

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	6036
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	360
Number of Gates	108000
Voltage - Supply	2.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TC)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (27X27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a54sx72a-fgg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offering

Package	A54SX08A	A54SX16A	A54SX32A	A54SX72A
PQ208	C,I,A,M	C,I,A,M	C,I,A,M	C,I,A,M
TQ100	C,I,A,M	C,I,A,M	C,I,A,M	
TQ144	C,I,A,M	C,I,A,M	C,I,A,M	
TQ176			C,I,M	
BG329			C,I,M	
FG144	C,I,A,M	C,I,A,M	C,I,A,M	
FG256		C,I,A,M	C,I,A,M	C,I,A,M
FG484			C,I,M	C,I,A,M
CQ208			C,M,B	C,M,B
CQ256			C,M,B	C,M,B

Notes:

1. C = Commercial

- 2. I = Industrial
- 3. A = Automotive
- 4. M = Military
- 5. B = MIL-STD-883 Class B

6. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.

7. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Speed Grade and Temperature Grade Matrix

	F	Std	-1	-2	-3
Commercial	✓	1	1	1	Discontinued
Industrial		1	1	1	Discontinued
Automotive		1			
Military		1	1		
MIL-STD-883B		1	1		

Notes:

1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.

2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.

Contact your Actel Sales representative for more information on availability.

Table of Contents

General Description

Introduction	1-1
SX-A Family Architecture	1-1
Other Architectural Features	1-7
Programming	1-13
Related Documents	1-14
Pin Description	1-15

Detailed Specifications

Operating Conditions	2-1
Typical SX-A Standby Current	2-1
Electrical Specifications	2-2
PCI Compliance for the SX-A Family	2-3
Thermal Characteristics 2	2-11
SX-A Timing Model 2	2-14
Sample Path Calculations 2	2-14
Output Buffer Delays 2	2-15
AC Test Loads	2-15
Input Buffer Delays 2	2-16
C-Cell Delays 2	2-16
Cell Timing Characteristics 2	2-16
Timing Characteristics 2	2-17
Temperature and Voltage Derating Factors 2	2-17
Timing Characteristics 2	2-18

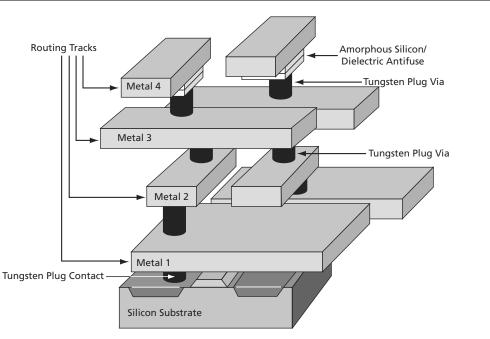
Package Pin Assignments

208-Pin PQFP	 		 	•								 •	 •					 	3-	·1
100-Pin TQFP	 		 	•								 •	 	•				 	3-	5
144-Pin TQFP	 		 	•								 •	 	•				 	3-	8
176-Pin TQFP	 		 	•								 •	 	•					3-1	1
329-Pin PBGA	 		 	•								 •	 	•					3-1	4
144-Pin FBGA	 		 	•								 •	 	•					3-1	8
256-Pin FBGA	 		 	•								 •	 	•					3-2	1
484-Pin FBGA	 		 																3-2	6

Datasheet Information

List of Changes	4-1
Datasheet Categories	4-3
International Traffic in Arms Regulations (ITAR) and Export Administration	
Regulations (EAR)	4-3

General Description


Introduction

The Actel SX-A family of FPGAs offers a cost-effective, single-chip solution for low-power, high-performance designs. Fabricated on 0.22 μm / 0.25 μm CMOS antifuse technology and with the support of 2.5 V, 3.3 V and 5 V I/Os, the SX-A is a versatile platform to integrate designs while significantly reducing time-to-market.

SX-A Family Architecture

The SX-A family's device architecture provides a unique approach to module organization and chip routing that satisfies performance requirements and delivers the most optimal register/logic mix for a wide variety of applications.

Interconnection between these logic modules is achieved using Actel's patented metal-to-metal programmable antifuse interconnect elements (Figure 1-1). The antifuses are normally open circuit and, when programmed, form a permanent low-impedance connection.

Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.

Figure 1-1 • SX-A Family Interconnect Elements

Power-Up/Down and Hot Swapping

SX-A I/Os are configured to be hot-swappable, with the exception of 3.3 V PCI. During power-up/down (or partial up/down), all I/Os are tristated. V_{CCA} and V_{CCI} do not have to be stable during power-up/down, and can be powered up/down in any order. When the SX-A device is plugged into an electrically active system, the device will not degrade the reliability of or cause damage to the host system. The device's output pins are driven to a high impedance state until normal chip operating conditions

are reached. Table 1-4 summarizes the V_{CCA} voltage at which the I/Os behave according to the user's design for an SX-A device at room temperature for various ramp-up rates. The data reported assumes a linear ramp-up profile to 2.5 V. For more information on power-up and hot-swapping, refer to the application note, Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications.

