

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f031c4t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F031x4/x6 family device features and peripheral counts	9
Table 3.	Temperature sensor calibration values.	16
Table 4.	Internal voltage reference calibration values	16
Table 5.	Timer feature comparison	17
Table 6.	Comparison of I ² C analog and digital filters	20
Table 7.	STM32F031x4/x6 I ² C implementation	20
Table 8.	STM32F031x4/x6 USART implementation	21
Table 9.	STM32F031x4/x6 SPI/I2S implementation	21
Table 10.	Legend/abbreviations used in the pinout table	26
Table 11.	Pin definitions	26
Table 12.	Alternate functions selected through GPIOA AFR registers for port A	31
Table 13.	Alternate functions selected through GPIOB AFR registers for port B	32
Table 14.	STM32F031x4/x6 peripheral register boundary addresses	34
Table 15.	Voltage characteristics	39
Table 16.	Current characteristics	40
Table 17.	Thermal characteristics	40
Table 18	General operating conditions	41
Table 19	Operating conditions at power-up / power-down	42
Table 20	Embedded reset and power control block characteristics	42
Table 21	Programmable voltage detector characteristics	42
Table 22	Embedded internal reference voltage	43
Table 23	Typical and maximum current consumption from V_{DD} at 3.6 V	44
Table 24	Typical and maximum current consumption from the V_{PPA} supply	45
Table 25	Typical and maximum current consumption in Stop and Standby modes	46
Table 26	Typical and maximum current consumption in Gtop and Standby modes $\dots \dots$	
Table 20. Table 27	Typical and maximum current consumption code executing from Elash memory	
	running from HSE 8 MHz crystal	48
Table 28	Switching output I/O current consumption	50
Table 20.	Perinheral current consumption	51
Table 20.	low-power mode wakeup timings	53
Table 30.	High speed external user clock characteristics	
Table 31.	low speed external user clock characteristics	55 5/
Table 32.		
Table 33.	$ISE oscillator characteristics (f_{r=} = 22.762 \text{ kHz})$	
Table 34.	$LSE Oscillator characteristics (ILSE - 32.700 KHz) \dots \dots$	50 E0
Table 35.		
Table 30.		
		60
Table 39.		
Table 40.		01
Table 41.		
Table 42.		
Table 43.		
Table 45.		64
Table 46.	I/O static characteristics	64
i able 47.	Output voltage characteristics	67

3.11 Timers and watchdogs

The STM32F031x4/x6 devices include up to five general-purpose timers and an advanced control timer.

Table 5 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
General purpose	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1

Table 5. Timer feature comparison

3.11.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.11.2 General-purpose timers (TIM2, 3, 14, 16, 17)

There are five synchronizable general-purpose timers embedded in the STM32F031x4/x6 devices (see *Table 5* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F031x4/x6 devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM16 and TIM17

Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

They each have a single channel for input capture/output compare, PWM or one-pulse mode output.

TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.11.3 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.11.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

	Pin number								Pin functions			
LQFP48	LQFP32	UFQFPN32	UFQFPN28	WLCSP25	TSSOP20	Pin name (function upon reset)	Pin type	Pin type I/O structure		Alternate functions	Additional functions	
41	28	28	26	C2	-	PB5	I/O	FT	-	SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	-	
42	29	29	27	B2	-	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N	-	
43	30	30	28	A3	-	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM17_CH1N	-	
44	31	31	1	A4	1	BOOT0	I	В	-	Boot memory	/ selection	
45	-	32	-	-	-	PB8	I/O	FTf	(4)	I2C1_SCL, TIM16_CH1	-	
46	-	-	-	-	-	PB9	I/O	FTf	-	I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT	-	
47	32	0	-	E1	-	VSS	S	-	-	Ground		
48	1	1	-	-	-	VDD	S	-	-	Digital power supply		

 Table 11. Pin definitions (continued)

 PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF

The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.

3. VSSA pin is not in package pinout. VSSA pad of the die is connected to VSS pin.

4. On the LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware).

5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

6. On the WLCSP25 package, PB3, PB4 and PA15 must be set to defined levels by software, as their corresponding pads on the silicon die are left unconnected. Apply same recommendations as for unconnected pins.

