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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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SX-A Family FPGAs
Logic Module Design
The SX-A family architecture is described as a “sea-of-
modules” architecture because the entire floor of the
device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. The Actel SX-A family provides two types of
logic modules: the register cell (R-cell) and the
combinatorial cell (C-cell).

The R-cell contains a flip-flop featuring asynchronous clear,
asynchronous preset, and clock enable, using the S0 and S1
lines control signals (Figure 1-2). The R-cell registers feature
programmable clock polarity selectable on a register-by-
register basis. This provides additional flexibility while
allowing mapping of synthesized functions into the SX-A
FPGA. The clock source for the R-cell can be chosen from
either the hardwired clock, the routed clocks, or internal
logic. 

The C-cell implements a range of combinatorial functions
of up to five inputs (Figure 1-3). Inclusion of the DB input
and its associated inverter function allows up to 4,000

different combinatorial functions to be implemented in a
single module. An example of the flexibility enabled by
the inversion capability is the ability to integrate a 3-input
exclusive-OR function into a single C-cell. This facilitates
construction of 9-bit parity-tree functions with 1.9 ns
propagation delays.

Module Organization
All C-cell and R-cell logic modules are arranged into
horizontal banks called Clusters. There are two types of
Clusters: Type 1 contains two C-cells and one R-cell, while
Type 2 contains one C-cell and two R-cells.
Clusters are grouped together into SuperClusters
(Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide
grouping of Type 1 Clusters. SuperCluster 2 is a two-wide
group containing one Type 1 Cluster and one Type 2
Cluster. SX-A devices feature more SuperCluster 1
modules than SuperCluster 2 modules because designers
typically require significantly more combinatorial logic
than flip-flops.  

Figure 1-2 • R-Cell

Figure 1-3 • C-Cell
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SX-A Family FPGAs
Routing Resources
The routing and interconnect resources of SX-A devices
are in the top two metal layers above the logic modules
(Figure 1-1 on page 1-1), providing optimal use of silicon,
thus enabling the entire floor of the device to be
spanned with an uninterrupted grid of logic modules.
Interconnection between these logic modules is achieved
using the Actel patented metal-to-metal programmable
antifuse interconnect elements. The antifuses are
normally open circuits and, when programmed, form a
permanent low-impedance connection.

Clusters and SuperClusters can be connected through the
use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely
fast and predictable interconnection of modules within
Clusters and SuperClusters (Figure 1-5 on page 1-4 and
Figure 1-6 on page 1-4). This routing architecture also
dramatically reduces the number of antifuses required to
complete a circuit, ensuring the highest possible
performance, which is often required in applications such
as fast counters, state machines, and data path logic. The
interconnect elements (i.e., the antifuses and metal
tracks) have lower capacitance and lower resistance than
any other device of similar capacity, leading to the fastest
signal propagation in the industry.
DirectConnect is a horizontal routing resource that
provides connections from a C-cell to its neighboring
R-Cell in a given SuperCluster. DirectConnect uses a
hardwired signal path requiring no programmable

interconnection to achieve its fast signal propagation
time of less than 0.1 ns.
FastConnect enables horizontal routing between any
two logic modules within a given SuperCluster, and
vertical routing with the SuperCluster immediately
below it. Only one programmable connection is used in a
FastConnect path, delivering a maximum pin-to-pin
propagation time of 0.3 ns. 
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. The Actel segmented routing structure provides
a variety of track lengths for extremely fast routing
between SuperClusters. The exact combination of track
lengths and antifuses within each path is chosen by the
100% automatic place-and-route software to minimize
signal propagation delays.
The general system of routing tracks allows any logic
module in the array to be connected to any other logic
or I/O module. Within this system, most connections
typically require three or fewer antifuses, resulting in
fast and predictable performance. 
The unique local and general routing structure featured
in SX-A devices allows 100% pin-locking with full logic
utilization, enables concurrent printed circuit board
(PCB) development, reduces design time, and allows
designers to achieve performance goals with minimum
effort.

Figure 1-4 • Cluster Organization
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SX-A Family FPGAs
Figure 1-9 • SX-A QCLK Architecture

Figure 1-10 • A54SX72A Routed Clock and QCLK Buffer
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SX-A Family FPGAs
Other Architectural Features

Technology
The Actel SX-A family is implemented on a high-voltage,
twin-well CMOS process using 0.22 μ / 0.25 μ design
rules. The metal-to-metal antifuse is comprised of a
combination of amorphous silicon and dielectric material
with barrier metals and has a programmed ('on' state)
resistance of 25 Ω with capacitance of 1.0 fF for low
signal impedance. 