Function	Description
Input Buffer Threshold Selections	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Flexible Output Driver	 5 V: PCI, TTL 3.3 V: PCI, LVTTL 2.5 V: LVCMOS2 (commercial only)
Output Buffer	 "Hot-Swap" Capability (3.3 V PCI is not hot swappable) I/O on an unpowered device does not sink current Can be used for "cold-sparing" Selectable on an individual I/O basis Individually selectable slew rate; high slew or low slew (The default is high slew rate). The slew is only affected on the falling edge of an output. Rising edges of outputs are not affected.
Power-Up	Individually selectable pull-ups and pull-downs during power-up (default is to power-up in tristate) Enables deterministic power-up of device V _{CCA} and V _{CCI} can be powered in any order

Table 1-2 • I/O Features

Table 1-3 • I/O Characteristics for All I/O Configurations

	Hot Swappable	Slew Rate Control	Power-Up Resistor
TTL, LVTTL, LVCMOS2	Yes	Yes. Only affects falling edges of outputs	Pull-up or pull-down
3.3 V PCI	No	No. High slew rate only	Pull-up or pull-down
5 V PCI	Yes	No. High slew rate only	Pull-up or pull-down

Table 1-4 • Power-Up Time at which I/Os Become Active

Supply Ramp Rate	0.25 V/ μs	0.025 V/ μs	5 V/ms	2.5 V/ms	0.5 V/ms	0.25 V/ms	0.1 V/ms	0.025 V/ms
Units	μs	μs	ms	ms	ms	ms	ms	ms
A54SX08A	10	96	0.34	0.65	2.7	5.4	12.9	50.8
A54SX16A	10	100	0.36	0.62	2.5	4.7	11.0	41.6
A54SX32A	10	100	0.46	0.74	2.8	5.2	12.1	47.2
A54SX72A	10	100	0.41	0.67	2.6	5.0	12.1	47.2

Boundary-Scan Testing (BST)

All SX-A devices are IEEE 1149.1 compliant and offer superior diagnostic and testing capabilities by providing Boundary Scan Testing (BST) and probing capabilities. The BST function is controlled through the special JTAG pins (TMS, TDI, TCK, TDO, and TRST). The functionality of the JTAG pins is defined by two available modes: Dedicated and Flexible. TMS cannot be employed as a user I/O in either mode.

Dedicated Mode

In Dedicated mode, all JTAG pins are reserved for BST; designers cannot use them as regular I/Os. An internal pull-up resistor is automatically enabled on both TMS and TDI pins, and the TMS pin will function as defined in the IEEE 1149.1 (JTAG) specification.

To select Dedicated mode, the user must reserve the JTAG pins in Actel's Designer software. Reserve the JTAG pins by checking the **Reserve JTAG** box in the Device Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes are unchecked. Table 1-5 lists the definitions of the options in the Device Selection Wizard.

Flexible Mode

In Flexible mode, TDI, TCK, and TDO may be employed as either user I/Os or as JTAG input pins. The internal resistors on the TMS and TDI pins are not present in flexible JTAG mode.

To select the Flexible mode, uncheck the **Reserve JTAG** box in the Device Selection Wizard dialog in the Actel Designer software. In Flexible mode, TDI, TCK, and TDO pins may function as user I/Os or BST pins. The functionality is controlled by the BST Test Access Port (TAP) controller. The TAP controller receives two control inputs, TMS and TCK. Upon power-up, the TAP controller enters the Test-Logic-Reset state. In this state, TDI, TCK, and TDO function as user I/Os. The TDI, TCK, and TDO are transformed from user I/Os into BST pins when a rising edge on TCK is detected while TMS is at logic low. To return to Test-Logic Reset state, TMS must be high for at least five TCK cycles. **An external 10 k pull-up resistor to V_{CCI} should be placed on the TMS pin to pull it High by default.**

Table 1-6 describes the different configuration requirements of BST pins and their functionality in different modes.

