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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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SX-A Family FPGAs
Routing Resources
The routing and interconnect resources of SX-A devices
are in the top two metal layers above the logic modules
(Figure 1-1 on page 1-1), providing optimal use of silicon,
thus enabling the entire floor of the device to be
spanned with an uninterrupted grid of logic modules.
Interconnection between these logic modules is achieved
using the Actel patented metal-to-metal programmable
antifuse interconnect elements. The antifuses are
normally open circuits and, when programmed, form a
permanent low-impedance connection.

Clusters and SuperClusters can be connected through the
use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely
fast and predictable interconnection of modules within
Clusters and SuperClusters (Figure 1-5 on page 1-4 and
Figure 1-6 on page 1-4). This routing architecture also
dramatically reduces the number of antifuses required to
complete a circuit, ensuring the highest possible
performance, which is often required in applications such
as fast counters, state machines, and data path logic. The
interconnect elements (i.e., the antifuses and metal
tracks) have lower capacitance and lower resistance than
any other device of similar capacity, leading to the fastest
signal propagation in the industry.
DirectConnect is a horizontal routing resource that
provides connections from a C-cell to its neighboring
R-Cell in a given SuperCluster. DirectConnect uses a
hardwired signal path requiring no programmable

interconnection to achieve its fast signal propagation
time of less than 0.1 ns.
FastConnect enables horizontal routing between any
two logic modules within a given SuperCluster, and
vertical routing with the SuperCluster immediately
below it. Only one programmable connection is used in a
FastConnect path, delivering a maximum pin-to-pin
propagation time of 0.3 ns. 
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. The Actel segmented routing structure provides
a variety of track lengths for extremely fast routing
between SuperClusters. The exact combination of track
lengths and antifuses within each path is chosen by the
100% automatic place-and-route software to minimize
signal propagation delays.
The general system of routing tracks allows any logic
module in the array to be connected to any other logic
or I/O module. Within this system, most connections
typically require three or fewer antifuses, resulting in
fast and predictable performance. 
The unique local and general routing structure featured
in SX-A devices allows 100% pin-locking with full logic
utilization, enables concurrent printed circuit board
(PCB) development, reduces design time, and allows
designers to achieve performance goals with minimum
effort.

Figure 1-4 • Cluster Organization
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SX-A Family FPGAs
Other Architectural Features

Technology
The Actel SX-A family is implemented on a high-voltage,
twin-well CMOS process using 0.22 μ / 0.25 μ design
rules. The metal-to-metal antifuse is comprised of a
combination of amorphous silicon and dielectric material
with barrier metals and has a programmed ('on' state)
resistance of 25 Ω with capacitance of 1.0 fF for low
signal impedance. 

Performance
The unique architectural features of the SX-A family
enable the devices to operate with internal clock
frequencies of 350 MHz, causing very fast execution of
even complex logic functions. The SX-A family is an
optimal platform upon which to integrate the
functionality previously contained in multiple complex
programmable logic devices (CPLDs). In addition, designs
that previously would have required a gate array to meet
performance goals can be integrated into an SX-A device
with dramatic improvements in cost and time-to-market.
Using timing-driven place-and-route tools, designers can
achieve highly deterministic device performance. 

User Security
Reverse engineering is virtually impossible in SX-A
devices because it is extremely difficult to distinguish
between programmed and unprogrammed antifuses. In
addition, since SX-A is a nonvolatile, single-chip solution,
there is no configuration bitstream to intercept at device
power-up.

The Actel FuseLock advantage ensures that unauthorized
users will not be able to read back the contents of an
Actel antifuse FPGA. In addition to the inherent
strengths of the architecture, special security fuses that
prevent internal probing and overwriting are hidden
throughout the fabric of the device. They are located
where they cannot be accessed or bypassed without
destroying access to the rest of the device, making both
invasive and more-subtle noninvasive attacks ineffective
against Actel antifuse FPGAs. 

Look for this symbol to ensure your valuable IP is secure
(Figure 1-11). 

For more information, refer to Actel’s Implementation of
Security in Actel Antifuse FPGAs application note.