Performance
The unique architectural features of the SX-A family
enable the devices to operate with internal clock
frequencies of 350 MHz, causing very fast execution of
even complex logic functions. The SX-A family is an
optimal platform upon which to integrate the
functionality previously contained in multiple complex
programmable logic devices (CPLDs). In addition, designs
that previously would have required a gate array to meet
performance goals can be integrated into an SX-A device
with dramatic improvements in cost and time-to-market.
Using timing-driven place-and-route tools, designers can
achieve highly deterministic device performance. 

User Security
Reverse engineering is virtually impossible in SX-A
devices because it is extremely difficult to distinguish
between programmed and unprogrammed antifuses. In
addition, since SX-A is a nonvolatile, single-chip solution,
there is no configuration bitstream to intercept at device
power-up.

The Actel FuseLock advantage ensures that unauthorized
users will not be able to read back the contents of an
Actel antifuse FPGA. In addition to the inherent
strengths of the architecture, special security fuses that
prevent internal probing and overwriting are hidden
throughout the fabric of the device. They are located
where they cannot be accessed or bypassed without
destroying access to the rest of the device, making both
invasive and more-subtle noninvasive attacks ineffective
against Actel antifuse FPGAs. 

Look for this symbol to ensure your valuable IP is secure
(Figure 1-11). 

For more information, refer to Actel’s Implementation of
Security in Actel Antifuse FPGAs application note.

I/O Modules
For a simplified I/O schematic, refer to Figure 1 in the
application note, Actel eX, SX-A, and RTSX-S I/Os.

Each user I/O on an SX-A device can be configured as an
input, an output, a tristate output, or a bidirectional pin.
Mixed I/O standards can be set for individual pins,
though this is only allowed with the same voltage as the
input. These I/Os, combined with array registers, can
achieve clock-to-output-pad timing as fast as 3.8 ns, even
without the dedicated I/O registers. In most FPGAs, I/O
cells that have embedded latches and flip-flops,
requiring instantiation in HDL code; this is a design
complication not encountered in SX-A FPGAs. Fast pin-
to-pin timing ensures that the device is able to interface
with any other device in the system, which in turn
enables parallel design of system components and
reduces overall design time. All unused I/Os are
configured as tristate outputs by the Actel Designer
software, for maximum flexibility when designing new
boards or migrating existing designs. 
SX-A I/Os should be driven by high-speed push-pull
devices with a low-resistance pull-up device when being
configured as tristate output buffers. If the I/O is driven
by a voltage level greater than VCCI and a fast push-pull
device is NOT used, the high-resistance pull-up of the
driver and the internal circuitry of the SX-A I/O may
create a voltage divider. This voltage divider could pull
the input voltage below specification for some devices
connected to the driver. A logic '1' may not be correctly
presented in this case. For example, if an open drain
driver is used with a pull-up resistor to 5 V to provide the
logic '1' input, and VCCI is set to 3.3 V on the SX-A device,
the input signal may be pulled down by the SX-A input.
Each I/O module has an available power-up resistor of
approximately 50 kΩ that can configure the I/O in a
known state during power-up. For nominal pull-up and
pull-down resistor values, refer to Table 1-4 on page 1-8
of the application note Actel eX, SX-A, and RTSX-S I/Os.
Just slightly before VCCA reaches 2.5 V, the resistors are
disabled, so the I/Os will be controlled by user logic. See
Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for
more information concerning available I/O features.

Figure 1-11 • FuseLock
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SX-A Family FPGAs
Boundary-Scan Testing (BST)
All SX-A devices are IEEE 1149.1 compliant and offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
The BST function is controlled through the special JTAG
pins (TMS, TDI, TCK, TDO, and TRST). The functionality of
the JTAG pins is defined by two available modes:
Dedicated and Flexible. TMS cannot be employed as a
user I/O in either mode.

Dedicated Mode
In Dedicated mode, all JTAG pins are reserved for BST;
designers cannot use them as regular I/Os. An internal
pull-up resistor is automatically enabled on both TMS
and TDI pins, and the TMS pin will function as defined in
the IEEE 1149.1 (JTAG) specification. 
To select Dedicated mode, the user must reserve the
JTAG pins in Actel’s Designer software. Reserve the JTAG
pins by checking the Reserve JTAG box in the Device
Selection Wizard (Figure 1-12).

The default for the software is Flexible mode; all boxes
are unchecked. Table 1-5 lists the definitions of the
options in the Device Selection Wizard.  