5 Memory mapping

To the difference of STM32F031x6 memory map in *Figure 9*, the two bottom code memory spaces of STM32F031x4 end at 0x0000 3FFF and 0x0800 3FFF, respectively.

Figure 9. STM32F031x6 memory map

DocID025743 Rev 5

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
	0x4800 0C00 - 0x4800 13FF	2KB	Reserved
AHB2	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
	0x4002 2000 - 0x4002 23FF	1 KB	Flash memory interface
ALDI	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1KB	TIM17
	0x4001 4400 - 0x4001 47FF	1KB	TIM16
	0x4001 3C00 - 0x4001 43FF	2KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1KB	USART1
APB	0x4001 3400 - 0x4001 37FF	1KB	Reserved
	0x4001 3000 - 0x4001 33FF	1KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1KB	Reserved
	0x4001 2400 - 0x4001 27FF	1KB	ADC
	0x4001 0800 - 0x4001 23FF	7KB	Reserved
	0x4001 0400 - 0x4001 07FF	1KB	EXTI
	0x4001 0000 - 0x4001 03FF	1KB	SYSCFG
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

6.3 **Operating conditions**

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit		
f _{HCLK}	Internal AHB clock frequency	-	0	48	MLIA		
f _{PCLK}	Internal APB clock frequency	-	0	48	IVITIZ		
V _{DD}	Standard operating voltage	-	2.0	3.6	V		
V _{DDA}	Analog operating voltage (ADC not used)	Must have a potential equal	V _{DD}	3.6	M		
	Analog operating voltage (ADC used)	to or higher than V _{DD}	2.4	3.6	V		
V _{BAT}	Backup operating voltage	-	1.65	3.6	V		
		TC and RST I/O	-0.3	V _{DDIOx} +0.3			
V _{IN}		TTa I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾	N/		
	NO input voltage	FT and FTf I/O	-0.3	5.5 ⁽¹⁾	V		
		BOOT0	0	5.5			
		LQFP48	-	364			
		UFQFPN32	-	526			
Р	Power dissipation at $T_A = 85 \degree C$ for suffix 6 or $T_A = 105 \degree C$ for suffix 7 ⁽²⁾	LQFP32	-	357			
PD		UFQFPN28	-	169	IIIVV		
		WLCSP25	-	267			
		TSSOP20	-	182			
	Ambient temperature for the	Maximum power dissipation	-40	85	°C		
т.	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	C		
IA	Ambient temperature for the	Maximum power dissipation	-40	105	°C		
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125	J [°] C		
т.	lunction tomporature range	Suffix 6 version	-40	105	°C		
TJ	sunction temperature range	Suffix 7 version	-40	125	50		

Table 18. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.7: Thermal characteristics.

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 19* are derived from tests performed under the ambient temperature condition summarized in *Table 18*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{PVD6}	D) (D thread ald C	Rising edge	2.66	2.78	2.9	V	
		Falling edge	2.56	2.68	2.8	V	
V _{PVD7}	DVD threshold 7	Rising edge	2.76	2.88	3	V	
		Falling edge	2.66	2.78	2.9	V	
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV	
I _{DD(PVD)}	PVD current consumption	-	-	0.15	0.26 ⁽¹⁾	μA	

 Table 21. Programmable voltage detector characteristics (continued)

1. Guaranteed by design, not tested in production.

6.3.4 Embedded reference voltage

The parameters given in *Table 22* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.2	1.23	1.25	V
t _{START}	ADC_IN17 buffer startup time	-	-	-	10 ⁽¹⁾	μs
t _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	4 ⁽¹⁾	-	-	μs
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V	-	-	10 ⁽¹⁾	mV
T _{Coeff}	Temperature coefficient	-	- 100 ⁽¹⁾	-	100 ⁽¹⁾	ppm/°C

Table 22. Embedded internal reference voltage

1. Guaranteed by design, not tested in production.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 29: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

 $\rm f_{SW}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Electrical characteristics

