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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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SX-A Family FPGAs
General Description

Introduction
The Actel SX-A family of FPGAs offers a cost-effective,
single-chip solution for low-power, high-performance
designs. Fabricated on 0.22 μm / 0.25 μm CMOS
antifuse technology and with the support of 2.5 V,
3.3 V and 5 V I/Os, the SX-A is a versatile platform to
integrate designs while significantly reducing time-
to-market.

SX-A Family Architecture
The SX-A family’s device architecture provides a unique
approach to module organization and chip routing that
satisfies performance requirements and delivers the most
optimal register/logic mix for a wide variety of
applications.

Interconnection between these logic modules is achieved
using Actel’s patented metal-to-metal programmable
antifuse interconnect elements (Figure 1-1). The
antifuses are normally open circuit and, when
programmed, form a permanent low-impedance
connection. 

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and
A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

Figure 1-1 • SX-A Family Interconnect Elements
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SX-A Family FPGAs
Routing Resources
The routing and interconnect resources of SX-A devices
are in the top two metal layers above the logic modules
(Figure 1-1 on page 1-1), providing optimal use of silicon,
thus enabling the entire floor of the device to be
spanned with an uninterrupted grid of logic modules.
Interconnection between these logic modules is achieved
using the Actel patented metal-to-metal programmable
antifuse interconnect elements. The antifuses are
normally open circuits and, when programmed, form a
permanent low-impedance connection.

Clusters and SuperClusters can be connected through the
use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely
fast and predictable interconnection of modules within
Clusters and SuperClusters (Figure 1-5 on page 1-4 and
Figure 1-6 on page 1-4). This routing architecture also
dramatically reduces the number of antifuses required to
complete a circuit, ensuring the highest possible
performance, which is often required in applications such
as fast counters, state machines, and data path logic. The
interconnect elements (i.e., the antifuses and metal
tracks) have lower capacitance and lower resistance than
any other device of similar capacity, leading to the fastest
signal propagation in the industry.
DirectConnect is a horizontal routing resource that
provides connections from a C-cell to its neighboring
R-Cell in a given SuperCluster. DirectConnect uses a
hardwired signal path requiring no programmable

interconnection to achieve its fast signal propagation
time of less than 0.1 ns.
FastConnect enables horizontal routing between any
two logic modules within a given SuperCluster, and
vertical routing with the SuperCluster immediately
below it. Only one programmable connection is used in a
FastConnect path, delivering a maximum pin-to-pin
propagation time of 0.3 ns. 
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. The Actel segmented routing structure provides
a variety of track lengths for extremely fast routing
between SuperClusters. The exact combination of track
lengths and antifuses within each path is chosen by the
100% automatic place-and-route software to minimize
signal propagation delays.
The general system of routing tracks allows any logic
module in the array to be connected to any other logic
or I/O module. Within this system, most connections
typically require three or fewer antifuses, resulting in
fast and predictable performance. 
The unique local and general routing structure featured
in SX-A devices allows 100% pin-locking with full logic
utilization, enables concurrent printed circuit board
(PCB) development, reduces design time, and allows
designers to achieve performance goals with minimum
effort.

Figure 1-4 • Cluster Organization
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SX-A Family FPGAs
Clock Resources
Actel’s high-drive routing structure provides three clock
networks (Table 1-1). The first clock, called HCLK, is
hardwired from the HCLK buffer to the clock select
multiplexor (MUX) in each R-cell. HCLK cannot be
connected to combinatorial logic. This provides a fast
propagation path for the clock signal. If not used, this
pin must be set as Low or High on the board. It must not
be left floating. Figure 1-7 describes the clock circuit
used for the constant load HCLK and the macros
supported. 

HCLK does not function until the fourth clock cycle each
time the device is powered up to prevent false output
levels due to any possible slow power-on-reset signal and
fast start-up clock circuit. To activate HCLK from the first
cycle, the TRST pin must be reserved in the Design
software and the pin must be tied to GND on the board.