Flexible Mode
In Flexible mode, TDI, TCK, and TDO may be employed as
either user I/Os or as JTAG input pins. The internal
resistors on the TMS and TDI pins are not present in
flexible JTAG mode. 
To select the Flexible mode, uncheck the Reserve JTAG
box in the Device Selection Wizard dialog in the Actel
Designer software. In Flexible mode, TDI, TCK, and TDO
pins may function as user I/Os or BST pins. The
functionality is controlled by the BST Test Access Port
(TAP) controller. The TAP controller receives two control
inputs, TMS and TCK. Upon power-up, the TAP controller
enters the Test-Logic-Reset state. In this state, TDI, TCK,
and TDO function as user I/Os. The TDI, TCK, and TDO are
transformed from user I/Os into BST pins when a rising
edge on TCK is detected while TMS is at logic low. To
return to Test-Logic Reset state, TMS must be high for at
least five TCK cycles. An external 10 k pull-up resistor
to VCCI should be placed on the TMS pin to pull it
High by default.
Table 1-6 describes the different configuration
requirements of BST pins and their functionality in
different modes. 

TRST Pin
The TRST pin functions as a dedicated Boundary-Scan
Reset pin when the Reserve JTAG Test Reset option is
selected as shown in Figure 1-12. An internal pull-up
resistor is permanently enabled on the TRST pin in this
mode. Actel recommends connecting this pin to ground
in normal operation to keep the JTAG state controller in
the Test-Logic-Reset state. When JTAG is being used, it
can be left floating or can be driven high. 
When the Reserve JTAG Test Reset option is not
selected, this pin will function as a regular I/O. If unused
as an I/O in the design, it will be configured as a tristated
output.

Figure 1-12 • Device Selection Wizard

Table 1-5 • Reserve Pin Definitions

Pin Function

Reserve JTAG Keeps pins from being used and
changes the behavior of JTAG pins (no
pull-up on TMS)

Reserve JTAG Test
Reset

Regular I/O or JTAG reset with an
internal pull-up

Reserve Probe Keeps pins from being used or regular
I/O

Table 1-6 • Boundary-Scan Pin Configurations and 
Functions

Mode

Designer 
"Reserve JTAG" 

Selection
TAP Controller 

State

Dedicated (JTAG) Checked Any

Flexible (User I/O) Unchecked Test-Logic-Reset

Flexible (JTAG) Unchecked Any EXCEPT Test-
Logic-Reset
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SX-A Family FPGAs
JTAG Instructions
Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.

Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'.
Bits 11-1 are always '02F', which is the Actel manufacturer code.

Table 1-7 • JTAG Instruction Code

Instructions (IR4:IR0) Binary Code

EXTEST 00000

SAMPLE/PRELOAD 00001

INTEST 00010

USERCODE 00011

IDCODE 00100

HighZ 01110

CLAMP 01111

Diagnostic 10000

BYPASS 11111

Reserved All others

Table 1-8 • JTAG Instruction Code

Device Process Revision Bits 31-28 Bits 27-12

A54SX08A 0.22 µ 0 8, 9 40B4, 42B4

1 A, B 40B4, 42B4

A54SX16A 0.22 µ 0 9 40B8, 42B8

1 B 40B8, 42B8

0.25 µ 1 B 22B8

A54SX32A 0.2 2µ 0 9 40BD, 42BD

1 B 40BD, 42BD

0.25 µ 1 B 22BD

A54SX72A 0.22 µ 0 9 40B2, 42B2

1 B 40B2, 42B2

0.25 µ 1 B 22B2
1-10 v5.3



SX-A Family FPGAs
Pin Description
CLKA/B, I/O Clock A and B

These pins are clock inputs for clock distribution
networks. Input levels are compatible with standard TTL,
LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The
clock input is buffered prior to clocking the R-cells. When
not used, this pin must be tied Low or High (NOT left
floating) on the board to avoid unwanted power
consumption.
For A54SX72A, these pins can also be configured as user
I/Os. When employed as user I/Os, these pins offer built-
in programmable pull-up or pull-down resistors active
during power-up only. When not used, these pins must
be tied Low or High (NOT left floating).
QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D

These four pins are the quadrant clock inputs and are
only used for A54SX72A with A, B, C, and D
corresponding to bottom-left, bottom-right, top-left,
and top-right quadrants, respectively. They are clock
inputs for clock distribution networks. Input levels are
compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V
PCI, or 5 V PCI specifications. Each of these clock inputs
can drive up to a quarter of the chip, or they can be
grouped together to drive multiple quadrants. The clock
input is buffered prior to clocking the R-cells. When not
used, these pins must be tied Low or High on the board
(NOT left floating).
These pins can also be configured as user I/Os. When
employed as user I/Os, these pins offer built-in
programmable pull-up or pull-down resistors active
during power-up only.
GND Ground 

Low supply voltage.