I/O Modules
For a simplified I/O schematic, refer to Figure 1 in the
application note, Actel eX, SX-A, and RTSX-S I/Os.

Each user I/O on an SX-A device can be configured as an
input, an output, a tristate output, or a bidirectional pin.
Mixed I/O standards can be set for individual pins,
though this is only allowed with the same voltage as the
input. These I/Os, combined with array registers, can
achieve clock-to-output-pad timing as fast as 3.8 ns, even
without the dedicated I/O registers. In most FPGAs, I/O
cells that have embedded latches and flip-flops,
requiring instantiation in HDL code; this is a design
complication not encountered in SX-A FPGAs. Fast pin-
to-pin timing ensures that the device is able to interface
with any other device in the system, which in turn
enables parallel design of system components and
reduces overall design time. All unused I/Os are
configured as tristate outputs by the Actel Designer
software, for maximum flexibility when designing new
boards or migrating existing designs. 
SX-A I/Os should be driven by high-speed push-pull
devices with a low-resistance pull-up device when being
configured as tristate output buffers. If the I/O is driven
by a voltage level greater than VCCI and a fast push-pull
device is NOT used, the high-resistance pull-up of the
driver and the internal circuitry of the SX-A I/O may
create a voltage divider. This voltage divider could pull
the input voltage below specification for some devices
connected to the driver. A logic '1' may not be correctly
presented in this case. For example, if an open drain
driver is used with a pull-up resistor to 5 V to provide the
logic '1' input, and VCCI is set to 3.3 V on the SX-A device,
the input signal may be pulled down by the SX-A input.
Each I/O module has an available power-up resistor of
approximately 50 kΩ that can configure the I/O in a
known state during power-up. For nominal pull-up and
pull-down resistor values, refer to Table 1-4 on page 1-8
of the application note Actel eX, SX-A, and RTSX-S I/Os.
Just slightly before VCCA reaches 2.5 V, the resistors are
disabled, so the I/Os will be controlled by user logic. See
Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for
more information concerning available I/O features.

Figure 1-11 • FuseLock
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SX-A Family FPGAs
Boundary-Scan Testing (BST)
All SX-A devices are IEEE 1149.1 compliant and offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
The BST function is controlled through the special JTAG
pins (TMS, TDI, TCK, TDO, and TRST). The functionality of
the JTAG pins is defined by two available modes:
Dedicated and Flexible. TMS cannot be employed as a
user I/O in either mode.

Dedicated Mode
In Dedicated mode, all JTAG pins are reserved for BST;
designers cannot use them as regular I/Os. An internal
pull-up resistor is automatically enabled on both TMS
and TDI pins, and the TMS pin will function as defined in
the IEEE 1149.1 (JTAG) specification. 
To select Dedicated mode, the user must reserve the
JTAG pins in Actel’s Designer software. Reserve the JTAG
pins by checking the Reserve JTAG box in the Device
Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes
are unchecked. Table 1-5 lists the definitions of the
options in the Device Selection Wizard.  

Flexible Mode
In Flexible mode, TDI, TCK, and TDO may be employed as
either user I/Os or as JTAG input pins. The internal
resistors on the TMS and TDI pins are not present in
flexible JTAG mode. 
To select the Flexible mode, uncheck the Reserve JTAG
box in the Device Selection Wizard dialog in the Actel
Designer software. In Flexible mode, TDI, TCK, and TDO
pins may function as user I/Os or BST pins. The
functionality is controlled by the BST Test Access Port
(TAP) controller. The TAP controller receives two control
inputs, TMS and TCK. Upon power-up, the TAP controller
enters the Test-Logic-Reset state. In this state, TDI, TCK,
and TDO function as user I/Os. The TDI, TCK, and TDO are
transformed from user I/Os into BST pins when a rising
edge on TCK is detected while TMS is at logic low. To
return to Test-Logic Reset state, TMS must be high for at
least five TCK cycles. An external 10 k pull-up resistor
to VCCI should be placed on the TMS pin to pull it
High by default.
Table 1-6 describes the different configuration
requirements of BST pins and their functionality in
different modes. 