Two additional clocks (CLKA, CLKB) are global clocks that
can be sourced from external pins or from internal logic
signals within the SX-A device. CLKA and CLKB may be
connected to sequential cells or to combinational logic. If
CLKA or CLKB pins are not used or sourced from signals,
these pins must be set as Low or High on the board. They
must not be left floating. Figure 1-8 describes the CLKA

and CLKB circuit used and the macros supported in SX-A
devices with the exception of A54SX72A. 

In addition, the A54SX72A device provides four
quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD—
corresponding to bottom-left, bottom-right, top-left,
and top-right locations on the die, respectively), which
can be sourced from external pins or from internal logic
signals within the device. Each of these clocks can
individually drive up to an entire quadrant of the chip,
or they can be grouped together to drive multiple
quadrants (Figure 1-9 on page 1-6). QCLK pins can
function as user I/O pins. If not used, the QCLK pins
must be tied Low or High on the board and must not be
left floating.
For more information on how to use quadrant clocks in
the A54SX72A device, refer to the Global Clock Networks
in Actel’s Antifuse Devices and Using A54SX72A and
RT54SX72S Quadrant Clocks application notes.

The CLKA, CLKB, and QCLK circuits for A54SX72A as well
as the macros supported are shown in Figure 1-10 on
page 1-6. Note that bidirectional clock buffers are only
available in A54SX72A. For more information, refer to
the "Pin Description" section on page 1-15.   

Table 1-1 • SX-A Clock Resources

A54SX08A A54SX16A A54SX32A A54SX72A

Routed Clocks (CLKA, CLKB) 2 2 2 2

Hardwired Clocks (HCLK) 1 1 1 1

Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD) 0 0 0 4

Figure 1-7 • SX-A HCLK Clock Buffer

Figure 1-8 • SX-A Routed Clock Buffer 
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SX-A Family FPGAs
Detailed Specifications

Operating Conditions  

Typical SX-A Standby Current

Table 2-1 • Absolute Maximum Ratings

Symbol Parameter Limits Units

VCCI DC Supply Voltage for I/Os –0.3 to +6.0 V

VCCA DC Supply Voltage for Arrays –0.3 to +3.0 V

VI Input Voltage –0.5 to +5.75 V

VO Output Voltage –0.5 to + VCCI + 0.5 V

TSTG Storage Temperature –65 to +150 °C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the
"Recommended Operating Conditions".

Table 2-2 • Recommended Operating Conditions

Parameter Commercial Industrial Units

Temperature Range 0 to +70 –40 to +85 °C

2.5 V Power Supply Range (VCCA and VCCI) 2.25 to 2.75 2.25 to 2.75 V

3.3 V Power Supply Range (VCCI) 3.0 to 3.6 3.0 to 3.6 V

5 V Power Supply Range (VCCI) 4.75 to 5.25 4.75 to 5.25 V

Table 2-3 •  Typical Standby Current for SX-A at 25°C with VCCA = 2.5 V

Product VCCI = 2.5 V VCCI = 3.3 V VCCI = 5 V

A54SX08A 0.8 mA 1.0 mA 2.9 mA

A54SX16A 0.8 mA 1.0 mA 2.9 mA

A54SX32A 0.9 mA 1.0 mA 3.0 mA

A54SX72A 3.6 mA 3.8 mA 4.5 mA

Table 2-4 • Supply Voltages

VCCA VCCI* Maximum Input Tolerance Maximum Output Drive

2. 5 V 2.5 V 5.75 V 2.7 V

2.5 V 3.3 V 5.75 V 3.6 V

2.5 V 5 V 5.75 V 5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.
v5.3 2-1



SX-A Family FPGAs
Electrical Specifications
Table 2-5 • 3.3 V LVTTL and 5 V TTL Electrical Specifications

 Symbol Parameter

Commercial Industrial

Min. Max. Min. Max. Units

 VOH VCCI = Minimum
VI = VIH or VIL

 (IOH = –1 mA) 0.9 VCCI 0.9 VCCI V

VCCI = Minimum
VI = VIH or VIL

 (IOH = –8 mA) 2.4 2.4 V

 VOL VCCI = Minimum
VI = VIH or VIL

 (IOL= 1 mA) 0.4 0.4 V

VCCI = Minimum
VI = VIH or VIL

 (IOL= 12 mA) 0.4 0.4 V

 VIL Input Low Voltage 0.8 0.8 V

 VIH Input High Voltage 2.0 5.75 2.0 5.75 V

IIL/IIH Input Leakage Current, VIN = VCCI or GND –10 10 –10 10 µA

 IOZ Tristate Output Leakage Current –10 10 –10 10 µA

 tR, tF Input Transition Time tR, tF 10 10 ns

 CIO I/O Capacitance 10 10 pF

 ICC Standby Current 10 20 mA

IV Curve* Can be derived from the IBIS model on the web.