HCLK Dedicated (Hardwired)
Array Clock

This pin is the clock input for sequential modules. Input
levels are compatible with standard TTL, LVTTL,
LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is
directly wired to each R-cell and offers clock speeds
independent of the number of R-cells being driven.
When not used, HCLK must be tied Low or High on the
board (NOT left floating). When used, this pin should be
held Low or High during power-up to avoid unwanted
static power consumption.
I/O Input/Output

The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Based on certain configurations,
input and output levels are compatible with standard
TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications.
Unused I/O pins are automatically tristated by the
Designer software.
NC No Connection

This pin is not connected to circuitry within the device
and can be driven to any voltage or be left floating with
no effect on the operation of the device. 

PRA/B, I/O Probe A/B

The Probe pin is used to output data from any user-
defined design node within the device. This independent
diagnostic pin can be used in conjunction with the other
probe pin to allow real-time diagnostic output of any
signal path within the device. The Probe pin can be used
as a user-defined I/O when verification has been
completed. The pin’s probe capabilities can be
permanently disabled to protect programmed design
confidentiality. 
TCK, I/O Test Clock

Test clock input for diagnostic probe and device
programming. In Flexible mode, TCK becomes active
when the TMS pin is set Low (refer to Table 1-6 on
page 1-9). This pin functions as an I/O when the
boundary scan state machine reaches the "logic reset"
state.

TDI, I/O Test Data Input 

Serial input for boundary scan testing and diagnostic
probe. In Flexible mode, TDI is active when the TMS pin is
set Low (refer to Table 1-6 on page 1-9). This pin
functions as an I/O when the boundary scan state
machine reaches the “logic reset” state. 

TDO, I/O Test Data Output 

Serial output for boundary scan testing. In flexible mode,
TDO is active when the TMS pin is set Low (refer to
Table 1-6 on page 1-9). This pin functions as an I/O when
the boundary scan state machine reaches the "logic
reset" state. When Silicon Explorer II is being used, TDO
will act as an output when the checksum command is
run. It will return to user /IO when checksum is complete.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1
Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible
mode when the TMS pin is set Low, the TCK, TDI, and
TDO pins are boundary scan pins (refer to Table 1-6 on
page 1-9). Once the boundary scan pins are in test mode,
they will remain in that mode until the internal
boundary scan state machine reaches the logic reset
state. At this point, the boundary scan pins will be
released and will function as regular I/O pins. The logic
reset state is reached five TCK cycles after the TMS pin is
set High. In dedicated test mode, TMS functions as
specified in the IEEE 1149.1 specifications. 

TRST, I/O Boundary Scan Reset Pin

Once it is configured as the JTAG Reset pin, the TRST pin
functions as an active low input to asynchronously
initialize or reset the boundary scan circuit. The TRST pin
is equipped with an internal pull-up resistor. This pin
functions as an I/O when the Reserve JTAG Reset Pin is
not selected in Designer.

VCCI Supply Voltage 

Supply voltage for I/Os. See Table 2-2 on page 2-1. All
VCCI power pins in the device should be connected.

VCCA Supply Voltage 

Supply voltage for array. See Table 2-2 on page 2-1. All
VCCA power pins in the device should be connected.
v5.3 1-15



SX-A Family FPGAs
PCI Compliance for the SX-A Family
The SX-A family supports 3.3 V and 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.

Table 2-7 • DC Specifications (5 V PCI Operation)

Symbol Parameter Condition Min. Max. Units

VCCA Supply Voltage for Array 2.25 2.75 V

VCCI Supply Voltage for I/Os 4.75 5.25 V

VIH Input High Voltage 2.0 5.75 V

VIL Input Low Voltage –0.5 0.8 V

IIH Input High Leakage Current1 VIN = 2.7 – 70 µA

IIL Input Low Leakage Current1 VIN = 0.5 – –70 µA

VOH Output High Voltage IOUT = –2 mA 2.4 – V

VOL Output Low Voltage2 IOUT = 3 mA, 6 mA – 0.55 V

CIN Input Pin Capacitance3 – 10 pF

CCLK CLK Pin Capacitance 5 12 pF

Notes:

1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes

FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and
ACK64#.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
v5.3 2-3



SX-A Family FPGAs
tINYH Input Data Pad to Y High 5 V PCI 0.5 0.6 0.7 0.9 ns

tINYL Input Data Pad to Y Low 5 V PCI 0.8 0.9 1.1 1.5 ns

tINYH Input Data Pad to Y High 5 V TTL 0.5 0.6 0.7 0.9 ns

tINYL Input Data Pad to Y Low 5 V TTL 0.8 0.9 1.1 1.5 ns

Input Module Predicted Routing Delays2

tIRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.6 ns

tIRD2 FO = 2 Routing Delay 0.5 0.5 0.6 0.8 ns

tIRD3 FO = 3 Routing Delay 0.6 0.7 0.8 1.1 ns

tIRD4 FO = 4 Routing Delay 0.8 0.9 1 1.4 ns

tIRD8 FO = 8 Routing Delay 1.4 1.5 1.8 2.5 ns

tIRD12 FO = 12 Routing Delay 2 2.2 2.6 3.6 ns

Table 2-14 • A54SX08A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

Notes:

1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance. Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
Table 2-16 • A54SX08A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max.