TRST Pin
The TRST pin functions as a dedicated Boundary-Scan
Reset pin when the Reserve JTAG Test Reset option is
selected as shown in Figure 1-12. An internal pull-up
resistor is permanently enabled on the TRST pin in this
mode. Actel recommends connecting this pin to ground
in normal operation to keep the JTAG state controller in
the Test-Logic-Reset state. When JTAG is being used, it
can be left floating or can be driven high. 
When the Reserve JTAG Test Reset option is not
selected, this pin will function as a regular I/O. If unused
as an I/O in the design, it will be configured as a tristated
output.

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin Function

Reserve JTAG Keeps pins from being used and
changes the behavior of JTAG pins (no
pull-up on TMS)

Reserve JTAG Test
Reset

Regular I/O or JTAG reset with an
internal pull-up

Reserve Probe Keeps pins from being used or regular
I/O

Table 1-6 • Boundary-Scan Pin Configurations and 
Functions

Mode

Designer 
"Reserve JTAG" 

Selection
TAP Controller 

State

Dedicated (JTAG) Checked Any

Flexible (User I/O) Unchecked Test-Logic-Reset

Flexible (JTAG) Unchecked Any EXCEPT Test-
Logic-Reset
v5.3 1-9



SX-A Family FPGAs
Related Documents

Application Notes
Global Clock Networks in Actel’s Antifuse Devices

http://www.actel.com/documents/GlobalClk_AN.pdf

Using A54SX72A and RT54SX72S Quadrant Clocks 

http://www.actel.com/documents/QCLK_AN.pdf

Implementation of Security in Actel Antifuse FPGAs

http://www.actel.com/documents/Antifuse_Security_AN.pdf

Actel eX, SX-A, and RTSX-S I/Os

http://www.actel.com/documents/AntifuseIO_AN.pdf

Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications

http://www.actel.com/documents/HotSwapColdSparing_AN.pdf

Programming Antifuse Devices 

http://www.actel.com/documents/AntifuseProgram_AN.pdf

Datasheets
HiRel SX-A Family FPGAs

http://www.actel.com/documents/HRSXA_DS.pdf

SX-A Automotive Family FPGAs

http://www.actel.com/documents/SXA_Auto_DS.pdf

User’s Guides
Silicon Sculptor User’s Guide

http://www.actel.com/documents/SiliSculptII_Sculpt3_ug.pdf
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SX-A Family FPGAs
Table 2-10 • AC Specifications (3.3 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

IOH(AC) Switching Current High 0 < VOUT ≤ 0.3VCCI 
1 –12VCCI – mA

0.3VCCI ≤ VOUT < 0.9VCCI 
1 (–17.1(VCCI – VOUT)) – mA

0.7VCCI < VOUT < VCCI 
1, 2 – EQ 2-3 on 

page 2-7
–

(Test Point) VOUT = 0.7VCC 
2 – –32VCCI mA

IOL(AC) Switching Current Low VCCI > VOUT ≥ 0.6VCCI 
1 16VCCI – mA

0.6VCCI > VOUT > 0.1VCCI 
1 (26.7VOUT) – mA

0.18VCCI > VOUT > 0 1, 2 – EQ 2-4 on 
page 2-7

–

(Test Point) VOUT = 0.18VCC
 2 – 38VCCI mA

ICL Low Clamp Current –3 < VIN ≤ –1 –25 + (VIN + 1)/0.015 – mA

ICH High Clamp Current VCCI + 4 > VIN ≥ VCCI + 1 25 + (VIN – VCCI – 1)/0.015 – mA

slewR Output Rise Slew Rate 0.2VCCI - 0.6VCCI load 3 1 4 V/ns

slewF Output Fall Slew Rate 0.6VCCI - 0.2VCCI load 3 1 4 V/ns

Notes:

1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half
of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#,
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,
which are open drain outputs.

2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C
and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter
with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and
minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain
outputs.

Output
Buffer

1/2 in. max.

