$V C C \Delta = Z Z J V$	v (() – 5.0 v, i	1 = 70 C

				-								
		-3 S	–3 Speed ¹		–2 Speed		–1 Speed		Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.7		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.7		0.8		0.9		1.1		1.5	ns
Input Modu	le Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		0.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-27 A54SX16A Timing Characteristics

(Worst-Case Commercial Conditions V _{CCA}	$x = 2.25 \text{ V}, \text{ V}_{\text{CCI}} = 4.75 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$
--	--

		-3 Speed ¹ -2 S			peed	eed –1 Speed		Std. Speed		d –F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.2		2.5		2.8		3.3		4.6	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^{3}	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.2		2.5		2.8		3.3		4.6	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.7		7.7		8.7		10.2		14.3	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d _{TLH} ³	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d _{THL} ³	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-34 • A54SX32A Timing Characteristics

(Worst-Case Commercial Conditions	V _{CCA} = 2.25 V, V _{CCI} = 4.75 V, T _J = 70°C)
-----------------------------------	--

		-3 S	peed ¹	-2 S	peed	-1 S	peed	Std.	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
5 V PCI Out	put Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.1		2.4		2.8		3.2		4.5	ns
t _{DHL}	Data-to-Pad High to Low		2.8		3.2		3.6		4.2		5.9	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.3		1.5		1.7		2.0		2.8	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.1		2.4		2.8		3.2		4.5	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.0		3.5		3.9		4.6		6.4	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.8		3.2		3.6		4.2		5.9	ns
d_{TLH}^{3}	Delta Low to High		0.016		0.016		0.02		0.022		0.032	ns/pF
d_{THL}^{3}	Delta High to Low		0.026		0.03		0.032		0.04		0.052	ns/pF
5 V TTL Out	put Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		1.9		2.2		2.5		2.9		4.1	ns
t _{DHL}	Data-to-Pad High to Low		2.5		2.9		3.3		3.9		5.4	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		6.6		7.6		8.6		10.1		14.2	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.1		2.4		2.7		3.2		4.5	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		7.4		8.4		9.5		11.0		15.4	ns
t _{ENZH}	Enable-to-Pad, Z to H		1.9		2.2		2.5		2.9		4.1	ns
t _{ENLZ}	Enable-to-Pad, L to Z		3.6		4.2		4.7		5.6		7.8	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.5		2.9		3.3		3.9		5.4	ns
d _{TLH} ³	Delta Low to High		0.014		0.017		0.017		0.023		0.031	ns/pF
d_{THL}^3	Delta High to Low		0.023		0.029		0.031		0.037		0.051	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.043		0.046		0.057		0.066		0.089	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 50 pF loading.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI}) / (C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

Table 2-37 • A54SX72A Timing Characteristics (Continued)

(Worst-Case Commercial Conditions $V_{CCA} = 2.25 \text{ V}$, $V_{CCI} = 3.0 \text{ V}$, $T_J = 70^{\circ}\text{C}$)

		-3 Sp	eed*	-2 S	peed	-1 S	peed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{QCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.7		1.9		2.2		2.5		3.5	ns
t _{QCHKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.7		2		2.2		2.6		3.6	ns
t _{QPWH}	Minimum Pulse Width High	1.5		1.7		2.0		2.3		3.2		ns
t _{QPWL}	Minimum Pulse Width Low	1.5		1.7		2.0		2.3		3.2		ns
t _{QCKSW}	Maximum Skew (Light Load)		0.2		0.3		0.3		0.3		0.5	ns
t _{QCKSW}	Maximum Skew (50% Load)		0.4		0.5		0.5		0.6		0.9	ns
t _{QCKSW}	Maximum Skew (100% Load)		0.4		0.5		0.5		0.6		0.9	ns

Note: *All –3 speed grades have been discontinued.