Dedicated (Hardwired) Array Clock Networks

tHCKH Input Low to High
(Pad to R-cell Input)

1.3 1.5 1.7 2.6 ns

tHCKL Input High to Low
(Pad to R-cell Input)

1.1 1.3 1.5 2.2 ns

tHPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns

tHPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns

tHCKSW Maximum Skew 0.4 0.5 0.5 0.8 ns

tHP Minimum Period 3.2 3.6 4.2 5.8 ns

fHMAX Maximum Frequency 313 278 238 172 MHz

Routed Array Clock Networks

tRCKH Input Low to High (Light Load)
(Pad to R-cell Input)

0.8 0.9 1.1 1.5 ns

tRCKL Input High to Low (Light Load)
(Pad to R-cell Input)

1.1 1.2 1.4 2 ns

tRCKH Input Low to High (50% Load)
(Pad to R-cell Input)

0.8 0.9 1.1 1.5 ns

tRCKL Input High to Low (50% Load)
(Pad to R-cell Input)

1.1 1.2 1.4 2 ns

tRCKH Input Low to High (100% Load)
(Pad to R-cell Input)

1.1 1.2 1.4 1.9 ns

tRCKL Input High to Low (100% Load)
(Pad to R-cell Input)

1.2 1.3 1.6 2.2 ns

tRPWH Minimum Pulse Width High 1.6 1.8 2.1 2.9 ns

tRPWL Minimum Pulse Width Low 1.6 1.8 2.1 2.9 ns

tRCKSW Maximum Skew (Light Load) 0.7 0.8 0.9 1.3 ns

tRCKSW Maximum Skew (50% Load) 0.7 0.8 0.9 1.3 ns

tRCKSW Maximum Skew (100% Load) 0.8 0.9 1.1 1.5 ns
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SX-A Family FPGAs
Table 2-28 • A54SX32A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays2

tPD Internal Array Module 0.8 0.9 1.1 1.2 1.7 ns

Predicted Routing Delays3

tDC FO = 1 Routing Delay, Direct
Connect

0.1 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns

tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.6 ns

tRD2 FO = 2 Routing Delay 0.4 0.5 0.5 0.6 0.8 ns

tRD3 FO = 3 Routing Delay 0.5 0.6 0.7 0.8 1.1 ns

tRD4 FO = 4 Routing Delay 0.7 0.8 0.9 1.0 1.4 ns

tRD8 FO = 8 Routing Delay 1.2 1.4 1.5 1.8 2.5 ns

tRD12 FO = 12 Routing Delay 1.7 2.0 2.2 2.6 3.6 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.6 0.7 0.8 0.9 1.3 ns

tCLR Asynchronous Clear-to-Q 0.5 0.6 0.6 0.8 1.0 ns

tPRESET Asynchronous Preset-to-Q 0.6 0.7 0.7 0.9 1.2 ns

tSUD Flip-Flop Data Input Set-Up 0.6 0.7 0.8 0.9 1.2 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.2 1.4 1.5 1.8 2.5 ns

tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns

tHASYN Asynchronous Removal Time 0.3 0.3 0.3 0.4 0.6 ns

tMPW Clock Pulse Width 1.4 1.6 1.8 2.1 2.9 ns

Input Module Propagation Delays

tINYH Input Data Pad to Y High 2.5 V
LVCMOS

0.6 0.7 0.8 0.9 1.2 ns

tINYL Input Data Pad to Y Low 2.5 V
LVCMOS

1.2 1.3 1.5 1.8 2.5 ns

tINYH Input Data Pad to Y High 3.3 V PCI 0.5 0.6 0.6 0.7 1.0 ns

tINYL Input Data Pad to Y Low 3.3 V PCI 0.6 0.7 0.8 0.9 1.3 ns

tINYH Input Data Pad to Y High 3.3 V
LVTTL

0.8 0.9 1.0 1.2 1.6 ns

tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.4 1.6 1.8 2.2 3.0 ns

Notes:

1. All –3 speed grades have been discontinued.
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance.   Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
Table 2-35 • A54SX72A Timing Characteristics
(Worst-Case Commercial Conditions, VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