10 pF

Pin

1 k/25 Ω

1 k/25 Ω

Pin

Buffer
Output

10 pF
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SX-A Family FPGAs
Guidelines for Estimating Power
The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper
limits of power dissipation:

Logic Modules (m) = 20% of modules

Inputs Switching (n) = Number inputs/4

Outputs Switching (p) = Number of outputs/4

CLKA Loads (q1) = 20% of R-cells

CLKB Loads (q2) = 20% of R-cells

Load Capacitance (CL) = 35 pF

Average Logic Module Switching Rate (fm) = f/10

Average Input Switching Rate (fn) =f/5

Average Output Switching Rate (fp) = f/10

Average CLKA Rate (fq1) = f/2

Average CLKB Rate (fq2) = f/2

Average HCLK Rate (fs1) = f

HCLK loads (s1) = 20% of R-cells

To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S
Power Calculator worksheet.
2-10 v5.3
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SX-A Family FPGAs
Thermal Characteristics 

Introduction
The temperature variable in Actel Designer software refers to the junction temperature, not the ambient, case, or
board temperatures. This is an important distinction because dynamic and static power consumption will cause the
chip's junction to be higher than the ambient, case, or board temperatures. EQ 2-9 and EQ 2-10 give the relationship
between thermal resistance, temperature gradient and power.

EQ 2-9

EQ 2-10

Where:  

θJA
TJ TA–

P
----------------=

θJA
TC TA–

P
------------------=

θJA = Junction-to-air thermal resistance

θJC = Junction-to-case thermal resistance

TJ = Junction temperature

TA = Ambient temperature

TC = Ambient temperature

P = total power dissipated by the device

Table 2-12 • Package Thermal Characteristics

Package Type
Pin 

Count θJC

θJA

UnitsStill Air
1.0 m/s

200 ft./min.
2.5 m/s

500 ft./min.

Thin Quad Flat Pack (TQFP) 100 14 33.5 27.4 25 °C/W

Thin Quad Flat Pack (TQFP) 144 11 33.5 28 25.7 °C/W

Thin Quad Flat Pack (TQFP) 176 11 24.7 19.9 18 °C/W

Plastic Quad Flat Pack (PQFP)1 208 8 26.1 22.5 20.8 °C/W

Plastic Quad Flat Pack (PQFP) with Heat Spreader2 208 3.8 16.2 13.3 11.9 °C/W

Plastic Ball Grid Array (PBGA) 329 3 17.1 13.8 12.8 °C/W

Fine Pitch Ball Grid Array (FBGA) 144 3.8 26.9 22.9 21.5 °C/W

Fine Pitch Ball Grid Array (FBGA) 256 3.8 26.6 22.8 21.5 °C/W

Fine Pitch Ball Grid Array (FBGA) 484 3.2 18 14.7 13.6 °C/W

Notes:

1. The A54SX08A PQ208 has no heat spreader.
2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.
v5.3 2-11



SX-A Family FPGAs
To determine the heat sink's thermal performance, use the following equation:

EQ 2-14

where: 

EQ 2-15

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a
function of airflow. The heat sink performance can be significantly improved with the presence of airflow. 

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers
should always correlate the power consumption of the device with the maximum allowable power dissipation of the
package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

θJA(TOTAL) θJC θCS θSA+ +=

θCS = 0.37°C/W

= thermal resistance of the interface material between the case and the heat
sink, usually provided by the thermal interface manufacturer

θSA = thermal resistance of the heat sink in °C/W

θSA θJA(TOTAL) θJC– θCS–=

θSA 13.33°C/W 3.20°C/W– 0.37°C/W–=

θSA 9.76°C/W=
v5.3 2-13



SX-A Family FPGAs
tINYH Input Data Pad to Y High 5 V PCI 0.5 0.6 0.7 0.9 ns

tINYL Input Data Pad to Y Low 5 V PCI 0.8 0.9 1.1 1.5 ns

tINYH Input Data Pad to Y High 5 V TTL 0.5 0.6 0.7 0.9 ns

tINYL Input Data Pad to Y Low 5 V TTL 0.8 0.9 1.1 1.5 ns

Input Module Predicted Routing Delays2

tIRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.6 ns

tIRD2 FO = 2 Routing Delay 0.5 0.5 0.6 0.8 ns

tIRD3 FO = 3 Routing Delay 0.6 0.7 0.8 1.1 ns

tIRD4 FO = 4 Routing Delay 0.8 0.9 1 1.4 ns

tIRD8 FO = 8 Routing Delay 1.4 1.5 1.8 2.5 ns

tIRD12 FO = 12 Routing Delay 2 2.2 2.6 3.6 ns

Table 2-14 • A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

Notes:

