

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f031c6t7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Block diagram	10
Figure 2.	Clock tree	14
Figure 3.	LQFP48 package pinout	23
Figure 4.	LQFP32 package pinout	23
Figure 5.	UFQFPN32 package pinout	24
Figure 6.	UFQFPN28 package pinout	24
Figure 7.	WLCSP25 package pinout	25
Figure 8.	TSSOP20 package pinout	25
Figure 9.	STM32F031x6 memory map	33
Figure 10.	Pin loading conditions.	36
Figure 11.	Pin input voltage	36
Figure 12.	Power supply scheme	37
Figure 13.	Current consumption measurement scheme	38
Figure 14.	High-speed external clock source AC timing diagram	54
Figure 15.	Low-speed external clock source AC timing diagram	54
Figure 16	Typical application with an 8 MHz crystal	56
Figure 17	Typical application with a 32 768 kHz crystal	57
Figure 18	HSI oscillator accuracy characterization results for soldered parts	58
Figure 10.	HSI14 oscillator accuracy characterization results	50
Figure 20	TC and TTa I/O input characteristics	66
Figure 20.	Five yelt telerant (ET and ETf) I/O input characteristics	66
Figure 21.		60
Figure 22.	NO AC Characteristics definition	70
Figure 23.		70
Figure 24.		13
Figure 25.		73
Figure 26.	SPI timing diagram - slave mode and CPHA = 0	<u> </u>
Figure 27.	SPI timing diagram - slave mode and CPHA = 1	//
Figure 28.		78
Figure 29.	I ² S slave timing diagram (Philips protocol)	79
Figure 30.	I ² S master timing diagram (Philips protocol)	80
Figure 31.	LQFP48 package outline	81
Figure 32.	Recommended footprint for LQFP48 package	82
Figure 33.	LQFP48 package marking example	83
Figure 34.	LQFP32 package outline	84
Figure 35.	Recommended footprint for LQFP32 package	85
Figure 36.	LQFP32 package marking example	86
Figure 37.	UFQFPN32 package outline	87
Figure 38.	Recommended footprint for UFQFPN32 package	88
Figure 39.	UFQFPN32 package marking example	89
Figure 40.	UFQFPN28 package outline	90
Figure 41.	Recommended footprint for UFQFPN28 package	91
Figure 42.	UFQFPN28 package marking example	92
Figure 43.	WLCSP25 package outline.	93
Figure 44.	Recommended footprint for WLCSP25 package	94
Figure 45.	WLCSP25 package marking example	95
Figure 46	TSSOP20 package outline	96
Figure 47	Recommended footprint for TSSOP20 package	97
Figure 48.	TSSOP20 package marking example.	98
<u> </u>		

3 Functional overview

Figure 1 shows the general block diagram of the STM32F031x4/x6 devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F031x4/x6 devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

- 4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 16 to 32 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

DocID025743 Rev 5

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 **Power supply schemes**

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address				
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (± 5 °C), V_{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB				

able 4. Internal voltage reference calibration values

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

Tuble					
Aspect	Analog filter	Digital filter			
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks			
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length 			
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.			

Table 6. Comparison of I²C analog and digital filters

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripheral can be served by the DMA controller.

I ² C features ⁽¹⁾	I2C1			
7-bit addressing mode	Х			
10-bit addressing mode	Х			
Standard mode (up to 100 kbit/s)	Х			
Fast mode (up to 400 kbit/s)	Х			
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х			
Independent clock	Х			
SMBus	Х			
Wakeup from STOP	Х			

Table 7. STM32F031x4/x6 I²C implementation

1. X = supported.

3.14 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds one universal synchronous/asynchronous receiver/transmitter (USART1) which communicates at speeds of up to 6 Mbit/s.

It provides hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interface can be served by the DMA controller.