Table 1-6 •	Boundary-Scan Pin Configurations and
	Functions

Mode	Designer "Reserve JTAG" Selection	TAP Controller State
Dedicated (JTAG)	Checked	Any
Flexible (User I/O)	Unchecked	Test-Logic-Reset
Flexible (JTAG)	Unchecked	Any EXCEPT Test- Logic-Reset

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin	Function						
Reserve JTAG	Keeps pins from being used and changes the behavior of JTAG pins (no pull-up on TMS)						
Reserve JTAG Test Reset	Regular I/O or JTAG reset with an internal pull-up						
Reserve Probe	Keeps pins from being used or regular I/O						

TRST Pin

The TRST pin functions as a dedicated Boundary-Scan Reset pin when the **Reserve JTAG Test Reset** option is selected as shown in Figure 1-12. An internal pull-up resistor is permanently enabled on the TRST pin in this mode. Actel recommends connecting this pin to ground in normal operation to keep the JTAG state controller in the Test-Logic-Reset state. When JTAG is being used, it can be left floating or can be driven high.

When the **Reserve JTAG Test Reset** option is not selected, this pin will function as a regular I/O. If unused as an I/O in the design, it will be configured as a tristated output.

Pin Description

CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The clock input is buffered prior to clocking the R-cells. When not used, this pin must be tied Low or High (NOT left floating) on the board to avoid unwanted power consumption.

For A54SX72A, these pins can also be configured as user I/Os. When employed as user I/Os, these pins offer builtin programmable pull-up or pull-down resistors active during power-up only. When not used, these pins must be tied Low or High (NOT left floating).

QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are only used for A54SX72A with A, B, C, and D corresponding to bottom-left, bottom-right, top-left, and top-right quadrants, respectively. They are clock inputs for clock distribution networks. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. Each of these clock inputs can drive up to a quarter of the chip, or they can be grouped together to drive multiple quadrants. The clock input is buffered prior to clocking the R-cells. When not used, these pins must be tied Low or High on the board (NOT left floating).

These pins can also be configured as user I/Os. When employed as user I/Os, these pins offer built-in programmable pull-up or pull-down resistors active during power-up only.

GND Ground

Low supply voltage.

HCLK Dedicated (Hardwired) Array Clock

This pin is the clock input for sequential modules. Input levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When not used, HCLK must be tied Low or High on the board (NOT left floating). When used, this pin should be held Low or High during power-up to avoid unwanted static power consumption.

I/O Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Based on certain configurations, input and output levels are compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications. Unused I/O pins are automatically tristated by the Designer software.

NC No Connection

This pin is not connected to circuitry within the device and can be driven to any voltage or be left floating with no effect on the operation of the device.

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any userdefined design node within the device. This independent diagnostic pin can be used in conjunction with the other probe pin to allow real-time diagnostic output of any signal path within the device. The Probe pin can be used as a user-defined I/O when verification has been completed. The pin's probe capabilities can be permanently disabled to protect programmed design confidentiality.

TCK, I/O Test Clock

Test clock input for diagnostic probe and device programming. In Flexible mode, TCK becomes active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDI, I/O Test Data Input

Serial input for boundary scan testing and diagnostic probe. In Flexible mode, TDI is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state.

TDO, I/O Test Data Output

Serial output for boundary scan testing. In flexible mode, TDO is active when the TMS pin is set Low (refer to Table 1-6 on page 1-9). This pin functions as an I/O when the boundary scan state machine reaches the "logic reset" state. When Silicon Explorer II is being used, TDO will act as an output when the checksum command is run. It will return to user /IO when checksum is complete.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible mode when the TMS pin is set Low, the TCK, TDI, and TDO pins are boundary scan pins (refer to Table 1-6 on page 1-9). Once the boundary scan pins are in test mode, they will remain in that mode until the internal boundary scan state machine reaches the logic reset state. At this point, the boundary scan pins will be released and will function as regular I/O pins. The logic reset state is reached five TCK cycles after the TMS pin is set High. In dedicated test mode, TMS functions as specified in the IEEE 1149.1 specifications.

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin functions as an active low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with an internal pull-up resistor. This pin functions as an I/O when the **Reserve JTAG Reset Pin** is not selected in Designer.

V_{CCI} Supply Voltage

Supply voltage for I/Os. See Table 2-2 on page 2-1. All V_{CCI} power pins in the device should be connected.

V_{CCA} Supply Voltage

Supply voltage for array. See Table 2-2 on page 2-1. All V_{CCA} power pins in the device should be connected.

Detailed Specifications

Operating Conditions

Table 2-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units
V _{CCI}	DC Supply Voltage for I/Os	-0.3 to +6.0	V
V _{CCA}	DC Supply Voltage for Arrays	-0.3 to +3.0	V
VI	Input Voltage	-0.5 to +5.75	V
V _O	Output Voltage	–0.5 to + V _{CCI} + 0.5	V
T _{STG}	Storage Temperature	-65 to +150	°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the "Recommended Operating Conditions".

