

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f031g6u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

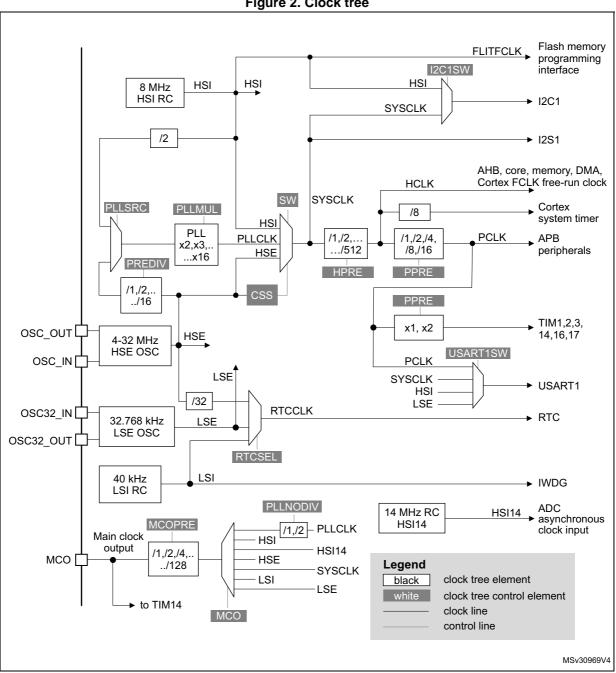


Figure 2. Clock tree

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

DocID025743 Rev 5

3.16 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

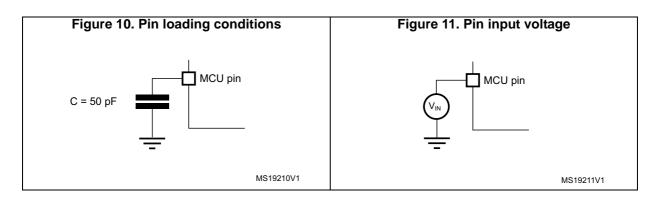
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

DocID025743 Rev 5

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 15: Voltage characteristics*, *Table 16: Current characteristics* and *Table 17: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage	- 0.3	4.0	V
$V_{DDA} - V_{SS}$	External analog supply voltage	- 0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
V _{BAT} –V _{SS}	External backup supply voltage	- 0.3	4.0	V
	Input voltage on FT and FTf pins	rnal main supply voltage- 0.34.0rnal analog supply voltage- 0.34.0ved voltage difference for $V_{DD} > V_{DDA}$ -0.4rnal backup supply voltage- 0.34.0t voltage on FT and FTf pins $V_{SS} - 0.3$ $V_{DDIOx} + 4.0^{(3)}$ t voltage on TTa pins $V_{SS} - 0.3$ 4.009.09.0t voltage on any other pin $V_{SS} - 0.3$ 4.0ations between different V_{DD} power pins-50ations between all the different ground-50trostatic discharge voltagesee Section 6.3.12: Electrical	V _{DDIOx} + 4.0 ⁽³⁾	V
V _{IN} ⁽²⁾	Input voltage on TTa pins		V	
VIN Ý	BOOT0	0	9.0	V
	Input voltage on any other pin	V _{SS} - 0.3	4.0	V
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)			-

Table 15.	Voltage	characteristics ⁽¹⁾
-----------	---------	--------------------------------

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 16: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

Cu m	Doro				Тур	@V _{DD} (V _{DD} = V	' _{DDA})	-		Max ⁽¹⁾)				
bol	Sym- Para- bol meter		Conditions		2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 ℃	T _A = 105 °C	Unit			
	Supply current		gulator in run de, all oscillators F	15	15.1	15.3	15.5	15.7	16	18 ⁽²⁾	38	55 ⁽²⁾				
I _{DD}	in Stop mode	pov	gulator in low- wer mode, all cillators OFF	3.2	3.3	3.4	3.5	3.7	4	5.5 ⁽²⁾	22	41 ⁽²⁾				
	Supply current	LSI ON	l ON and IWDG	0.8	1.0	1.1	1.2	1.4	1.5	-	-	-				
		LSI OF	I OFF and IWDG F	0.7	0.8	0.9	1.0	1.1	1.3	2 ⁽²⁾	2.5	3 ⁽²⁾				
	mode	current	current in Stop	current in Stop	NO	Regulator in run mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	
					monitoring C	Regulator in low- power mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	μA
		V _{DDA} m	LSI ON and IWDG ON	2.3	2.5	2.7	2.9	3.1	3.3	-	-	-				
	in Standby mode	-	LSI OFF and IWDG OFF	1.8	1.9	2	2.2	2.3	2.5	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾				
IDDA	IDDA Supply current in Stop mode Supply current	Ц	Regulator in run mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-				
		0	Regulator in low- power mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-				
		V _{DDA} mo	LSI ON and IWDG ON	1.5	1.6	1.7	1.8	1.9	2.0	-	-	-				
	in Standby mode	>	LSI OFF and IWDG OFF	1	1.0	1.1	1.1	1.2	1.2	-	-	-				