1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance. Post-route timing analysis or simulation is required to determine actual performance. 
v5.3 2-19



SX-A Family FPGAs
Table 2-18 • A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

2.5 V LVCMOS Output Module Timing1,2

tDLH Data-to-Pad Low to High 3.9 4.4 5.2 7.2 ns

tDHL Data-to-Pad High to Low 3.0 3.4 3.9 5.5 ns

tDHLS Data-to-Pad High to Low—low slew 13.3 15.1 17.7 24.8 ns

tENZL Enable-to-Pad, Z to L 2.8 3.2 3.7 5.2 ns

tENZLS Data-to-Pad, Z to L—low slew 13.7 15.5 18.2 25.5 ns

tENZH Enable-to-Pad, Z to H 3.9 4.4 5.2 7.2 ns

tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.3 4.7 ns

tENHZ Enable-to-Pad, H to Z 3.0 3.4 3.9 5.5 ns

dTLH
3 Delta Low to High 0.037 0.043 0.051 0.071 ns/pF

dTHL
3 Delta High to Low 0.017 0.023 0.023 0.037 ns/pF

dTHLS
3 Delta High to Low—low slew 0.06 0.071 0.086 0.117 ns/pF

Note:

1. Delays based on 35 pF loading.
2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
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SX-A Family FPGAs
Table 2-20 • A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

5 V PCI Output Module Timing1

tDLH Data-to-Pad Low to High 2.4 2.8 3.2 4.5 ns

tDHL Data-to-Pad High to Low 3.2 3.6 4.2 5.9 ns

tENZL Enable-to-Pad, Z to L 1.5 1.7 2.0 2.8 ns

tENZH Enable-to-Pad, Z to H 2.4 2.8 3.2 4.5 ns

tENLZ Enable-to-Pad, L to Z 3.5 3.9 4.6 6.4 ns

tENHZ Enable-to-Pad, H to Z 3.2 3.6 4.2 5.9 ns

dTLH
2 Delta Low to High 0.016 0.02 0.022 0.032 ns/pF

dTHL
2 Delta High to Low 0.03 0.032 0.04 0.052 ns/pF

5 V TTL Output Module Timing3

tDLH Data-to-Pad Low to High 2.4 2.8 3.2 4.5 ns

tDHL Data-to-Pad High to Low 3.2 3.6 4.2 5.9 ns

tDHLS Data-to-Pad High to Low—low slew 7.6 8.6 10.1 14.2 ns

tENZL Enable-to-Pad, Z to L 2.4 2.7 3.2 4.5 ns

tENZLS Enable-to-Pad, Z to L—low slew 8.4 9.5 11.0 15.4 ns

tENZH Enable-to-Pad, Z to H 2.4 2.8 3.2 4.5 ns

tENLZ Enable-to-Pad, L to Z 4.2 4.7 5.6 7.8 ns

tENHZ Enable-to-Pad, H to Z 3.2 3.6 4.2 5.9 ns

dTLH Delta Low to High 0.017 0.017 0.023 0.031 ns/pF

dTHL Delta High to Low 0.029 0.031 0.037 0.051 ns/pF

dTHLS Delta High to Low—low slew 0.046 0.057 0.066 0.089 ns/pF

Notes:

1. Delays based on 50 pF loading.
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
3. Delays based on 35 pF loading.
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Table 2-22 • A54SX16A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)

Parameter Description

–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Dedicated (Hardwired) Array Clock Networks

tHCKH Input Low to High
(Pad to R-cell Input)