Table 2-2 Recommended Operating Conditions

Parameter	Commercial	Industrial	Units
Temperature Range	0 to +70	-40 to +85	°C
2.5 V Power Supply Range (V _{CCA} and V _{CCI})	2.25 to 2.75	2.25 to 2.75	V
3.3 V Power Supply Range (V _{CCI})	3.0 to 3.6	3.0 to 3.6	V
5 V Power Supply Range (V _{CCI})	4.75 to 5.25	4.75 to 5.25	V

Typical SX-A Standby Current

Table 2-3 • Typical Standby Current for SX-A at 25°C with $V_{CCA} = 2.5 V$

Product	V _{CCI} = 2.5 V	V _{CCI} = 3.3 V	V _{CCI} = 5 V
A54SX08A	0.8 mA	1.0 mA	2.9 mA
A54SX16A	0.8 mA	1.0 mA	2.9 mA
A54SX32A	0.9 mA	1.0 mA	3.0 mA
A54SX72A	3.6 mA	3.8 mA	4.5 mA

Table 2-4 • Supply Voltages

V _{CCA}	V _{CCI} *	Maximum Input Tolerance	Maximum Output Drive
2. 5 V	2.5 V	5.75 V	2.7 V
2.5 V	3.3 V	5.75 V	3.6 V
2.5 V	5 V	5.75 V	5.25 V

Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.

To determine the heat sink's thermal performance, use the following equation:

$$\theta_{JA(TOTAL)} = \theta_{JC} + \theta_{CS} + \theta_{SA}$$

EQ 2-14

where:

 $\theta_{CS} = 0.37^{\circ}C/W$

 thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = thermal resistance of the heat sink in °C/W

 $\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$ EQ 2-15 $\theta_{SA} = 13.33^{\circ}C/W - 3.20^{\circ}C/W - 0.37^{\circ}C/W$

$$\theta_{SA} = 9.76^{\circ}C/W$$

A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with the presence of airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device, using the provided thermal resistance data.

Note: The values may vary depending on the application.

Timing Characteristics

Table 2-14 • A54SX08A Timing Characteristics

(Worst-Case Commercial Conditions, V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_J = 70°C)

		-2 S	peed	-1 S	peed	Std. 9	Speed	-F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
C-Cell Propa	igation Delays ¹	-		-		-		•		-	
t _{PD}	Internal Array Module		0.9		1.1		1.2		1.7	ns	
Predicted R	outing Delays ²										
t _{DC}	FO = 1 Routing Delay, Direct Connect		0.1		0.1		0.1		0.1	ns	
t _{FC}	FO = 1 Routing Delay, Fast Connect		0.3		0.3		0.4		0.6	ns	
t _{RD1}	FO = 1 Routing Delay		0.3		0.4		0.5		0.6	ns	
t _{RD2}	FO = 2 Routing Delay		0.5		0.5		0.6		0.8	ns	
t _{RD3}	FO = 3 Routing Delay		0.6		0.7		0.8		1.1	ns	
t _{RD4}	FO = 4 Routing Delay		0.8		0.9		1		1.4	ns	
t _{RD8}	FO = 8 Routing Delay		1.4		1.5		1.8		2.5	ns	
t _{RD12}	FO = 12 Routing Delay		2		2.2		2.6		3.6	ns	
R-Cell Timin	g										
t _{RCO}	Sequential Clock-to-Q		0.7		0.8		0.9		1.3	ns	
t _{CLR}	Asynchronous Clear-to-Q		0.6		0.6		0.8		1.0	ns	
t _{PRESET}	Asynchronous Preset-to-Q		0.7		0.7		0.9		1.2	ns	
t _{sud}	Flip-Flop Data Input Set-Up	0.7		0.8		0.9		1.2		ns	
t _{HD}	Flip-Flop Data Input Hold	0.0		0.0		0.0		0.0		ns	
t _{WASYN}	Asynchronous Pulse Width	1.4		1.5		1.8		2.5		ns	
t _{recasyn}	Asynchronous Recovery Time	0.4		0.4		0.5		0.7		ns	
t _{HASYN}	Asynchronous Hold Time	0.3		0.3		0.4		0.6		ns	
t _{MPW}	Clock Pulse Width	1.6		1.8		2.1		2.9		ns	
Input Modu	le Propagation Delays					1				1	
t _{INYH}	Input Data Pad to Y High 2.5 V LVCMOS		0.8		0.9		1.0		1.4	ns	
t _{INYL}	Input Data Pad to Y Low 2.5 V LVCMOS		1.0		1.2		1.4		1.9	ns	
t _{INYH}	Input Data Pad to Y High 3.3 V PCI		0.6		0.6		0.7		1.0	ns	
t _{INYL}	Input Data Pad to Y Low 3.3 V PCI		0.7		0.8		0.9		1.3	ns	
t _{INYH}	Input Data Pad to Y High 3.3 V LVTTL		0.7		0.7		0.9		1.2	ns	
t _{INYL}	Input Data Pad to Y Low 3.3 V LVTTL		1.0		1.1		1.3		1.8	ns	