C-Cell Propagation Delays2

tPD Internal Array Module 1.0 1.1 1.3 1.5 2.0 ns

Predicted Routing Delays3

tDC FO = 1 Routing Delay, Direct
Connect

0.1 0.1 0.1 0.1 0.1 ns

tFC FO = 1 Routing Delay, Fast Connect 0.3 0.3 0.3 0.4 0.6 ns

tRD1 FO = 1 Routing Delay 0.3 0.3 0.4 0.5 0.7 ns

tRD2 FO = 2 Routing Delay 0.4 0.5 0.6 0.7 1 ns

tRD3 FO = 3 Routing Delay 0.5 0.7 0.8 0.9 1.3 ns

tRD4 FO = 4 Routing Delay 0.7 0.9 1 1.1 1.5 ns

tRD8 FO = 8 Routing Delay 1.2 1.5 1.7 2.1 2.9 ns

tRD12 FO = 12 Routing Delay 1.7 2.2 2.5 3 4.2 ns

R-Cell Timing

tRCO Sequential Clock-to-Q 0.7 0.8 0.9 1.1 1.5 ns

tCLR Asynchronous Clear-to-Q 0.6 0.7 0.7 0.9 1.2 ns

tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.8 1.0 1.4 ns

tSUD Flip-Flop Data Input Set-Up 0.7 0.8 0.9 1.0 1.4 ns

tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns

tWASYN Asynchronous Pulse Width 1.3 1.5 1.7 2.0 2.8 ns

tRECASYN Asynchronous Recovery Time 0.3 0.4 0.4 0.5 0.7 ns

tHASYN Asynchronous Hold Time 0.3 0.3 0.3 0.4 0.6 ns

tMPW Clock Minimum Pulse Width 1.5 1.7 2.0 2.3 3.2 ns

Input Module Propagation Delays

tINYH Input Data Pad to Y High 2.5 V
LVCMOS

0.6 0.7 0.8 0.9 1.3 ns

tINYL Input Data Pad to Y Low 2.5 V
LVCMOS

0.8 1.0 1.1 1.3 1.7 ns

tINYH Input Data Pad to Y High 3.3 V PCI 0.6 0.7 0.7 0.9 1.2 ns

tINYL Input Data Pad to Y Low 3.3 V PCI 0.7 0.8 0.9 1.0 1.4 ns

tINYH Input Data Pad to Y High 3.3 V
LVTTL

0.7 0.7 0.8 1.0 1.4 ns

tINYL Input Data Pad to Y Low 3.3 V LVTTL 1.0 1.2 1.3 1.5 2.1 ns

Notes:

1. All –3 speed grades have been discontinued.
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device

performance.   Post-route timing analysis or simulation is required to determine actual performance. 
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SX-A Family FPGAs
tQCKH Input Low to High (100% Load)
(Pad to R-cell Input)

1.7 1.9 2.2 2.5 3.5 ns

tQCHKL Input High to Low (100% Load)
(Pad to R-cell Input)

1.7 2 2.2 2.6 3.6 ns

tQPWH Minimum Pulse Width High 1.5 1.7 2.0 2.3 3.2 ns

tQPWL Minimum Pulse Width Low 1.5 1.7 2.0 2.3 3.2 ns

tQCKSW Maximum Skew (Light Load) 0.2 0.3 0.3 0.3 0.5 ns

tQCKSW Maximum Skew (50% Load) 0.4 0.5 0.5 0.6 0.9 ns

tQCKSW Maximum Skew (100% Load) 0.4 0.5 0.5 0.6 0.9 ns

Table 2-37 • A54SX72A Timing Characteristics (Continued)
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Note: *All –3 speed grades have been discontinued.
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SX-A Family FPGAs
Table 2-39 • A54SX72A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

2.5 V LVCMOS Output Module Timing2, 3

tDLH Data-to-Pad Low to High 3.9 4.5 5.1 6.0 8.4 ns

tDHL Data-to-Pad High to Low 3.1 3.6 4.1 4.8 6.7 ns

tDHLS Data-to-Pad High to Low—low slew 12.7 14.6 16.5 19.4 27.2 ns

tENZL Enable-to-Pad, Z to L 2.4 2.8 3.2 3.7 5.2 ns

tENZLS Data-to-Pad, Z to L—low slew 11.8 13.7 15.5 18.2 25.5 ns

tENZH Enable-to-Pad, Z to H 3.9 4.5 5.1 6.0 8.4 ns

tENLZ Enable-to-Pad, L to Z 2.1 2.5 2.8 3.3 4.7 ns

tENHZ Enable-to-Pad, H to Z 3.1 3.6 4.1 4.8 6.7 ns

dTLH
4 Delta Low to High 0.031 0.037 0.043 0.051 0.071 ns/pF

dTHL
4 Delta High to Low 0.017 0.017 0.023 0.023 0.037 ns/pF

dTHLS
4 Delta High to Low—low slew 0.057 0.06 0.071 0.086 0.117 ns/pF

Note:

1. All –3 speed grades have been discontinued.
2. Delays based on 35 pF loading.
3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.
4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
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SX-A Family FPGAs
Table 2-40 • A54SX72A Timing Characteristics
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)

Parameter Description

–3 Speed1 –2 Speed –1 Speed Std. Speed –F Speed

UnitsMin. Max. Min. Max. Min. Max. Min. Max. Min. Max.