1.2 1.4 1.6 1.8 2.8 ns

tHCKL Input High to Low
(Pad to R-cell Input)

1.0 1.1 1.2 1.5 2.2 ns

tHPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns

tHPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns

tHCKSW Maximum Skew 0.3 0.3 0.4 0.4 0.7 ns

tHP Minimum Period 2.8 3.4 3.8 4.4 6.0 ns

fHMAX Maximum Frequency 357 294 263 227 167 MHz

Routed Array Clock Networks

tRCKH Input Low to High (Light Load)
(Pad to R-cell Input)

1.0 1.2 1.3 1.6 2.2 ns

tRCKL Input High to Low (Light Load)
(Pad to R-cell Input)

1.1 1.3 1.5 1.7 2.4 ns

tRCKH Input Low to High (50% Load)
(Pad to R-cell Input)

1.1 1.3 1.5 1.7 2.4 ns

tRCKL Input High to Low (50% Load)
(Pad to R-cell Input)

1.1 1.3 1.5 1.7 2.4 ns

tRCKH Input Low to High (100% Load)
(Pad to R-cell Input)

1.3 1.5 1.7 2.0 2.8 ns

tRCKL Input High to Low (100% Load)
(Pad to R-cell Input)

1.3 1.5 1.7 2.0 2.8 ns

tRPWH Minimum Pulse Width High 1.4 1.7 1.9 2.2 3.0 ns

tRPWL Minimum Pulse Width Low 1.4 1.7 1.9 2.2 3.0 ns

tRCKSW Maximum Skew (Light Load) 0.8 0.9 1.0 1.2 1.7 ns

tRCKSW Maximum Skew (50% Load) 0.8 0.9 1.0 1.2 1.7 ns

tRCKSW Maximum Skew (100% Load) 1.0 1.1 1.3 1.5 2.1 ns

Note: *All –3 speed grades have been discontinued.
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Table 2-25 • A54SX16A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

2.5 V LVCMOS Output Module Timing 2, 3 

tDLH Data-to-Pad Low to High 3.4 3.9 4.5 5.2 7.3 ns

tDHL Data-to-Pad High to Low 2.6 3.0 3.3 3.9 5.5 ns

tDHLS Data-to-Pad High to Low—low slew 11.6 13.4 15.2 17.9 25.0 ns

tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns

tENZLS Data-to-Pad, Z to L—low slew 11.8 13.7 15.5 18.2 25.5 ns

tENZH Enable-to-Pad, Z to H 3.4 3.9 4.5 5.2 7.3 ns

tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns

tENHZ Enable-to-Pad, H to Z 2.6 3.0 3.3 3.9 5.5 ns

dTLH
4 Delta Low to High 0.031 0.037 0.043 0.051 0.071 ns/pF

dTHL
4 Delta High to Low 0.017 0.017 0.023 0.023 0.037 ns/pF

dTHLS
4 Delta High to Low—low slew 0.057 0.06 0.071 0.086 0.117 ns/pF

Note:

1. All –3 speed grades have been discontinued.
2. Delays based on 35 pF loading.
3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
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Table 2-28 • A54SX32A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays2

tPD Internal Array Module 0.8 0.9 1.1 1.2 1.7 ns

Predicted Routing Delays3

tDC FO = 1 Routing Delay, Direct
Connect

0.1 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns

tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns

tRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns

tRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns

tRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns

tRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns

tRD12 FO = 12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns

tCLR Asynchronous Clear-to-Q 0.5 0.6 0.6 0.8 1.0 ns

tPRESET Asynchronous Preset-to-Q 0.6 0.7 0.7 0.9 1.2 ns

tSUD Flip-Flop Data Input Set-Up 0.6 0.7 0.8 0.9 1.2 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.2 1.4 1.5 1.8 2.5 ns

tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns

tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns

tMPW Clock Pulse Width 1.4 1.6 1.8 2.1 2.9 ns

Input Module Propagation Delays

tINYH Input Data Pad to Y High 2.5 V
LVCMOS

0.6 0.7 0.8 0.9 1.2 ns

tINYL Input Data Pad to Y Low 2.5 V
LVCMOS

1.2 1.3 1.5 1.8 2.5 ns

tINYH Input Data Pad to Y High 3.3 V PCI 0.5 0.6 0.6 0.7 1.0 ns

tINYL Input Data Pad to Y Low 3.3 V PCI 0.6 0.7 0.8 0.9 1.3 ns

tINYH Input Data Pad to Y High 3.3 V
LVTTL

0.8 0.9 1.0 1.2 1.6 ns

tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.4 1.6 1.8 2.2 3.0 ns

Notes:

1. All –3 speed grades have been discontinued.
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance.   Post-route timing analysis or simulation is required to determine actual performance. 
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Table 2-32 • A54SX32A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

2.5 V LVCMOS Output Module Timing 2,3

tDLH Data-to-Pad Low to High 3.3 3.8 4.2 5.0 7.0 ns

tDHL Data-to-Pad High to Low 2.5 2.9 3.2 3.8 5.3 ns

tDHLS Data-to-Pad High to Low—low slew 11.1 12.8 14.5 17.0 23.8 ns

tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns

tENZLS Data-to-Pad, Z to L—low slew 11.8 13.7 15.5 18.2 25.5 ns

tENZH Enable-to-Pad, Z to H 3.3 3.8 4.2 5.0 7.0 ns

tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns

tENHZ Enable-to-Pad, H to Z 2.5 2.9 3.2 3.8 5.3 ns

dTLH
4 Delta Low to High 0.031 0.037 0.043 0.051 0.071 ns/pF

dTHL
4 Delta High to Low 0.017 0.017 0.023 0.023 0.037 ns/pF

dTHLS
4 Delta High to Low—low slew 0.057 0.06 0.071 0.086 0.117 ns/pF

Note:

1. All –3 speed grades have been discontinued.
2. Delays based on 35 pF loading.
3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
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Table 2-34 • A54SX32A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

5 V PCI Output Module Timing2

tDLH Data-to-Pad Low to High 2.1 2.4 2.8 3.2 4.5 ns

tDHL Data-to-Pad High to Low 2.8 3.2 3.6 4.2 5.9 ns

tENZL Enable-to-Pad, Z to L 1.3 1.5 1.7 2.0 2.8 ns

tENZH Enable-to-Pad, Z to H 2.1 2.4 2.8 3.2 4.5 ns

tENLZ Enable-to-Pad, L to Z 3.0 3.5 3.9 4.6 6.4 ns

tENHZ Enable-to-Pad, H to Z 2.8 3.2 3.6 4.2 5.9 ns

dTLH
3 Delta Low to High 0.016 0.016 0.02 0.022 0.032 ns/pF

dTHL
3 Delta High to Low 0.026 0.03 0.032 0.04 0.052 ns/pF

5 V TTL Output Module Timing4

tDLH Data-to-Pad Low to High 1.9 2.2 2.5 2.9 4.1 ns

tDHL Data-to-Pad High to Low 2.5 2.9 3.3 3.9 5.4 ns

tDHLS Data-to-Pad High to Low—low slew 6.6 7.6 8.6 10.1 14.2 ns

tENZL Enable-to-Pad, Z to L 2.1 2.4 2.7 3.2 4.5 ns

tENZLS Enable-to-Pad, Z to L—low slew 7.4 8.4 9.5 11.0 15.4 ns

tENZH Enable-to-Pad, Z to H 1.9 2.2 2.5 2.9 4.1 ns

tENLZ Enable-to-Pad, L to Z 3.6 4.2 4.7 5.6 7.8 ns

tENHZ Enable-to-Pad, H to Z 2.5 2.9 3.3 3.9 5.4 ns

dTLH
3 Delta Low to High 0.014 0.017 0.017 0.023 0.031 ns/pF

dTHL
3 Delta High to Low 0.023 0.029 0.031 0.037 0.051 ns/pF

dTHLS
3 Delta High to Low—low slew 0.043 0.046 0.057 0.066 0.089 ns/pF

Notes:

1. All –3 speed grades have been discontinued.
2. Delays based on 50 pF loading.
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
4. Delays based on 35 pF loading.
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tINYH Input Data Pad to Y High 5 V PCI 0.5 0.6 0.7 0.8 1.1 ns

tINYL Input Data Pad to Y Low 5 V PCI 0.8 0.9 1.0 1.2 1.6 ns

tINYH Input Data Pad to Y High 5 V TTL 0.7 0.8 0.9 1.0 1.4 ns

tINYL Input Data Pad to Y Low 5 V TTL 0.9 1.1 1.2 1.4 1.9 ns

Input Module Predicted Routing Delays3

tIRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.7 ns

tIRD2 FO = 2 Routing Delay 0.4 0.5 0.6 0.7 1 ns

tIRD3 FO = 3 Routing Delay 0.5 0.7 0.8 0.9 1.3 ns

tIRD4 FO = 4 Routing Delay 0.7 0.9 1 1.1 1.5 ns

tIRD8 FO = 8 Routing Delay 1.2 1.5 1.7 2.1 2.9 ns

tIRD12 FO = 12 Routing Delay 1.7 2.2 2.5 3 4.2 ns

Table 2-35 • A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Notes:

1. All –3 speed grades have been discontinued.
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance.   Post-route timing analysis or simulation is required to determine actual performance. 
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D11 VCCA

D12 NC

D13 I/O

D14 I/O

D15 I/O

D16 I/O

D17 I/O

D18 I/O

D19 I/O

D20 I/O

D21 I/O

D22 I/O

D23 I/O

E1 VCCI

E2 I/O

E3 I/O

E4 I/O

E20 I/O

E21 I/O

E22 I/O

E23 I/O

F1 I/O

F2 TMS

F3 I/O

F4 I/O

F20 I/O

F21 I/O

F22 I/O

F23 I/O

G1 I/O

G2 I/O

G3 I/O

G4 I/O

G20 I/O

G21 I/O

G22 I/O

G23 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

H1 I/O

H2 I/O

H3 I/O

H4 I/O

H20 VCCA

H21 I/O

H22 I/O

H23 I/O

J1 NC

J2 I/O

J3 I/O

J4 I/O

J20 I/O

J21 I/O

J22 I/O

J23 I/O

K1 I/O

K2 I/O

K3 I/O

K4 I/O

K10 GND

K11 GND

K12 GND

K13 GND

K14 GND

K20 I/O

K21 I/O

K22 I/O

K23 I/O

L1 I/O

L2 I/O

L3 I/O

L4 NC

L10 GND

L11 GND

L12 GND

L13 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

L14 GND

L20 NC

L21 I/O

L22 I/O

L23 NC

M1 I/O

M2 I/O

M3 I/O

M4 VCCA

M10 GND

M11 GND

M12 GND

M13 GND

M14 GND

M20 VCCA

M21 I/O

M22 I/O

M23 VCCI

N1 I/O

N2 TRST, I/O

N3 I/O

N4 I/O

N10 GND

N11 GND

N12 GND

N13 GND

N14 GND

N20 NC

N21 I/O

N22 I/O

N23 I/O

P1 I/O

P2 I/O

P3 I/O

P4 I/O

P10 GND

P11 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

P12 GND

P13 GND

P14 GND

P20 I/O

P21 I/O

P22 I/O

P23 I/O

R1 I/O

R2 I/O

R3 I/O

R4 I/O

R20 I/O

R21 I/O

R22 I/O

R23 I/O

T1 I/O

T2 I/O

T3 I/O

T4 I/O

T20 I/O

T21 I/O

T22 I/O

T23 I/O

U1 I/O

U2 I/O

U3 VCCA

U4 I/O

U20 I/O

U21 VCCA

U22 I/O

U23 I/O

V1 VCCI

V2 I/O

V3 I/O

V4 I/O

V20 I/O

V21 I/O

329-Pin PBGA

Pin 
Number

A54SX32A 
Function
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484-Pin FBGA 

Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.

Figure 3-8 • 484-Pin FBGA (Top View)
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