

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f031g4u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F031x4/x6 family device features and peripheral counts	9
Table 3.	Temperature sensor calibration values.	16
Table 4.	Internal voltage reference calibration values	16
Table 5.	Timer feature comparison	17
Table 6.	Comparison of I ² C analog and digital filters	20
Table 7.	STM32F031x4/x6 I ² C implementation	20
Table 8.	STM32F031x4/x6 USART implementation	21
Table 9.	STM32F031x4/x6 SPI/I2S implementation	21
Table 10.	Legend/abbreviations used in the pinout table	26
Table 11.	Pin definitions	26
Table 12.	Alternate functions selected through GPIOA AFR registers for port A	31
Table 13.	Alternate functions selected through GPIOB AFR registers for port B	32
Table 14.	STM32F031x4/x6 peripheral register boundary addresses	34
Table 15.	Voltage characteristics	39
Table 16.	Current characteristics	40
Table 17.	Thermal characteristics	40
Table 18	General operating conditions	41
Table 19	Operating conditions at power-up / power-down	42
Table 20	Embedded reset and power control block characteristics	42
Table 21	Programmable voltage detector characteristics	42
Table 22	Embedded internal reference voltage	43
Table 23	Typical and maximum current consumption from V_{DD} at 3.6 V	44
Table 24	Typical and maximum current consumption from the V_{PPA} supply	45
Table 25	Typical and maximum current consumption in Stop and Standby modes	46
Table 26	Typical and maximum current consumption in Gtop and Standby modes $\dots \dots$	
Table 20. Table 27	Typical and maximum current consumption code executing from Elash memory	
	running from HSE 8 MHz crystal	48
Table 28	Switching output I/O current consumption	50
Table 20.	Perinheral current consumption	51
Table 20.	low-power mode wakeup timings	53
Table 30.	High speed external user clock characteristics	
Table 31.	low speed external user clock characteristics	
Table 32.		
Table 33.	$ISE oscillator characteristics (f_{r=} = 22.762 \text{ kHz})$	
Table 34.	$LSE Oscillator characteristics (ILSE - 32.700 KHz) \dots \dots$	50 E0
Table 35.		
Table 30.		
		60
Table 39.		
Table 40.		01
Table 41.		
Table 42.		
Table 43.		
Table 45.		
Table 46.	I/O static characteristics	64
i able 47.	Output voltage characteristics	67

3.11 Timers and watchdogs

The STM32F031x4/x6 devices include up to five general-purpose timers and an advanced control timer.

Table 5 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
General purpose	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes 4		-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1

Table 5. Timer feature comparison

3.11.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.11.2 General-purpose timers (TIM2, 3, 14, 16, 17)

There are five synchronizable general-purpose timers embedded in the STM32F031x4/x6 devices (see *Table 5* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F031x4/x6 devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM16 and TIM17

Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

They each have a single channel for input capture/output compare, PWM or one-pulse mode output.

TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.11.3 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.11.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

	I	Pin ni	umbe	r						Pin functions		
LQFP48	LQFP32	UFQFPN32	UFQFPN28	WLCSP25	TSSOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
30	19	19	19	C1	17	PA9	I/O	FTf	-	USART1_TX, TIM1_CH2, I2C1_SCL	-	
31	20	20	20	B1	18	PA10	I/O	FTf	-	USART1_RX, TIM1_CH3, TIM17_BKIN, I2C1_SDA	-	
32	21	21	-	-	-	PA11	I/O	FT	-	USART1_CTS, TIM1_CH4, EVENTOUT	-	
33	22	22	-	-	-	PA12	I/O	FT	-	USART1_RTS, TIM1_ETR, EVENTOUT	-	
34	23	23	21	A1	19	PA13 (SWDIO)	I/O	FT	(5)	IR_OUT, SWDIO	-	
35	-	-	-	-	-	PF6	I/O	FTf	-	I2C1_SCL	-	
36	-	-	-	-	-	PF7	I/O	FTf	-	I2C1_SDA	-	
37	24	24	22	A2	20	PA14 (SWCLK)	I/O	FT	(5)	USART1_TX, SWCLK	-	
38	25	25	23	-	-	PA15	I/O	FT	(6)	SPI1_NSS, I2S1_WS, TIM2_CH_ETR, EVENTOUT, USART1_RX	-	
39	26	26	24	-	-	PB3	I/O	FT	(6)	SPI1_SCK, I2S1_CK, TIM2_CH2, EVENTOUT	-	
40	27	27	25	-	-	PB4	I/O	FT	(6)	SPI1_MISO, I2S1_MCK, TIM3_CH1, EVENTOUT	-	

Table 11. Pin definitions (continued)