Table 25. Typical and maximum current consum	pption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 29*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 15: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 29*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

	Peripheral	Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	3.8	
АНВ	DMA1	6.3	
	SRAM	0.7	
	Flash memory interface	15.2	
	CRC	1.61	
АПБ	GPIOA	9.4	µA/MHz
	GPIOB	11.6	
	GPIOC	1.9	
	GPIOF	0.8	
	All AHB peripherals	47.5	

Table 29. Peripheral current consumption

Low-speed internal (LSI) RC oscillator

Table 37.	LSI	oscillator	characteristics ⁽¹⁾
-----------	-----	------------	--------------------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μA

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 38* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

Symbol	Parameter		Value				
Symbol	Falameter	Min	Тур	Max	Unit		
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz		
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%		
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz		
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs		
Jitter _{PLL}	Cycle-to-cycle jitter	-	_	300 ⁽²⁾	ps		

Table 38. PLL characteristics

1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Table 39. Flash memory characterist	CS
-------------------------------------	----

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = - 40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (1 KB) erase time	T _A = - 40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = - 40 to +105 °C	20	-	40	ms
		Write mode	-	-	10	mA
IDD	Supply current	Erase mode	-	-	12	mA

1. Guaranteed by design, not tested in production.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	V
V _{OL}	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	V
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	v
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	l _{IO} = 6 mA	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1101 - 0 MA	V _{DDIOx} -0.4	-	v
V _{OLFm+} ⁽³⁾	Output low level voltage for an FTf I/O pin in Fm+ mode	I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	V
		I _{IO} = 10 mA	-	0.4	V

Table 47. Output voltage characteristics⁽¹⁾

1. The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 15: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO} .

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Data based on characterization results. Not tested in production.

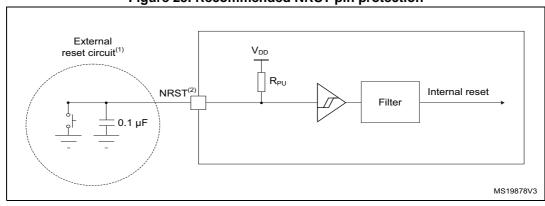


Figure 23. Recommended NRST pin protection

1. The external capacitor protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under the conditions summarized in *Table 18: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution	-	-	823	kHz
		12-bit resolution	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 51</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
↓ (2)(3)	Calibration time	f _{ADC} = 14 MHz		5.9		μs
t _{CAL} ⁽²⁾⁽³⁾		-	83			1/f _{ADC}

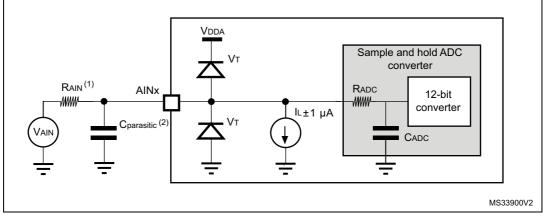

Table 50. ADC characteristics

Figure 24. ADC accuracy characteristics

Refer to Table 50: ADC characteristics for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and $\mathsf{C}_{ADC}.$ 1.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 12: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.17 Temperature sensor characteristics

Table	53.	ΤS	characteristics
TUDIC			

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time	-	-	10	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	4	-	-	μs

1. Guaranteed by design, not tested in production.

2. Measured at V_{DDA} = 3.3 V ± 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.18 V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V_{BAT}	4	-	-	μs