	F	Pin nu	umbe	r						Pin functions		
LQFP48	LQFP32	UFQFPN32	UFQFPN28	WLCSP25	TSSOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
17	13	13	13	E4	13	PA7	I/O	TTa	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT	ADC_IN7	
18	14	14	14	E3	-	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, EVENTOUT	ADC_IN8	
19	15	15	15	E2	14	PB1	I/O	ТТа	-	TIM3_CH4, TIM14_CH1, TIM1_CH3N	ADC_IN9	
20	-	16	-	-	-	PB2	I/O	FT	(4)	-	-	
21	-	-	-	-	-	PB10	I/O	FTf	-	TIM2_CH3, I2C1_SCL	-	
22	-	-	-	-	-	PB11	I/O	FTf	-	TIM2_CH4, EVENTOUT, I2C1_SDA	-	
23	16	0	16	E1	15	VSS	S	-	-	Ground		
24	17	17	17	D1	16	VDD	S	-	-	Digital powe	er supply	
25	-	-	-	-	-	PB12	I/O	FT	-	TIM1_BKIN, EVENTOUT, SPI1_NSS	-	
26	-	-	-	-	-	PB13	I/O	FT	-	TIM1_CH1N, SPI1_SCK	-	
27	-	-	-	-	-	PB14	I/O	FT	-	TIM1_CH2N, SPI1_MISO	-	
28	-	-	-	-	-	PB15	I/O	FT	-	TIM1_CH3N, SPI1_MOSI	RTC_REFIN	
29	18	18	18	D2	-	PA8	I/O	FT	-	USART1_CK, TIM1_CH1, EVENTOUT, MCO	-	

Table 11. Pin definitions (continued)

Bus	Boundary address	Size	Peripheral
	0x4000 7400 - 0x4000 7FFF	3KB	Reserved
	0x4000 7000 - 0x4000 73FF	1KB	PWR
	0x4000 5800 - 0x4000 6FFF	6KB	Reserved
	0x4000 5400 - 0x4000 57FF	1KB	I2C1
	0x4000 3400 - 0x4000 53FF	8KB	Reserved
APB	0x4000 3000 - 0x4000 33FF	1KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1KB	RTC
	0x4000 2400 - 0x4000 27FF	1KB	Reserved
	0x4000 2000 - 0x4000 23FF	1KB	TIM14
	0x4000 0800 - 0x4000 1FFF	6KB	Reserved
	0x4000 0400 - 0x4000 07FF	1KB	TIM3
	0x4000 0000 - 0x4000 03FF	1KB	TIM2

Table 14. STM32F031x4/x6 peripheral register boundary addresses (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

DocID025743 Rev 5

6.1.6 Power supply scheme

Figure 12. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Electrical characteristics

Symbol	Parameter	Conditions ⁽¹⁾ I/O toggling frequency (f _{SW})		Тур	Unit	
			4 MHz	0.07		
			8 MHz	0.15		
		$C = C_{INT}$	16 MHz	0.31		
			24 MHz	0.53		
			48 MHz	0.92		
			4 MHz	0.18		
		V _{DDIOx} = 3.3 V	8 MHz	0.37		
		C _{EXT} = 0 pF	16 MHz	0.76		
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39		
			48 MHz	2.188		
	I/O current consumption	$V_{DDIOx} = 3.3 V$ $C_{EXT} = 10 pF$ $C = C_{INT} + C_{EXT} + C_S$	4 MHz	0.32		
			8 MHz	0.64		
			16 MHz	1.25		
			24 MHz	2.23		
low			48 MHz	4.442		
SW		consumption	4 MHz	0.49		
		$V_{DDIOX} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.94		
			16 MHz	2.38		
			24 MHz	3.99	1	
		V _{DDIOx} = 3.3 V Cryz = 33 pE		4 MHz	0.64	
			$V_{\text{DDIOx}} = 3.3 \text{ V}$	8 MHz	1.25	
		$C = C_{INT} + C_{FXT} + C_S$	16 MHz	3.24		
			24 MHz	5.02		
		V _{DDIOx} = 3.3 V	V _{DDIOx} = 3.3 V 4 MHz 0.	0.81		
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.7		
		$C = C_{INT} + C_{EXT} + C_{S}$ $C = C_{int}$	16 MHz	3.67		
		V _{DDIOX} = 2.4 V	4 MHz	0.66		
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.43		
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45		
		C = C _{int}	24 MHz	4.97		