Table 13. Alternate functions selected through GPIOB_AFR registers for port B								
Pin name	AF0	AF1	AF2	AF3				
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-				
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-				
PB2	-	-	-	-				
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	-				
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	-				
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA				
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	-				
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	-				
PB8	-	I2C1_SCL	TIM16_CH1	-				
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT				
PB10	-	I2C1_SCL	TIM2_CH3	-				
PB11	EVENTOUT	I2C1_SDA	TIM2_CH4	-				
PB12	SPI1_NSS	EVENTOUT	TIM1_BKIN	-				
PB13	SPI1_SCK	-	TIM1_CH1N	-				
PB14	SPI1_MISO	-	TIM1_CH2N	-				
PB15	SPI1_MOSI	-	TIM1_CH3N	-				

32/106

DocID025743 Rev 5

5

STM32F031x4 STM32F031x6

5 Memory mapping

To the difference of STM32F031x6 memory map in *Figure 9*, the two bottom code memory spaces of STM32F031x4 end at 0x0000 3FFF and 0x0800 3FFF, respectively.

Figure 9. STM32F031x6 memory map

DocID025743 Rev 5

Bus	Boundary address	Size	Peripheral
	0x4000 7400 - 0x4000 7FFF	3KB	Reserved
	0x4000 7000 - 0x4000 73FF	1KB	PWR
	0x4000 5800 - 0x4000 6FFF	6KB	Reserved
	0x4000 5400 - 0x4000 57FF	1KB	I2C1
	0x4000 3400 - 0x4000 53FF	8KB	Reserved
	0x4000 3000 - 0x4000 33FF	1KB	IWDG
APB	0x4000 2C00 - 0x4000 2FFF	1KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1KB	RTC
	0x4000 2400 - 0x4000 27FF	1KB	Reserved
	0x4000 2000 - 0x4000 23FF	1KB	TIM14
	0x4000 0800 - 0x4000 1FFF	6KB	Reserved
	0x4000 0400 - 0x4000 07FF	1KB	TIM3
	0x4000 0000 - 0x4000 03FF	1KB	TIM2

Table 14. STM32F031x4/x6 peripheral register boundary addresses (continued)

6.1.6 Power supply scheme

Figure 12. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.3 **Operating conditions**

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit		
f _{HCLK}	Internal AHB clock frequency	-	0	48	MLIA		
f _{PCLK}	Internal APB clock frequency	-	0	48	IVITIZ		
V _{DD}	Standard operating voltage	-	2.0	3.6	V		
N/	Analog operating voltage (ADC not used)	Must have a potential equal	V _{DD}	3.6	M		
V DDA	Analog operating voltage (ADC used)	to or higher than V _{DD}	2.4	3.6	V		
V _{BAT}	Backup operating voltage	-	1.65	3.6	V		
		TC and RST I/O	-0.3	V _{DDIOx} +0.3			
V _{IN}		TTa I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾	V		
		FT and FTf I/O	-0.3	5.5 ⁽¹⁾			
		BOOT0	0	5.5			
		LQFP48	-	364			
		UFQFPN32	-	526	ļ		
Р	Power dissipation at $T_A = 85 \degree C$	LQFP32	-	357			
PD	suffix $7^{(2)}$	UFQFPN28	-	169	IIIVV		
		WLCSP25	-	267			
		TSSOP20	-	182			
	Ambient temperature for the	Maximum power dissipation	-40	85	°C		
т.	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	ĴĴ		
IA	Ambient temperature for the	Maximum power dissipation	-40	105	°C		
	suffix 7 version	Low power dissipation ⁽³⁾ –40 125			C		
т.	lunction tomporature range	Suffix 6 version	-40	105	*0		
TJ	sunction temperature range	Suffix 7 version	-40	125	÷ل		

Table 18. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.7: Thermal characteristics.

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 19* are derived from tests performed under the ambient temperature condition summarized in *Table 18*.

Tuble										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
V _{PVD6}	PVD throshold 6	Rising edge	2.66	2.78	2.9	V				
		Falling edge	2.56	2.68	2.8	V				
M	DVD threshold 7	Rising edge	2.76	2.88	3	V				
VPVD7		Falling edge	2.66	Im Typ Max Unit .66 2.78 2.9 V .56 2.68 2.8 V .76 2.88 3 V .66 2.78 2.9 V .76 2.88 3 V .66 2.78 2.9 V - 100 - mV - 0.15 0.26 ⁽¹⁾ μA	V					
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV				
I _{DD(PVD)}	PVD current consumption	-	-	0.15	0.26 ⁽¹⁾	μA				

 Table 21. Programmable voltage detector characteristics (continued)

1. Guaranteed by design, not tested in production.

6.3.4 Embedded reference voltage

The parameters given in *Table 22* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.2	1.23	1.25	V
t _{START}	ADC_IN17 buffer startup time	-	-	-	10 ⁽¹⁾	μs
t _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	4 ⁽¹⁾	-	-	μs
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V	-	-	10 ⁽¹⁾	mV
T _{Coeff}	Temperature coefficient	-	- 100 ⁽¹⁾	-	100 ⁽¹⁾	ppm/°C