Notes:

1. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-16 A545X08A Timing Characteristics

(Worst-Case Commercial Condition	5 V _{CCA} = 2.25 V, V _{CCI} = 3.0 V, T _J = 70°C)
----------------------------------	---

	1	-2 Speed		–1 Speed		Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (I	Hardwired) Array Clock Networks									
t _{HCKH}	Input Low to High (Pad to R-cell Input)		1.3		1.5		1.7		2.6	ns
t _{HCKL}	Input High to Low (Pad to R-cell Input)		1.1		1.3		1.5		2.2	ns
t _{HPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{HPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{HCKSW}	Maximum Skew		0.4		0.5		0.5		0.8	ns
t _{HP}	Minimum Period	3.2		3.6		4.2		5.8		ns
f _{HMAX}	Maximum Frequency		313		278		238		172	MHz
Routed Arra	y Clock Networks									
t _{RCKH}	Input Low to High (Light Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (Light Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (50% Load) (Pad to R-cell Input)		0.8		0.9		1.1		1.5	ns
t _{RCKL}	Input High to Low (50% Load) (Pad to R-cell Input)		1.1		1.2		1.4		2	ns
t _{RCKH}	Input Low to High (100% Load) (Pad to R-cell Input)		1.1		1.2		1.4		1.9	ns
t _{RCKL}	Input High to Low (100% Load) (Pad to R-cell Input)		1.2		1.3		1.6		2.2	ns
t _{RPWH}	Minimum Pulse Width High	1.6		1.8		2.1		2.9		ns
t _{RPWL}	Minimum Pulse Width Low	1.6		1.8		2.1		2.9		ns
t _{RCKSW}	Maximum Skew (Light Load)		0.7		0.8		0.9		1.3	ns
t _{rcksw}	Maximum Skew (50% Load)		0.7		0.8		0.9		1.3	ns
t _{RCKSW}	Maximum Skew (100% Load)		0.8		0.9		1.1		1.5	ns

Table 2-18 • A54SX08A Timing Characteristics

		-2 S	peed	–1 Speed		Std. Speed		-F Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units	
2.5 V LVCMC	DS Output Module Timing ^{1,2}										
t _{DLH}	Data-to-Pad Low to High		3.9		4.4		5.2		7.2	ns	
t _{DHL}	Data-to-Pad High to Low		3.0		3.4		3.9		5.5	ns	
t _{DHLS}	Data-to-Pad High to Low—low slew		13.3		15.1		17.7		24.8	ns	
t _{ENZL}	Enable-to-Pad, Z to L		2.8		3.2		3.7		5.2	ns	
t _{ENZLS}	Data-to-Pad, Z to L—low slew		13.7		15.5		18.2		25.5	ns	
t _{ENZH}	Enable-to-Pad, Z to H		3.9		4.4		5.2		7.2	ns	
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.3		4.7	ns	
t _{ENHZ}	Enable-to-Pad, H to Z		3.0		3.4		3.9		5.5	ns	
d _{TLH} ³	Delta Low to High		0.037		0.043		0.051		0.071	ns/pF	
d _{THL} ³	Delta High to Low		0.017		0.023		0.023		0.037	ns/pF	
d _{THLS} ³	Delta High to Low—low slew		0.06		0.071		0.086		0.117	ns/pF	

Note:

1. Delays based on 35 pF loading.

2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} – 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

Table 2-21 A54SX16A Timing Characteristics (Continued)

(Manual Cara Camana and al		
(Worst-Case Commercial	Conditions, $v_{CCA} = 2.25 v$	$V_{\rm CCI} = 3.0 \text{V}, \text{I}_{\rm J} = 70^{\circ} \text{C}$

		-3 S	–3 Speed ¹		–2 Speed		–1 Speed		Speed	–F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{INYH}	Input Data Pad to Y High 5 V PCI		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V PCI		0.7		0.8		0.9		1.1		1.5	ns
t _{INYH}	Input Data Pad to Y High 5 V TTL		0.5		0.5		0.6		0.7		0.9	ns
t _{INYL}	Input Data Pad to Y Low 5 V TTL		0.7		0.8		0.9		1.1		1.5	ns
Input Modu	le Predicted Routing Delays ²											
t _{IRD1}	FO = 1 Routing Delay		0.3		0.3		0.3		0.4		0.6	ns
t _{IRD2}	FO = 2 Routing Delay		0.4		0.5		0.5		0.6		0.8	ns
t _{IRD3}	FO = 3 Routing Delay		0.5		0.6		0.7		0.8		1.1	ns
t _{IRD4}	FO = 4 Routing Delay		0.7		0.8		0.9		1.0		1.4	ns
t _{IRD8}	FO = 8 Routing Delay		1.2		1.4		1.5		0.8		2.5	ns
t _{IRD12}	FO = 12 Routing Delay		1.7		2.0		2.2		2.6		3.6	ns

Notes:

1. All –3 speed grades have been discontinued.

2. For dual-module macros, use $t_{PD} + t_{RD1} + t_{PDn}$, $t_{RCO} + t_{RD1} + t_{PDn}$, or $t_{PD1} + t_{RD1} + t_{SUD}$, whichever is appropriate.