3.3 V PCI Output Module Timing2

tDLH Data-to-Pad Low to High 2.3 2.7 3.0 3.6 5.0 ns

tDHL Data-to-Pad High to Low 2.5 2.9 3.2 3.8 5.3 ns

tENZL Enable-to-Pad, Z to L 1.4 1.7 1.9 2.2 3.1 ns

tENZH Enable-to-Pad, Z to H 2.3 2.7 3.0 3.6 5.0 ns

tENLZ Enable-to-Pad, L to Z 2.5 2.8 3.2 3.8 5.3 ns

tENHZ Enable-to-Pad, H to Z 2.5 2.9 3.2 3.8 5.3 ns

dTLH
3 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF

dTHL
3 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF

3.3 V LVTTL Output Module Timing4

tDLH Data-to-Pad Low to High 3.2 3.7 4.2 5.0 6.9 ns

tDHL Data-to-Pad High to Low 3.2 3.7 4.2 4.9 6.9 ns

tDHLS Data-to-Pad High to Low—low slew 10.3 11.9 13.5 15.8 22.2 ns

tENZL Enable-to-Pad, Z to L 2.2 2.6 2.9 3.4 4.8 ns

tENZLS Enable-to-Pad, Z to L—low slew 15.8 18.9 21.3 25.4 34.9 ns

tENZH Enable-to-Pad, Z to H 3.2 3.7 4.2 5.0 6.9 ns

tENLZ Enable-to-Pad, L to Z 2.9 3.3 3.7 4.4 6.2 ns

tENHZ Enable-to-Pad, H to Z 3.2 3.7 4.2 4.9 6.9 ns

dTLH
3 Delta Low to High 0.025 0.03 0.03 0.04 0.045 ns/pF

dTHL
3 Delta High to Low 0.015 0.015 0.015 0.015 0.025 ns/pF

dTHLS
3 Delta High to Low—low slew 0.053 0.053 0.067 0.073 0.107 ns/pF

Notes:

1. All –3 speed grades have been discontinued.
2. Delays based on 10 pF loading and 25 Ω resistance.
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:

Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS])
where Cload is the load capacitance driven by the I/O in pF

dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.
4. Delays based on 35 pF loading.
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SX-A Family FPGAs
Package Pin Assignments

208-Pin PQFP 

Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.

Figure 3-1 • 208-Pin PQFP (Top View)

208-Pin
PQFP
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SX-A Family FPGAs
141 NC I/O I/O I/O