Table 54. V_{BAT} monitoring characteristics

1. Guaranteed by design, not tested in production.

6.3.19 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{res/TIM}) Timer resolution time		-	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f	Timer external clock	-	-	f _{TIMxCLK} /2	-	MHz
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
	16-bit timer maximum	-	-	2 ¹⁶	-	t _{TIMxCLK}
t _{MAX_COUNT}	period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
	32-bit counter	-	-	2 ³²	-	t _{TIMxCLK}
	maximum period	f _{TIMxCLK} = 48 MHz	-	89.48	-	S

Table	55.	TIMx	characteristics
-------	-----	------	-----------------

Symbol	Parameter	Parameter Min		Unit
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 58. I ² C analog filter characteris	stics ⁽¹⁾	
--	----------------------	--

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

.

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 59* for SPI or in *Table 60* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 18: General operating conditions*.

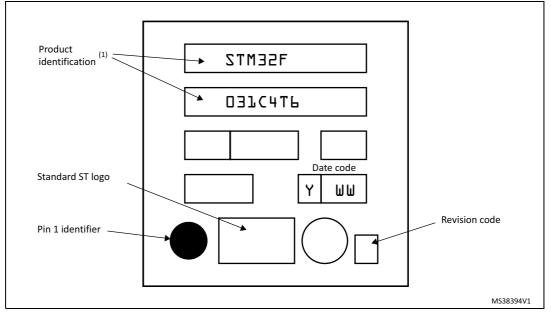
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPI clock frequency	Master mode	-	18	MHz
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	-	18	IVITIZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-	
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1	
t _{su(MI)}	Data input sotup timo	Master mode	4	-	
t _{su(SI)}		Slave mode	5	-	
t _{h(MI)}	Data input hold time	Master mode	4	-	
t _{h(SI)}	Data input hold time	Slave mode	5	-	ns
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk	
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18	
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6	
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-	
t _{h(MO)}		Master mode (after enable edge)	2	-	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%

Table 5	59. SPI	characteristics(1)
---------	---------	------------------	----

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.


3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.2 LQFP32 package information

LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package.

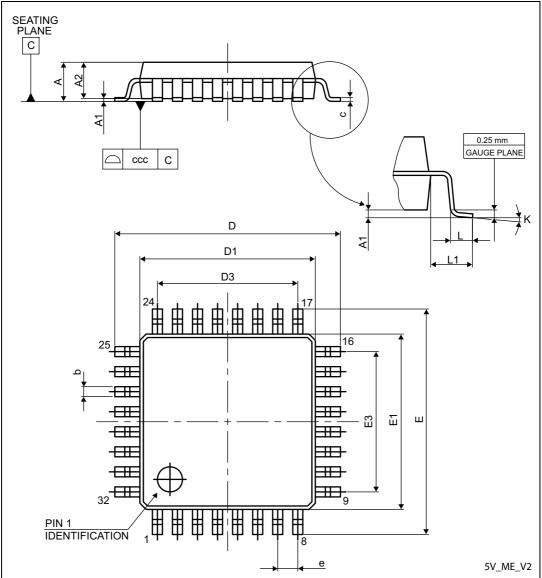


Figure 34. LQFP32 package outline

1. Drawing is not to scale.

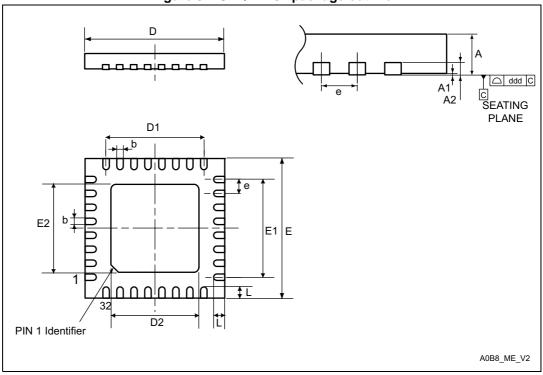
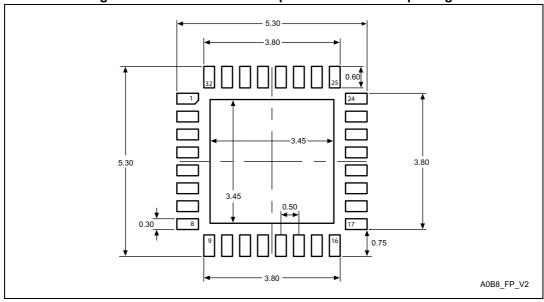


Figure 37. UFQFPN32 package outline

1. Drawing is not to scale.


- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table: Pin definitions*.