100-Pin TQFP

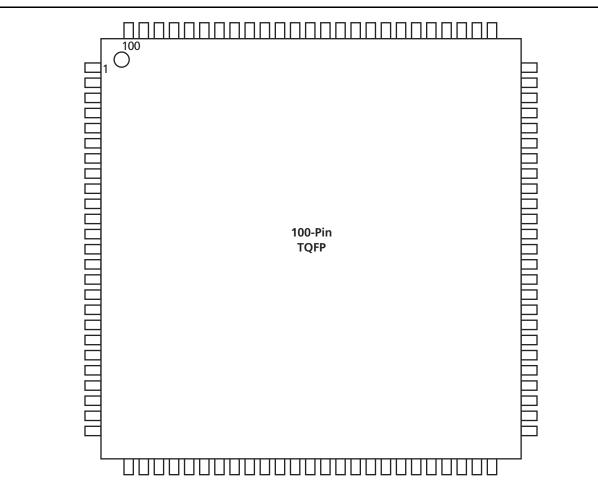


Figure 3-2 • 100-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

329-Pi	n PBGA						
Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function	Pin Number	A54SX32A Function
A1	GND	AA15	I/O	AC6	I/O	B20	I/O
A2	GND	AA16	I/O	AC7	I/O	B21	I/O
A3	V _{CCI}	AA17	I/O	AC8	I/O	B22	GND
A4	NC	AA18	I/O	AC9	V _{CCI}	B23	V _{CCI}
A5	I/O	AA19	I/O	AC10	I/O	C1	NC
A6	I/O	AA20	TDO, I/O	AC11	I/O	C2	TDI, I/O
A7	V _{CCI}	AA21	V _{CCI}	AC12	I/O	C3	GND
A8	NC	AA22	I/O	AC13	I/O	C4	I/O
A9	I/O	AA23	V _{CCI}	AC14	I/O	C5	I/O
A10	I/O	AB1	I/O	AC15	NC	C6	I/O
A11	I/O	AB2	GND	AC16	I/O	С7	I/O
A12	I/O	AB3	I/O	AC17	I/O	С8	I/O
A13	CLKB	AB4	I/O	AC18	I/O	С9	I/O
A14	I/O	AB5	I/O	AC19	I/O	C10	I/O
A15	I/O	AB6	I/O	AC20	I/O	C11	I/O
A16	I/O	AB7	I/O	AC21	NC	C12	I/O
A17	I/O	AB8	I/O	AC22	V _{CCI}	C13	I/O
A18	I/O	AB9	I/O	AC23	GND	C14	I/O
A19	I/O	AB10	I/O	B1	V _{CCI}	C15	I/O
A20	I/O	AB11	PRB, I/O	B2	GND	C16	I/O
A21	NC	AB12	I/O	B3	I/O	C17	I/O
A22	V _{CCI}	AB13	HCLK	B4	I/O	C18	I/O
A23	GND	AB14	I/O	B5	I/O	C19	I/O
AA1	V _{CCI}	AB15	I/O	B6	I/O	C20	I/O
AA2	I/O	AB16	I/O	B7	I/O	C21	V _{CCI}
AA3	GND	AB17	I/O	B8	I/O	C22	GND
AA4	I/O	AB18	I/O	B9	I/O	C23	NC
AA5	I/O	AB19	I/O	B10	I/O	D1	I/O
AA6	I/O	AB20	I/O	B11	I/O	D2	I/O
AA7	I/O	AB21	I/O	B12	PRA, I/O	D3	I/O
AA8	I/O	AB22	GND	B13	CLKA	D4	TCK, I/O
AA9	I/O	AB23	I/O	B14	I/O	D5	I/O
AA10	I/O	AC1	GND	B15	I/O	D6	I/O
AA11	I/O	AC2	V _{CCI}	B16	I/O	D7	I/O
AA12	I/O	AC3	NC	B17	I/O	D8	I/O
AA13	I/O	AC4	I/O	B18	I/O	D9	I/O
AA14	I/O	AC5	I/O	B19	I/O	D10	I/O

		484-Pin FBG	
Nu	A54SX72A Function	A54SX32A Function	Pin Number
	I/O	I/O	C19
	V _{CCI}	V _{CCI}	C20
	I/O	I/O	C21
	I/O	I/O	C22
	I/O	I/O	C23
	I/O	I/O	C24
	I/O	NC*	C25
	I/O	NC*	C26
	I/O	NC*	D1
	TMS	TMS	D2
	I/O	I/O	D3
	V _{CCI}	V _{CCI}	D4
	I/O	NC*	D5
	TCK, I/O	TCK, I/O	D6
	I/O	I/O	D7
	I/O	I/O	D8
	I/O	I/O	D9
	I/O	I/O	D10
	I/O	I/O	D11
	QCLKC	I/O	D12
	I/O	I/O	D13
	I/O	I/O	D14
	I/O	I/O	D15
	I/O	I/O	D16
	I/O	I/O	D17
	I/O	I/O	D18
	I/O	I/O	D19
	I/O	I/O	D20
	V _{CCI}	V _{CCI}	D21
	GND	GND	D22
	I/O	I/O	D23
	I/O	I/O	D24
	I/O	NC*	D25
	I/O	NC*	D26
	I/O	NC*	E1

	484-Pin FBG	A
Pin Number	A54SX32A Function	A54SX72A Function
E2	NC*	I/O
E3	I/O	I/O
E4	I/O	I/O
E5	GND	GND
E6	TDI, IO	TDI, IO
E7	I/O	I/O
E8	I/O	I/O
E9	I/O	I/O
E10	I/O	I/O
E11	I/O	I/O
E12	I/O	I/O
E13	V _{CCA}	V _{CCA}
E14	CLKB	CLKB
E15	I/O	I/O
E16	I/O	I/O
E17	I/O	I/O
E18	I/O	I/O
E19	I/O	I/O
E20	I/O	I/O
E21	I/O	I/O
E22	I/O	I/O
E23	I/O	I/O
E24	I/O	I/O
E25	V _{CCI}	V _{CCI}
E26	GND	GND
F1	V _{CCI}	V _{CCI}
F2	NC*	I/O
F3	NC*	I/O
F4	I/O	I/O
F5	I/O	I/O
F22	I/O	I/O
F23	I/O	I/O
F24	I/O	I/O
F25	I/O	I/O
F26	NC*	I/O