Table 22. Embedded internal reference voltage

1. Guaranteed by design, not tested in production.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Sum	Para-	Conditions		Typ $@V_{DD} (V_{DD} = V_{DDA})$						Max ⁽¹⁾			
bol	meter			2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 ℃	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current	Regulator in run mode, all oscillators OFF		15	15.1	15.3	15.5	15.7	16	18 ⁽²⁾	38	55 ⁽²⁾	
I _{DD}	in Stop mode	Reg pov osc	Regulator in low- power mode, all oscillators OFF		3.3	3.4	3.5	3.7	4	5.5 ⁽²⁾	22	41 ⁽²⁾	
	Supply current	LSI ON	I ON and IWDG	0.8	1.0	1.1	1.2	1.4	1.5	-	-	-	
	in Standby mode	LSI OF	I OFF and IWDG F	0.7	0.8	0.9	1.0	1.1	1.3	2 ⁽²⁾	2.5	3 ⁽²⁾	
	Supply current in Stop mode Supply current in Standby mode	N	Regulator in run mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	
		onitoring (Regulator in low- power mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	μA
		^{DDA} mo	LSI ON and IWDG ON	2.3	2.5	2.7	2.9	3.1	3.3	-	-	-	
		/	LSI OFF and IWDG OFF	1.8	1.9	2	2.2	2.3	2.5	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	
'DDA	Supply current in Stop mode	FF	Regulator in run mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-	
		onitoring C	Regulator in low- power mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-	
	Supply current	DDA MG	LSI ON and IWDG ON	1.5	1.6	1.7	1.8	1.9	2.0	-	-	-	
in St m	in Standby mode	>	LSI OFF and IWDG OFF	1	1.0	1.1	1.1	1.2	1.2	-	-	-	

Table 25.	. Typical and	maximum	current consum	ption in Sto	p and Standb	y modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Мах	Unit	
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz	
V_{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V	
V_{LSEL}	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v	
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	nc	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	115	

Table 32. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

DocID025743 Rev 5

Low-speed internal (LSI) RC oscillator

Table 37. LSI	oscillator	characteristics ⁽¹⁾
---------------	------------	--------------------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μÂ

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 38* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

Symbol	Poromotor		Unit			
Symbol	Faiameter	Min	Тур	Max	Onic	
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz	
^I PLL_IN	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%	
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz	
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs	
Jitter _{PLL}	Cycle-to-cycle jitter	_	_	300 ⁽²⁾	ps	

Table 38. PLL characteristics

1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Table 39. Flash memory charact	eristics
--------------------------------	----------

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = - 40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (1 KB) erase time	T _A = - 40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = - 40 to +105 °C	20	-	40	ms
I _{DD}	Supply current	Write mode	-	-	10	mA
		Erase mode	-	-	12	mA

1. Guaranteed by design, not tested in production.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol Parameter		Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
		Conditions	frequency band	8/48 MHz	onic
S _{EMI} Peak level		0.1 to 30 MHz	-11		
	Dook lovel	Peak level LQFP48 package compliant with IEC 61967-2	30 to 130 MHz	21	dBµV
	Feak level		130 MHz to 1 GHz	21	
			EMI Level	4	-

Table 42. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽²⁾⁽⁴⁾	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$		0.196		μs
	Trigger conversion latency	$f_{ADC} = f_{PCLK}/2$	5.5			1/f _{PCLK}
t _{latr} ⁽²⁾		$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	0.219			μs
		f _{ADC} = f _{PCLK} /4	10.5		1/f _{PCLK}	
		f _{ADC} = f _{HSI14} = 14 MHz	0.179	-	0.250	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
LS'-7		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Stabilization time	-	14		1/f _{ADC}	
t _{CONV} ⁽²⁾	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1	-	18	μs
	(including sampling time)	12-bit resolution	14 to 252 (t _S for sampling +12.5 for successive approximation)			1/f _{ADC}

 Table 50. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4

Table 51. R_{AIN} max for $f_{ADC} = 14$ MHz

Figure 30. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.2 LQFP32 package information

LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.

Figure 34. LQFP32 package outline

1. Drawing is not to scale.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 39. UFQFPN32 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.4 UFQFPN28 package information

UFQFPN28 is a 28-lead, 4x4 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

1. Drawing is not to scale.

Symbol	millimeters			inches		
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	-	0.000	0.050	-	0.0000	0.0020
D	3.900	4.000	4.100	0.1535	0.1575	0.1614
D1	2.900	3.000	3.100	0.1142	0.1181	0.1220
E	3.900	4.000	4.100	0.1535	0.1575	0.1614
E1	2.900	3.000	3.100	0.1142	0.1181	0.1220
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
L1	0.250	0.350	0.450	0.0098	0.0138	0.0177
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-

Table 64. UFQFPN28 package mechanical data⁽¹⁾