 Table 28. Switching output I/O current consumption

1. C_S = 7 pF (estimated value).

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSI14}	Frequency	-	-	14	-	MHz	
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%	
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%	
ACC _{HSI14}	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = -40 to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%	
		T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%	
		$T_A = 0$ to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%	
		T _A = 25 °C	-1	-	1	%	
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs	
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	_	100	150 ⁽²⁾	μA	

Table 36. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 19. HSI14 oscillator accuracy characterization results

	g-									
Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit				
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T_A = +25 °C, conforming to JESD22-A114	All	2	2000	V				
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T_A = +25 °C, conforming to ANSI/ESD STM5.3.1	All	C3	250	V				

 Table 43. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 44. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 45.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

Table 46. I/O static characteristics (continued)

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 45: I/O current injection susceptibility.*

3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 20* for standard I/Os, and in *Figure 21* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽²⁾⁽⁴⁾	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$		0.196		μs
	Trigger conversion latency	$f_{ADC} = f_{PCLK}/2$	5.5			1/f _{PCLK}
t _{latr} ⁽²⁾		$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	0.219			μs
		f _{ADC} = f _{PCLK} /4	10.5			1/f _{PCLK}
		f _{ADC} = f _{HSI14} = 14 MHz	0.179	-	0.250	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
LS'-7		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Stabilization time - 14			1/f _{ADC}		
t _{CONV} ⁽²⁾	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1	-	18	μs
	(including sampling time)	12-bit resolution	14 to 252 (t _S for sampling +12.5 for successive approximation)		1/f _{ADC}	

 Table 50. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4

Table 51. R_{AIN} max for $f_{ADC} = 14$ MHz

6.3.17 Temperature sensor characteristics

Table	53.	ΤS	characteristics
Iabic	55.	10	Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time	-	-	10	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	4	-	-	μs

1. Guaranteed by design, not tested in production.

2. Measured at V_{DDA} = 3.3 V ± 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.18 V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V_{BAT}	4	-	-	μs

Table 54. V_{BAT} monitoring characteristics

1. Guaranteed by design, not tested in production.

6.3.19 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{ere} (TINA)	Timer resolution time	-	-	1	-	t _{TIMxCLK}
res(TIM)		f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f	Timer external clock	-	-	f _{TIMxCLK} /2	-	MHz
'EXT	CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
	16-bit timer maximum	-	-	2 ¹⁶	-	t _{TIMxCLK}
t _{MAX_COUNT}	period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
	32-bit counter maximum period	-	-	2 ³²	-	t _{TIMxCLK}
		f _{TIMxCLK} = 48 MHz	-	89.48	-	S

Table 55. TIM	k characteristics
---------------	-------------------

Figure 30. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 42. UFQFPN28 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100$ °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V

 $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$

 $P_{IOmax = 20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in Table 68 T_{Jmax} is calculated as follows:

- For LQFP48, 55 °C/W
- T_{Jmax} = 100 °C + (55 °C/W × 134 mW) = 100 °C + 7.37 °C = 107.37 °C

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Date	Revision	Changes
16-Dec-2015	4 (continued)	 Section 6.3.16: 12-bit ADC characteristics - changed introductory sentence Table 60: I²S characteristics: table reorganized, t_{v(SD_ST)} max value updated Section 7: Package information: Figure 41: Recommended footprint for UFQFPN28 package updated Section 8: Part numbering: added tray packing to options
06-Jan-2017	5	 Section 6: Electrical characteristics: Table 34: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. Table 22: Embedded internal reference voltage - V_{REFINT} values Figure 26: SPI timing diagram - slave mode and CPHA = 0 and Figure 27: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: The name of the section changed from the previous "Part numbering"

Table 70. Document revision history (continued)