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.

Table 2-6 • 2.5 V LVCMOS2 Electrical Specifications

 Symbol Parameter

Commercial Industrial

Min. Max. Min. Max. Units

 VOH VDD = MIN,
VI = VIH or VIL

(IOH = –100 μA) 2.1 2.1 V

VDD = MIN,
VI = VIH or VIL

(IOH = –1 mA) 2.0 2.0 V

VDD = MIN,
VI = VIH or VIL

(IOH =–-2 mA) 1.7 1.7 V

 VOL VDD = MIN,
VI = VIH or VIL

(IOL= 100 μA) 0.2 0.2 V

VDD = MIN,
VI = VIH or VIL

(IOL= 1 mA) 0.4 0.4 V

VDD = MIN,
VI = VIH or VIL

(IOL= 2 mA) 0.7 0.7 V

 VIL Input Low Voltage, VOUT ≤ VVOL(max) -0.3 0.7 -0.3 0.7 V

 VIH Input High Voltage, VOUT ≥ VVOH(min) 1.7 5.75 1.7 5.75 V

IIL/IIH Input Leakage Current, VIN = VCCI or GND –10 10 –10 10 µA

 IOZ Tristate Output Leakage Current, VOUT = VCCI or GND –10 10 –10 10 µA

 tR, tF Input Transition Time tR, tF 10 10 ns

 CIO I/O Capacitance 10 10 pF

 ICC Standby Current 10 20 mA

IV Curve* Can be derived from the IBIS model on the web.

Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.
2-2 v5.3
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SX-A Family FPGAs
Table 2-8 • AC Specifications (5 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

IOH(AC) Switching Current High 0 < VOUT ≤ 1.4 1 –44 – mA

1.4 ≤ VOUT < 2.4 1, 2 (–44 + (VOUT – 1.4)/0.024) – mA

3.1 < VOUT < VCCI 
1, 3 – EQ 2-1 on 

page 2-5
–

(Test Point) VOUT = 3.1 3 – –142 mA

IOL(AC) Switching Current Low VOUT ≥ 2.2 1 95 – mA

2.2 > VOUT > 0.55 1 (VOUT/0.023) – mA

0.71 > VOUT > 0 1, 3 – EQ 2-2 on 
page 2-5

–

(Test Point) VOUT = 0.71 3 – 206 mA

ICL Low Clamp Current –5 < VIN ≤ –1 –25 + (VIN + 1)/0.015 – mA

slewR Output Rise Slew Rate 0.4 V to 2.4 V load 4 1 5 V/ns

slewF Output Fall Slew Rate 2.4 V to 0.4 V load 4 1 5 V/ns

Notes:

1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half
of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#,
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,
which are open drain outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than
toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A
and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter
with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not
required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge
rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and
should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.

Output
Buffer

1/2 in. max.

 50 pF

Pin
2-4 v5.3



SX-A Family FPGAs
Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.

IOH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45)

for VCCI > VOUT > 3.1V

EQ 2-1

IOL = 78.5 * VOUT * (4.4 – VOUT)

for 0V < VOUT < 0.71V

EQ 2-2

Figure 2-1 • 5 V PCI V/I Curve for SX-A Family
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Table 2-9 • DC Specifications (3.3 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

VCCA Supply Voltage for Array 2.25 2.75 V

VCCI Supply Voltage for I/Os 3.0 3.6 V

VIH Input High Voltage 0.5VCCI VCCI + 0.5 V

VIL Input Low Voltage –0.5 0.3VCCI V

IIPU Input Pull-up Voltage1 0.7VCCI – V

IIL Input Leakage Current2 0 < VIN < VCCI –10 +10 μA

VOH Output High Voltage IOUT = –500 µA 0.9VCCI – V

VOL Output Low Voltage IOUT = 1,500 µA 0.1VCCI V

CIN Input Pin Capacitance3 – 10 pF

CCLK CLK Pin Capacitance 5 12 pF

Notes:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a
floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications
sensitive to static power utilization.