142 I/O I/O I/O I/O

143 NC I/O I/O I/O

144 I/O I/O I/O I/O

145 VCCA VCCA VCCA VCCA

146 GND GND GND GND

147 I/O I/O I/O I/O

148 VCCI VCCI VCCI VCCI

149 I/O I/O I/O I/O

150 I/O I/O I/O I/O

151 I/O I/O I/O I/O

152 I/O I/O I/O I/O

153 I/O I/O I/O I/O

154 I/O I/O I/O I/O

155 NC I/O I/O I/O

156 NC I/O I/O I/O

157 GND GND GND GND

158 I/O I/O I/O I/O

159 I/O I/O I/O I/O

160 I/O I/O I/O I/O

161 I/O I/O I/O I/O

162 I/O I/O I/O I/O

163 I/O I/O I/O I/O

164 VCCI VCCI VCCI VCCI

165 I/O I/O I/O I/O

166 I/O I/O I/O I/O

167 NC I/O I/O I/O

168 I/O I/O I/O I/O

169 I/O I/O I/O I/O

170 NC I/O I/O I/O

171 I/O I/O I/O I/O

172 I/O I/O I/O I/O

173 NC I/O I/O I/O

174 I/O I/O I/O I/O

175 I/O I/O I/O I/O

208-Pin PQFP

Pin 
Number

A54SX08A
Function

A54SX16A
Function

A54SX32A
Function

A54SX72A
Function

176 NC I/O I/O I/O

177 I/O I/O I/O I/O

178 I/O I/O I/O QCLKD

179 I/O I/O I/O I/O

180 CLKA CLKA CLKA CLKA

181 CLKB CLKB CLKB CLKB

182 NC NC NC NC

183 GND GND GND GND

184 VCCA VCCA VCCA VCCA

185 GND GND GND GND

186 PRA, I/O PRA, I/O PRA, I/O PRA, I/O

187 I/O I/O I/O VCCI

188 I/O I/O I/O I/O

189 NC I/O I/O I/O

190 I/O I/O I/O QCLKC

191 I/O I/O I/O I/O

192 NC I/O I/O I/O

193 I/O I/O I/O I/O

194 I/O I/O I/O I/O

195 NC I/O I/O I/O

196 I/O I/O I/O I/O

197 I/O I/O I/O I/O

198 NC I/O I/O I/O

199 I/O I/O I/O I/O

200 I/O I/O I/O I/O

201 VCCI VCCI VCCI VCCI

202 NC I/O I/O I/O

203 NC I/O I/O I/O

204 I/O I/O I/O I/O

205 NC I/O I/O I/O

206 I/O I/O I/O I/O

207 I/O I/O I/O I/O

208 TCK, I/O TCK, I/O TCK, I/O TCK, I/O

208-Pin PQFP

Pin 
Number

A54SX08A
Function

A54SX16A
Function

A54SX32A
Function

A54SX72A
Function
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SX-A Family FPGAs
176-Pin TQFP 

Note
For Package Manufacturing and Environmental information, visit Resource center at
http://www.actel.com/products/rescenter/package/index.html.

Figure 3-4 • 176-Pin TQFP (Top View)

176-Pin
TQFP

176
1
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SX-A Family FPGAs
145 I/O

146 I/O

147 I/O

148 I/O

149 I/O

150 I/O

151 I/O

152 CLKA

153 CLKB

154 NC

155 GND

156 VCCA

157 PRA, I/O

158 I/O

159 I/O

160 I/O

161 I/O

162 I/O

163 I/O

164 I/O

165 I/O

166 I/O

167 I/O

168 I/O

169 VCCI

170 I/O

171 I/O

172 I/O

173 I/O

174 I/O

175 I/O

176 TCK, I/O

176-Pin TQFP

Pin 
Number

A54SX32A 
Function
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SX-A Family FPGAs
D11 VCCA

D12 NC

D13 I/O

D14 I/O

D15 I/O

D16 I/O

D17 I/O

D18 I/O

D19 I/O

D20 I/O

D21 I/O

D22 I/O

D23 I/O

E1 VCCI

E2 I/O

E3 I/O

E4 I/O

E20 I/O

E21 I/O

E22 I/O

E23 I/O

F1 I/O

F2 TMS

F3 I/O

F4 I/O

F20 I/O

F21 I/O

F22 I/O

F23 I/O

G1 I/O

G2 I/O

G3 I/O

G4 I/O

G20 I/O

G21 I/O

G22 I/O

G23 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

H1 I/O

H2 I/O

H3 I/O

H4 I/O

H20 VCCA

H21 I/O

H22 I/O

H23 I/O

J1 NC

J2 I/O

J3 I/O

J4 I/O

J20 I/O

J21 I/O

J22 I/O

J23 I/O

K1 I/O

K2 I/O

K3 I/O

K4 I/O

K10 GND

K11 GND

K12 GND

K13 GND

K14 GND

K20 I/O

K21 I/O

K22 I/O

K23 I/O

L1 I/O

L2 I/O

L3 I/O

L4 NC

L10 GND

L11 GND

L12 GND

L13 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

L14 GND

L20 NC

L21 I/O

L22 I/O

L23 NC

M1 I/O

M2 I/O

M3 I/O

M4 VCCA

M10 GND

M11 GND

M12 GND

M13 GND

M14 GND

M20 VCCA

M21 I/O

M22 I/O

M23 VCCI

N1 I/O

N2 TRST, I/O

N3 I/O

N4 I/O

N10 GND

N11 GND

N12 GND

N13 GND

N14 GND

N20 NC

N21 I/O

N22 I/O

N23 I/O

P1 I/O

P2 I/O

P3 I/O

P4 I/O

P10 GND

P11 GND

329-Pin PBGA

Pin 
Number

A54SX32A 
Function

P12 GND

P13 GND

P14 GND

P20 I/O

P21 I/O

P22 I/O

P23 I/O

R1 I/O

R2 I/O

R3 I/O

R4 I/O

R20 I/O

R21 I/O

R22 I/O

R23 I/O

T1 I/O

T2 I/O

T3 I/O

T4 I/O

T20 I/O

T21 I/O

T22 I/O

T23 I/O

U1 I/O

U2 I/O

U3 VCCA

U4 I/O

U20 I/O

U21 VCCA

U22 I/O

U23 I/O

V1 VCCI

V2 I/O

V3 I/O

V4 I/O

V20 I/O

V21 I/O

329-Pin PBGA

Pin 
Number

A54SX32A 
Function
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