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
G1	NC*	I/O				
G2	NC*	I/O				
G3	NC*	I/O				
G4	I/O	I/O				
G5	I/O	I/O				
G22	I/O	I/O				
G23	V _{CCA}	V _{CCA}				
G24	I/O	I/O				
G25	NC*	I/O				
G26	NC*	I/O				
H1	NC*	I/O				
H2	NC*	I/O				
H3	I/O	I/O				
H4	I/O	I/O				
H5	I/O	I/O				
H22	I/O	I/O				
H23	I/O	I/O				
H24	I/O	I/O				
H25	NC*	I/O				
H26	NC*	I/O				
J1	NC*	I/O				
J2	NC*	I/O				
J3	I/O	I/O				
J4	I/O	I/O				
J5	I/O	I/O				
J22	I/O	I/O				
J23	I/O	I/O				
J24	I/O	I/O				
J25	V _{CCI}	V _{CCI}				
J26	NC*	I/O				
K1	I/O	I/O				
K2	V _{CCI}	V _{CCI}				
К3	I/O	I/O				
К4	I/O	I/O				
K5	V _{CCA}	V _{CCA}				

Actel°

SX-A Family FPGAs

Note: *These pins must be left floating on the A54SX32A device.

SX-A Family FPGAs

	A	484-Pin FBG	
N	A54SX72A Function	A54SX32A Function	Pin Number
	GND	GND	K10
	GND	GND	K11
	GND	GND	K12
	GND	GND	K13
	GND	GND	K14
	GND	GND	K15
	GND	GND	K16
	GND	GND	K17
	I/O	I/O	K22
	I/O	I/O	K23
	NC	NC*	K24
	I/O	NC*	K25
	I/O	NC*	K26
	I/O	NC*	L1
	I/O	NC*	L2
	I/O	I/O	L3
	I/O	I/O	L4
	I/O	I/O	L5
	GND	GND	L10
	GND	GND	L11
	GND	GND	L12
	GND	GND	L13
	GND	GND	L14
	GND	GND	L15
	GND	GND	L16
	GND	GND	L17
	I/O	I/O	L22
	I/O	I/O	L23
	I/O	I/O	L24
	I/O	I/O	L25
	I/O	I/O	L26
	NC	NC*	M1
	I/O	I/O	M2
	I/O	I/O	M3
	I/O	I/O	M4

A54SX32A Function	A545X72A
	Function
I/O	I/O
GND	GND
I/O	I/O
I/O	I/O
I/O	I/O
NC*	I/O
NC*	I/O
I/O	I/O
V _{CCI}	V _{CCI}
I/O	I/O
I/O	I/O
I/O	I/O
GND	GND
V _{CCA}	V _{CCA}
I/O	I/O
I/O	I/O
I/O	I/O
NC*	NC
NC*	I/O
NC*	I/O
I/O	I/O
	GND GND GND GND GND GND GND GND GND J/O J/O J/O VCCI J/O J/O J/O J/O J/O J/O GND J/O J/O J/O J/O J/O GND GND GND GND J/O J/O J/O J/O J/O GND GND GND J/O J/O J/O J/O J/O J/O J/O

484-Pin FBGA						
Pin Number	A54SX32A Function	A54SX72A Function				
P4	I/O	I/O				
P5	V _{CCA}	V _{CCA}				
P10	GND	GND				
P11	GND	GND				
P12	GND	GND				
P13	GND	GND				
P14	GND	GND				
P15	GND	GND				
P16	GND	GND				
P17	GND	GND				
P22	I/O	I/O				
P23	I/O	I/O				
P24	V _{CCI}	V _{CCI}				
P25	I/O	I/O				
P26	I/O	I/O				
R1	NC*	I/O				
R2	NC*	I/O				
R3	I/O	I/O				
R4	I/O	I/O				
R5	TRST, I/O	TRST, I/O				
R10	GND	GND				
R11	GND	GND				
R12	GND	GND				
R13	GND	GND				
R14	GND	GND				
R15	GND	GND				
R16	GND	GND				
R17	GND	GND				
R22	I/O	I/O				
R23	I/O	I/O				
R24	I/O	I/O				
R25	NC*	I/O				
R26	NC*	I/O				
T1	NC*	I/O				
T2	NC*	I/O				

Note: *These pins must be left floating on the A54SX32A device.

SX-A Family FPGAs

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

Actel Europe Ltd.

2061 Stierlin Court Mountain View, CA 94043-4655 USA **Phone** 650.318.4200 **Fax** 650.318.4600 River Court, Meadows Business Park Station Approach, Blackwater Camberley, Surrey GU17 9AB United Kingdom Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 www.jp.actel.com

Actel Hong Kong

Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488 www.actel.com.cn