2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
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SX-A Family FPGAs
Guidelines for Estimating Power
The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper
limits of power dissipation:

Logic Modules (m) = 20% of modules

Inputs Switching (n) = Number inputs/4

Outputs Switching (p) = Number of outputs/4

CLKA Loads (q1) = 20% of R-cells

CLKB Loads (q2) = 20% of R-cells

Load Capacitance (CL) = 35 pF

Average Logic Module Switching Rate (fm) = f/10

Average Input Switching Rate (fn) =f/5

Average Output Switching Rate (fp) = f/10

Average CLKA Rate (fq1) = f/2

Average CLKB Rate (fq2) = f/2

Average HCLK Rate (fs1) = f

HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S
Power Calculator worksheet.
2-10 v5.3
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SX-A Family FPGAs
Theta-JA
Junction-to-ambient thermal resistance (θJA) is determined under standard conditions specified by JESD-51 series but
has little relevance in actual performance of the product in real application. It should be employed with caution but is
useful for comparing the thermal performance of one package to another.

A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA
package at still air is as follows. i.e.: 

EQ 2-11

The device's power consumption must be lower than the calculated maximum power dissipation by the package.

The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is
higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or
the airflow inside the system must be increased.

Theta-JC
Junction-to-case thermal resistance (θJC) measures the ability of a device to dissipate heat from the surface of the chip
to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only
applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power
consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required. 

Calculation for Heat Sink
For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is
3.00 W. The user-dependent data TJ and TA are given as follows:

From the datasheet:  

EQ 2-12

The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the
device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated
by:

EQ 2-13

θJA = 17.1°C/W is taken from Table 2-12 on page 2-11

TA = 125°C is the maximum limit of ambient (from the datasheet)

Max. Allowed Power Max Junction Temp Max. Ambient Temp–
θJA

------------------------------------------------------------------------------------------------------------ 150°C 125°C–
17.1°C/W

---------------------------------------- 1.46 W= = =

TJ = 110°C

TA = 70°C

θJA = 18.0°C/W

θJC = 3.2 °C/W

P Max Junction Temp Max. Ambient Temp–
θJA

------------------------------------------------------------------------------------------------------------ 110°C 70°C–
18.0°C/W

------------------------------------ 2.22 W= = =

θJA
Max Junction Temp Max. Ambient Temp–

P
------------------------------------------------------------------------------------------------------------ 110°C 70°C–

3.00 W
------------------------------------ 13.33°C/W= = =
2-12 v5.3



SX-A Family FPGAs
SX-A Timing Model

Sample Path Calculations

Hardwired Clock Routed Clock

Note: *Values shown for A54SX72A, –2, worst-case commercial conditions at 5 V PCI with standard place-and-route.
Figure 2-3 • SX-A Timing Model
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= 1.8 + 0.8 + 0.3 + 3.9 = 6.8 ns
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= 3.0 + 0.8 + 0.3 + 3.9 = 8.0 ns
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SX-A Family FPGAs
Timing Characteristics
Timing characteristics for SX-A devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer
characteristics are common to all SX-A family members.
Internal routing delays are device-dependent. Design
dependency means actual delays are not determined
until after placement and routing of the user’s design are
complete. The timing characteristics listed in this
datasheet represent sample timing numbers of the SX-A
devices. Design-specific delay values may be determined
by using Timer or performing simulation after successful
place-and-route with the Designer software.

Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most
timing-critical paths. Critical nets are determined by net
property assignment prior to placement and routing. Up
to 6 percent of the nets in a design may be designated as
critical, while 90 percent of the nets in a design are
typical.

Long Tracks
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows,
columns, or modules.   Long tracks employ three to five
antifuse connections. This increases capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically, up to 6 percent of
nets in a fully utilized device require long tracks. Long
tracks contribute approximately 4 ns to 8.4 ns delay. This
additional delay is represented statistically in higher
fanout routing delays.