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			4 MHz	0.07	
			8 MHz	0.15	
		$C = C_{INT}$	16 MHz	0.31	
			24 MHz	0.53	
			48 MHz	0.92	
			4 MHz	0.18	
		V _{DDIOx} = 3.3 V	8 MHz	0.37	
		C _{EXT} = 0 pF	16 MHz	0.76	
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39	
			48 MHz	2.188	
	I/O current consumption		4 MHz	0.32	mA
		$V_{\text{DDIOx}} = 3.3 \text{ V}$ $C_{\text{EXT}} = 10 \text{ pF}$ $C = C_{\text{INT}} + C_{\text{EXT}} + C_{\text{S}}$	8 MHz	0.64	
			16 MHz	1.25	
			24 MHz	2.23	
low			48 MHz	4.442	
SW			4 MHz	0.49	
		$V_{DDIOx} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.94	
			16 MHz	2.38	
			24 MHz	3.99	
			4 MHz	0.64	
		$V_{\text{DDIOx}} = 3.3 \text{ V}$	8 MHz	1.25	
		$C = C_{INT} + C_{FXT} + C_S$	16 MHz	3.24	
			24 MHz	5.02	
		V _{DDIOx} = 3.3 V	4 MHz	0.81	
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.7	
		$C = C_{INT} + C_{EXT} + C_{S}$ $C = C_{int}$	16 MHz	3.67	
		V _{DDIOX} = 2.4 V	4 MHz	0.66	
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.43	
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45	
		$C = C_{int}$	24 MHz	4.97	

 Table 28. Switching output I/O current consumption

1. C_S = 7 pF (estimated value).

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSI14}	Frequency	-	-	14	-	MHz	
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%	
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%	
		T _A = -40 to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%	
	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%	
ACCHSI14		$T_A = 0$ to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%	
		T _A = 25 °C	-1	-	1	%	
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs	
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	_	100	150 ⁽²⁾	μA	

Table 36. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 19. HSI14 oscillator accuracy characterization results

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit	
Gymbol		Conditions	frequency band	8/48 MHz	onic	
	Peak level	V_{DD} = 3.6 V, T_A = 25 °C, LQFP48 package compliant with IEC 61967-2	0.1 to 30 MHz	-11		
S			30 to 130 MHz	21	dBµV	
SEMI			130 MHz to 1 GHz	21		
			EMI Level	4	-	

Table 42. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Figure 22. I/O AC characteristics definition

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V _{NF(NRST)}	NPST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ne
		2.0 < V _{DD} < 3.6	500 ⁽³⁾	-	-	113

 Table 49. NRST pin characteristics

1. Data based on design simulation only. Not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

Figure 26. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

7.2 LQFP32 package information

LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.

Figure 34. LQFP32 package outline

1. Drawing is not to scale.

7.4 UFQFPN28 package information

UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

1. Drawing is not to scale.

Symbol	millimeters			inches		
	Min	Тур	Мах	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-

Table 64. UFQFPN28 package mechanical data⁽¹⁾

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 42. UFQFPN28 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

WLCSP25 package information 7.5

WLCSP25 is a 25-ball, 2.423 x 2.325 mm, 0.4 mm pitch wafer level chip scale package.

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	0.525	0.555	0.585	0.0207	0.0219	0.0230	
A1	-	0.175	-	-	0.0069	-	
A2	-	0.380	-	-	0.0150	-	
A3 ⁽²⁾	-	0.025	-	-	0.0010	-	
b ^{(3) (4)}	0.220	0.250	0.280	0.0087	0.0098	0.0110	
D	2.388	2.423	2.458	0.0940	0.0954	0.0968	
Е	2.29	2.325	2.36	0.0902	0.0915	0.0929	
е	-	0.400	-	-	0.0157	-	
e1	-	1.600	-	-	0.0630	-	
e2	-	1.600	-	-	0.0630	-	
F	-	0.4115	-	-	0.0162	-	
G	-	0.3625	-	-	0.0143	-	

Table 65. WLCSP25	package mechanical of	data
-------------------	-----------------------	------

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 18: General operating conditions*.

The maximum chip-junction temperature, T_{J} max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
ΘյΑ	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
	Thermal resistance junction-ambient UFQFPN32 - 5 × 5 mm	38	°C/W
	Thermal resistance junction-ambient LQFP32 - 7 × 7 mm	56	
	Thermal resistance junction-ambient UFQFPN28 - 4 × 4 mm	118	
	Thermal resistance junction-ambient WLCSP25 - 2.13 x 2.07 mm	74	
	Thermal resistance junction-ambient TSSOP20 - 6.5 x 4.4 mm	110	

Table 68. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID025743 Rev 5