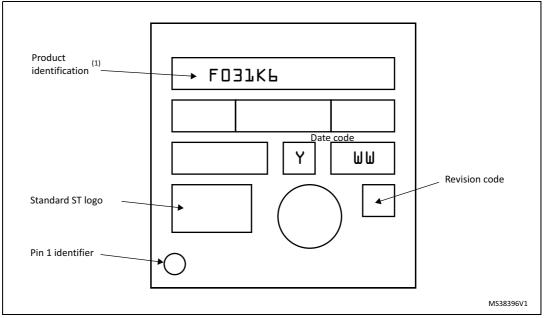
	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.230	0.280	0.0071	0.0091	0.0110	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

Table 63. UFQFPN32 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 38. Recommended footprint for UFQFPN32 package

1. Dimensions are expressed in millimeters.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 39. UFQFPN32 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Example:	STM32	F	031	G	6	Т	6	>
Device family								
STM32 = ARM-based 32-bit microcontro	oller							
Product type								
F = General-purpose								
Sub-family								
031 = STM32F031xx								
Pin count								
F = 20 pins								
E = 25 pins								
G = 28 pins								
K = 32 pins								
C = 48 pins								
User code memory size								
4 = 16 Kbyte								
6 = 32 Kbyte								
Package								
P = TSSOP								
U = UFQFPN								
T = LQFP								
Y = WLCSP								
Temperature range								
6 = -40 °C to +85 °C								
7 = -40 °C to +105 °C								
Options								

xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing

9 Revision history

Date	Revision	Changes
13-Jan-2014	1	Initial release.
11-Jul-2014	2	 Changed the document status to Datasheet - production data. Updated the following: Table: STM32F031x4/6 family device features and peripheral counts, Figure: Clock tree, Figure: Power supply scheme, Table: Peripheral current consumption. Replaced Table Typical current consumption in Run mode, code with data processing running from Flash and Table Typical current consumption in Sleep mode, code running from Flash or RAM with Table: Typical current consumption from Flash, running from HSE 8 MHz crystal. Added the LQFP32 package: updates in Section: Description, Section: Pinouts and pin description and Section: Package information.
28-Aug-2015	3	 Updated: <i>Figure 9:</i> STM32F031x6 memory map AF1 alternate functions for PA0, PA1, PA2, PA3 and PA4 in Table 12: Alternate functions selected through <i>GPIOA_AFR</i> registers for port A the footnote for V_{IN} max value in Table 15: Voltage characteristics the footnote for max V_{IN} in Table 18: General operating conditions Table 22: Embedded internal reference voltage with the addition of t_{START} parameter Table 50: ADC characteristics Table 53: TS characteristics: removed the min. value for t_{START} parameter the typical value for R parameter in Table 54: VBAT monitoring characteristics the structure of Section 7: Package information. Added: Figure 33: LQFP48 marking example (package top view), Figure 39: UFQFPN32 marking example (package top view), Figure 39: UFQFPN32 marking example (package top view), Figure 42: UFQFPN28 marking example (package top view), Figure 42: TSSOP20 marking example (package top view)

Date	Revision	Changes
16-Dec-2015	4 (continued)	 Section 6.3.16: 12-bit ADC characteristics - changed introductory sentence Table 60: I²S characteristics: table reorganized, t_{v(SD_ST)} max value updated Section 7: Package information: Figure 41: Recommended footprint for UFQFPN28 package updated Section 8: Part numbering: added tray packing to options
06-Jan-2017	5	 Section 6: Electrical characteristics: Table 34: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. Table 22: Embedded internal reference voltage - V_{REFINT} values Figure 26: SPI timing diagram - slave mode and CPHA = 0 and Figure 27: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: The name of the section changed from the previous "Part numbering"

Table 70. Document revision history (continued)