Timing Derating
SX-A devices are manufactured with a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process changes. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case
processing. Maximum timing parameters reflect
minimum operating voltage, maximum operating
temperature, and worst-case processing.

Temperature and Voltage Derating Factors
Table 2-13 • Temperature and Voltage Derating Factors

(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.25 V)

VCCA

Junction Temperature (TJ)

–55°C –40°C 0°C 25°C 70°C 85°C 125°C

2.250 V 0.79 0.80 0.87 0.89 1.00 1.04 1.14

2.500 V 0.74 0.75 0.82 0.83 0.94 0.97 1.07

2.750 V 0.68 0.69 0.75 0.77 0.87 0.90 0.99
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SX-A Family FPGAs
Timing Characteristics
Table 2-14 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays1

tPD Internal Array Module 0.9 1.1 1.2 1.7 ns

Predicted Routing Delays2

tDC FO = 1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.4 0.6 ns

tRD1 FO = 1 Routing Delay 0.3 0.4 0.5 0.6 ns

tRD2 FO = 2 Routing Delay 0.5 0.5 0.6 0.8 ns

tRD3 FO = 3 Routing Delay 0.6 0.7 0.8 1.1 ns

tRD4 FO = 4 Routing Delay 0.8 0.9 1 1.4 ns

tRD8 FO = 8 Routing Delay 1.4 1.5 1.8 2.5 ns

tRD12 FO = 12 Routing Delay 2 2.2 2.6 3.6 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.7 0.8 0.9 1.3 ns

tCLR Asynchronous Clear-to-Q 0.6 0.6 0.8 1.0 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.7 0.9 1.2 ns

tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.2 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.4 1.5 1.8 2.5 ns

tRECASYN Asynchronous Recovery Time 0.4 0.4 0.5 0.7 ns

tHASYN Asynchronous Hold Time 0.3 0.3 0.4 0.6 ns

tMPW Clock Pulse Width 1.6 1.8 2.1 2.9 ns

Input Module Propagation Delays

tINYH Input Data Pad to Y High 2.5 V LVCMOS 0.8 0.9 1.0 1.4 ns

tINYL Input Data Pad to Y Low 2.5 V LVCMOS 1.0 1.2 1.4 1.9 ns

tINYH Input Data Pad to Y High 3.3 V PCI 0.6 0.6 0.7 1.0 ns

tINYL Input Data Pad to Y Low 3.3 V PCI 0.7 0.8 0.9 1.3 ns

tINYH Input Data Pad to Y High 3.3 V LVTTL 0.7 0.7 0.9 1.2 ns

tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.0 1.1 1.3 1.8 ns

Notes:

1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance. Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
tINYH Input Data Pad to Y High 5 V PCI 0.5 0.6 0.7 0.9 ns

tINYL Input Data Pad to Y Low 5 V PCI 0.8 0.9 1.1 1.5 ns

tINYH Input Data Pad to Y High 5 V TTL 0.5 0.6 0.7 0.9 ns

tINYL Input Data Pad to Y Low 5 V TTL 0.8 0.9 1.1 1.5 ns

Input Module Predicted Routing Delays2

tIRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.6 ns

tIRD2 FO = 2 Routing Delay 0.5 0.5 0.6 0.8 ns

tIRD3 FO = 3 Routing Delay 0.6 0.7 0.8 1.1 ns

tIRD4 FO = 4 Routing Delay 0.8 0.9 1 1.4 ns

tIRD8 FO = 8 Routing Delay 1.4 1.5 1.8 2.5 ns

tIRD12 FO = 12 Routing Delay 2 2.2 2.6 3.6 ns

Table 2-14 • A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

Notes:

1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance. Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
tINYH Input Data Pad to Y High 5 V PCI 0.7 0.8 0.9 1.0 1.4 ns

tINYL Input Data Pad to Y Low 5 V PCI 0.9 1.1 1.2 1.4 1.9 ns

tINYH Input Data Pad to Y High 5 V TTL 0.9 1.1 1.2 1.4 1.9 ns

tINYL Input Data Pad to Y Low 5 V TTL 1.4 1.6 1.8 2.1 2.9 ns

Input Module Predicted Routing Delays3

tIRD1 FO = 1 Routing Delay 0.3 0.3 0.3 0.4 0.6 ns

tIRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns

tIRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns

tIRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1 1.4 ns

tIRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns

tIRD12 FO = 12 Routing Delay 1.7 2 2.2 2.6 3.6 ns

Table 2-28 • A54SX32A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Notes:

1. All –3 speed grades have been discontinued.
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance.   Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
Table 2-33 • A54SX32A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

3.3 V PCI Output Module Timing2

tDLH Data-to-Pad Low to High 1.9 2.2 2.4 2.9 4.0 ns

tDHL Data-to-Pad High to Low 2.0 2.3 2.6 3.1 4.3 ns

tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns

tENZH Enable-to-Pad, Z to H 1.9 2.2 2.4 2.9 4.0 ns

tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns

tENHZ Enable-to-Pad, H to Z 2.0 2.3 2.6 3.1 4.3 ns

dTLH
3 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF

dTHL
3 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF

3.3 V LVTTL Output Module Timing4

tDLH Data-to-Pad Low to High 2.6 3.0 3.4 4.0 5.6 ns

tDHL Data-to-Pad High to Low 2.6 3.0 3.3 3.9 5.5 ns

tDHLS Data-to-Pad High to Low—low slew 9.0 10.4 11.8 13.8 19.3 ns

tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns

tENZLS Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 34.9 ns

tENZH Enable-to-Pad, Z to H 2.6 3.0 3.4 4.0 5.6 ns

tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns

tENHZ Enable-to-Pad, H to Z 2.6 3.0 3.3 3.9 5.5 ns

dTLH
3 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF

dTHL
3 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF

dTHLS
3 Delta High to Low—low slew 0.053 0.053 0.067 0.073 0.107 ns/pF

Notes:

1. All –3 speed grades have been discontinued.
2. Delays based on 10 pF loading and 25 Ω resistance.
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
4. Delays based on 35 pF loading.
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SX-A Family FPGAs
145 I/O

146 I/O

147 I/O

148 I/O

149 I/O

150 I/O

151 I/O

152 CLKA

153 CLKB

154 NC

155 GND

156 VCCA

157 PRA, I/O

158 I/O

159 I/O

160 I/O

161 I/O

162 I/O

163 I/O

164 I/O

165 I/O

166 I/O

167 I/O

168 I/O

169 VCCI

170 I/O

171 I/O

172 I/O

173 I/O

174 I/O

175 I/O

176 TCK, I/O

176-Pin TQFP

Pin 
Number

A54SX32A 
Function
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SX-A Family FPGAs
144-Pin FBGA 

Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.

Figure 3-6 • 144-Pin FBGA (Top View)
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SX-A Family FPGAs
144-Pin FBGA