3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual performance.

Table 2-25 A54SX16A Timing Characteristics

÷			
(Worst-Case Commercial	Conditions V	_ 2 2 5 1/ 1/ _	2 2E V T _ 70°C)
(worst-Case Commercial	CONULIONS VCCA =	$= 2.23 V_{i} V_{ccl} =$	$Z_{1}Z_{2} V_{1} I_{1} = 70 C_{1}$
• • • • • • • • • • • • • • •			

		-3 Speed ¹	-2 S	peed	–1 Sp	beed	Std. 9	Speed	–F S	peed	
Parameter	Description	Min. Max	. Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V LVCM	OS Output Module Timing ^{2, 3}										
t _{DLH}	Data-to-Pad Low to High	3.4		3.9		4.5		5.2		7.3	ns
t _{DHL}	Data-to-Pad High to Low	2.6		3.0		3.3		3.9		5.5	ns
t _{DHLS}	Data-to-Pad High to Low—low slew	11.6		13.4		15.2		17.9		25.0	ns
t _{ENZL}	Enable-to-Pad, Z to L	2.4		2.8		3.2		3.7		5.2	ns
t _{ENZLS}	Data-to-Pad, Z to L—low slew	11.8		13.7		15.5		18.2		25.5	ns
t _{ENZH}	Enable-to-Pad, Z to H	3.4		3.9		4.5		5.2		7.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z	2.1		2.5		2.8		3.3		4.7	ns
t _{ENHZ}	Enable-to-Pad, H to Z	2.6		3.0		3.3		3.9		5.5	ns
d_{TLH}^{4}	Delta Low to High	0.03		0.037		0.043		0.051		0.071	ns/pF
d_{THL}^4	Delta High to Low	0.01	7	0.017		0.023		0.023		0.037	ns/pF
${\sf d_{THLS}}^4$	Delta High to Low—low slew	0.05	7	0.06		0.071		0.086		0.117	ns/pF

Note:

1. All –3 speed grades have been discontinued.

2. Delays based on 35 pF loading.

3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.

4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = $(0.1 * V_{CCI} - 0.9 * V_{CCI})/(C_{load} * d_{T[LH|HL|HLS]})$ where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

SX-A Family FPGAs

Table 2-26 • A54SX16A Timing Characteristics

(Worst-Case Commercial Condition	$V_{CCA} = 2.25 V, V_{CCI} = 3.0 V, T_{J} = 70^{\circ}C$
----------------------------------	--

		-3 S	beed ¹	-2 S	peed	-1 S	peed	Std. Speed		-F Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI O	utput Module Timing ²											
t _{DLH}	Data-to-Pad Low to High		2.0		2.3		2.6		3.1		4.3	ns
t _{DHL}	Data-to-Pad High to Low		2.2		2.5		2.8		3.3		4.6	ns
t _{ENZL}	Enable-to-Pad, Z to L		1.4		1.7		1.9		2.2		3.1	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.0		2.3		2.6		3.1		4.3	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.5		2.8		3.2		3.8		5.3	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.2		2.5		2.8		3.3		4.6	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d_{THL}^{3}	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
3.3 V LVTTL	Output Module Timing ⁴											
t _{DLH}	Data-to-Pad Low to High		2.8		3.2		3.6		4.3		6.0	ns
t _{DHL}	Data-to-Pad High to Low		2.7		3.1		3.5		4.1		5.7	ns
t _{DHLS}	Data-to-Pad High to Low—low slew		9.5		10.9		12.4		14.6		20.4	ns
t _{ENZL}	Enable-to-Pad, Z to L		2.2		2.6		2.9		3.4		4.8	ns
t _{ENZLS}	Enable-to-Pad, Z to L—low slew		15.8		18.9		21.3		25.4		34.9	ns
t _{ENZH}	Enable-to-Pad, Z to H		2.8		3.2		3.6		4.3		6.0	ns
t _{ENLZ}	Enable-to-Pad, L to Z		2.9		3.3		3.7		4.4		6.2	ns
t _{ENHZ}	Enable-to-Pad, H to Z		2.7		3.1		3.5		4.1		5.7	ns
d_{TLH}^{3}	Delta Low to High		0.025		0.03		0.03		0.04		0.045	ns/pF
d _{THL} ³	Delta High to Low		0.015		0.015		0.015		0.015		0.025	ns/pF
d _{THLS} ³	Delta High to Low—low slew		0.053		0.053		0.067		0.073		0.107	ns/pF