Pin Number
A54SX08A 
Function

A54SX16A 
Function

A54SX32A 
Function

A1 I/O I/O I/O

A2 I/O I/O I/O

A3 I/O I/O I/O

A4 I/O I/O I/O

A5 VCCA VCCA VCCA

A6 GND GND GND

A7 CLKA CLKA CLKA

A8 I/O I/O I/O

A9 I/O I/O I/O

A10 I/O I/O I/O

A11 I/O I/O I/O

A12 I/O I/O I/O

B1 I/O I/O I/O

B2 GND GND GND

B3 I/O I/O I/O

B4 I/O I/O I/O

B5 I/O I/O I/O

B6 I/O I/O I/O

B7 CLKB CLKB CLKB

B8 I/O I/O I/O

B9 I/O I/O I/O

B10 I/O I/O I/O

B11 GND GND GND

B12 I/O I/O I/O

C1 I/O I/O I/O

C2 I/O I/O I/O

C3 TCK, I/O TCK, I/O TCK, I/O

C4 I/O I/O I/O

C5 I/O I/O I/O

C6 PRA, I/O PRA, I/O PRA, I/O

C7 I/O I/O I/O

C8 I/O I/O I/O

C9 I/O I/O I/O

C10 I/O I/O I/O

C11 I/O I/O I/O

C12 I/O I/O I/O

D1 I/O I/O I/O

D2 VCCI VCCI VCCI

D3 TDI, I/O TDI, I/O TDI, I/O

D4 I/O I/O I/O

D5 I/O I/O I/O

D6 I/O I/O I/O

D7 I/O I/O I/O

D8 I/O I/O I/O

D9 I/O I/O I/O

D10 I/O I/O I/O

D11 I/O I/O I/O

D12 I/O I/O I/O

E1 I/O I/O I/O

E2 I/O I/O I/O

E3 I/O I/O I/O

E4 I/O I/O I/O

E5 TMS TMS TMS

E6 VCCI VCCI VCCI

E7 VCCI VCCI VCCI

E8 VCCI VCCI VCCI

E9 VCCA VCCA VCCA

E10 I/O I/O I/O

E11 GND GND GND

E12 I/O I/O I/O

F1 I/O I/O I/O

F2 I/O I/O I/O

F3 NC NC NC

F4 I/O I/O I/O

F5 GND GND GND

F6 GND GND GND

F7 GND GND GND

F8 VCCI VCCI VCCI

F9 I/O I/O I/O

F10 GND GND GND

F11 I/O I/O I/O

F12 I/O I/O I/O

144-Pin FBGA

Pin Number
A54SX08A 
Function

A54SX16A 
Function

A54SX32A 
Function
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SX-A Family FPGAs
G1 I/O I/O I/O

G2 GND GND GND

G3 I/O I/O I/O

G4 I/O I/O I/O

G5 GND GND GND

G6 GND GND GND

G7 GND GND GND

G8 VCCI VCCI VCCI

G9 I/O I/O I/O

G10 I/O I/O I/O

G11 I/O I/O I/O

G12 I/O I/O I/O

H1 TRST, I/O TRST, I/O TRST, I/O

H2 I/O I/O I/O

H3 I/O I/O I/O

H4 I/O I/O I/O

H5 VCCA VCCA VCCA

H6 VCCA VCCA VCCA

H7 VCCI VCCI VCCI

H8 VCCI VCCI VCCI

H9 VCCA VCCA VCCA

H10 I/O I/O I/O

H11 I/O I/O I/O

H12 NC NC NC

J1 I/O I/O I/O

J2 I/O I/O I/O

J3 I/O I/O I/O

J4 I/O I/O I/O

J5 I/O I/O I/O

J6 PRB, I/O PRB, I/O PRB, I/O

J7 I/O I/O I/O

J8 I/O I/O I/O

J9 I/O I/O I/O

J10 I/O I/O I/O

J11 I/O I/O I/O

J12 VCCA VCCA VCCA

144-Pin FBGA

Pin Number
A54SX08A 
Function

A54SX16A 
Function

A54SX32A 
Function

K1 I/O I/O I/O

K2 I/O I/O I/O

K3 I/O I/O I/O

K4 I/O I/O I/O

K5 I/O I/O I/O

K6 I/O I/O I/O

K7 GND GND GND

K8 I/O I/O I/O

K9 I/O I/O I/O

K10 GND GND GND

K11 I/O I/O I/O

K12 I/O I/O I/O

L1 GND GND GND

L2 I/O I/O I/O

L3 I/O I/O I/O

L4 I/O I/O I/O

L5 I/O I/O I/O

L6 I/O I/O I/O

L7 HCLK HCLK HCLK

L8 I/O I/O I/O

L9 I/O I/O I/O

L10 I/O I/O I/O

L11 I/O I/O I/O

L12 I/O I/O I/O

M1 I/O I/O I/O

M2 I/O I/O I/O

M3 I/O I/O I/O

M4 I/O I/O I/O

M5 I/O I/O I/O

M6 I/O I/O I/O

M7 VCCA VCCA VCCA

M8 I/O I/O I/O

M9 I/O I/O I/O

M10 I/O I/O I/O

M11 TDO, I/O TDO, I/O TDO, I/O

M12 I/O I/O I/O

144-Pin FBGA

Pin Number
A54SX08A 
Function

A54SX16A 
Function

A54SX32A 
Function
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SX-A Family FPGAs
256-Pin FBGA 

Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.

Figure 3-7 • 256-Pin FBGA (Top View)
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