Notes:

1. All –3 speed grades have been discontinued.

2. Delays based on 10 pF loading and 25 Ω resistance.

3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the V_{CCI} value into the following equation: Slew Rate [V/ns] = (0.1* V_{CCI} - 0.9* V_{CCI} / (C_{load} * $d_{T[LH|HL|HLS]}$) where C_{load} is the load capacitance driven by the I/O in pF

 $d_{T[LH|HL|HLS]}$ is the worst case delta value from the datasheet in ns/pF.

4. Delays based on 35 pF loading.

100-Pin TQFP

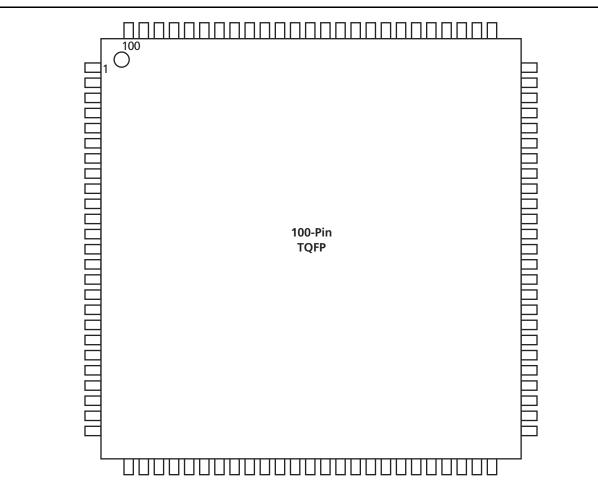


Figure 3-2 • 100-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

256-Pin FBGA

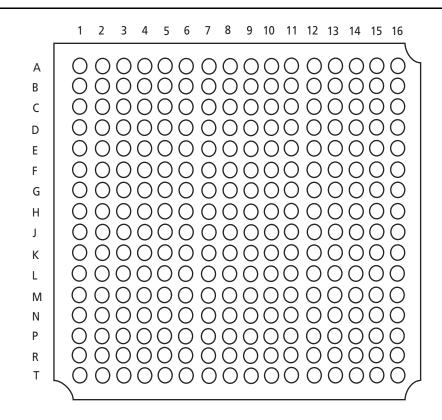


Figure 3-7 • 256-Pin FBGA (Top View)

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

	256-Pi	n FBGA			256-Pi	n FBGA	
Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function	Pin Number	A54SX16A Function	A54SX32A Function	A54SX72A Function
E11	I/O	I/O	I/O	G16	I/O	I/O	I/O
E12	I/O	I/O	I/O	H1	I/O	I/O	I/O
E13	NC	I/O	I/O	H2	I/O	I/O	I/O
E14	I/O	I/O	I/O	H3	V _{CCA}	V _{CCA}	V _{CCA}
E15	I/O	I/O	I/O	H4	TRST, I/O	TRST, I/O	TRST, I/O
E16	I/O	I/O	I/O	H5	I/O	I/O	I/O
F1	I/O	I/O	I/O	H6	V _{CCI}	V _{CCI}	V _{CCI}
F2	I/O	I/O	I/O	H7	GND	GND	GND
F3	I/O	I/O	I/O	H8	GND	GND	GND
F4	TMS	TMS	TMS	H9	GND	GND	GND
F5	I/O	I/O	I/O	H10	GND	GND	GND
F6	I/O	I/O	I/O	H11	V _{CCI}	V _{CCI}	V _{CCI}
F7	V _{CCI}	V _{CCI}	V _{CCI}	H12	I/O	I/O	I/O
F8	V _{CCI}	V _{CCI}	V _{CCI}	H13	I/O	I/O	I/O
F9	V _{CCI}	V _{CCI}	V _{CCI}	H14	I/O	I/O	I/O
F10	V _{CCI}	V _{CCI}	V _{CCI}	H15	I/O	I/O	I/O
F11	I/O	I/O	I/O	H16	NC	I/O	I/O
F12	VCCA	VCCA	VCCA	J1	NC	I/O	I/O
F13	I/O	I/O	I/O	J2	NC	I/O	I/O
F14	I/O	I/O	I/O	J3	NC	I/O	I/O
F15	I/O	I/O	I/O	J4	I/O	I/O	I/O
F16	I/O	I/O	I/O	J5	I/O	I/O	I/O
G1	NC	I/O	I/O	J6	V _{CCI}	V _{CCI}	V _{CCI}
G2	I/O	I/O	I/O	J7	GND	GND	GND
G3	NC	I/O	I/O	J8	GND	GND	GND
G4	I/O	I/O	I/O	J9	GND	GND	GND
G5	I/O	I/O	I/O	J10	GND	GND	GND
G6	V _{CCI}	V _{CCI}	V _{CCI}	J11	V _{CCI}	V _{CCI}	V _{CCI}
G7	GND	GND	GND	J12	I/O	I/O	I/O
G8	GND	GND	GND	J13	I/O	I/O	I/O
G9	GND	GND	GND	J14	I/O	I/O	I/O
G10	GND	GND	GND	J15	I/O	I/O	I/O
G11	V _{CCI}	V _{CCI}	V _{CCI}	J16	I/O	I/O	I/O
G12	I/O	I/O	I/O	K1	I/O	I/O	I/O
G13	GND	GND	GND	К2	I/O	I/O	I/O
G14	NC	I/O	I/O	К3	NC	I/O	I/O
G15	V _{CCA}	V _{CCA}	V _{CCA}	К4	V _{CCA}	V _{CCA}	V _{CCA}

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (v5.3)	Page
v5.2	–3 speed grades have been discontinued.	N/A
(June 2006)	The "SX-A Timing Model" was updated with –2 data.	2-14
v5.1	RoHS information was added to the "Ordering Information".	ii
February 2005	The "Programming" section was updated.	1-13
v5.0	Revised Table 1 and the timing data to reflect the phase out of the -3 speed grade for the A54SX08A device.	i
	The "Thermal Characteristics" section was updated.	2-11
	The "176-Pin TQFP" was updated to add pins 81 to 90.	3-11
	The "484-Pin FBGA" was updated to add pins R4 to Y26	3-26
v4.0	The "Temperature Grade Offering" is new.	1-iii
	The "Speed Grade and Temperature Grade Matrix" is new.	1-iii
	"SX-A Family Architecture" was updated.	1-1
	"Clock Resources" was updated.	1-5
	"User Security" was updated.	1-7
	"Power-Up/Down and Hot Swapping" was updated.	1-7
	"Dedicated Mode" is new	1-9
	Table 1-5 is new.	1-9
	"JTAG Instructions" is new	1-10
	"Design Considerations" was updated.	1-12
	The "Programming" section is new.	1-13
	"Design Environment" was updated.	1-13
	"Pin Description" was updated.	1-15
	Table 2-1 was updated.	2-1
	Table 2-2 was updated.	2-1
	Table 2-3 is new.	2-1
	Table 2-4 is new.	2-1
	Table 2-5 was updated.	2-2
	Table 2-6 was updated.	2-2
	"Power Dissipation" is new.	2-8
	Table 2-11 was updated.	2-9

SX-A Family FPGAs

Previous Version	Changes in Current Version (v5.3)	Page
v4.0	Table 2-12 was updated.	2-11
(continued)	The was updated.	2-14
	The "Sample Path Calculations" were updated.	2-14
	Table 2-13 was updated.	2-17
	Table 2-13 was updated.	2-17
	All timing tables were updated.	2-18 to 2-52
v3.0	The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and Design Theft" section was updated.	1-i
	The "Ordering Information" section was updated.	1-ii
	The "Temperature Grade Offering" section was updated.	1-iii
	The Figure 1-1 • SX-A Family Interconnect Elements was updated.	1-1
	The ""Clock Resources" section" was updated	1-5
	The Table 1-1 • SX-A Clock Resources is new.	1-5
	The "User Security" section is new.	1-7
	The "I/O Modules" section was updated.	1-7
	The Table 1-2 • I/O Features was updated.	1-8
	The Table 1-3 • I/O Characteristics for All I/O Configurations is new.	1-8
	The Table 1-4 • Power-Up Time at which I/Os Become Active is new	1-8
	The Figure 1-12 • Device Selection Wizard is new.	1-9
	The "Boundary-Scan Pin Configurations and Functions" section is new.	1-9
	The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.	1-11
	The "SX-A Probe Circuit Control Pins" section was updated.	1-12
	The "Design Considerations" section was updated.	1-12
	The Figure 1-13 • Probe Setup was updated.	1-12
	The Design Environment was updated.	1-13
	The Figure 1-13 • Design Flow is new.	1-11
	The "Absolute Maximum Ratings*" section was updated.	1-12
	The "Recommended Operating Conditions" section was updated.	1-12
	The "Electrical Specifications" section was updated.	1-12
	The "2.5V LVCMOS2 Electrical Specifications" section was updated.	1-13
	The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.	1-23
	The "Pin Description" section was updated.	1-15
v2.0.1	The "Design Environment" section has been updated.	1-13
	The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.	1-8
	The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing numbers.	1-23