

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UFQFPN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f031g6u6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F031x4/x6 family device features and peripheral counts	9
Table 3.	Temperature sensor calibration values.	16
Table 4.	Internal voltage reference calibration values	16
Table 5.	Timer feature comparison	17
Table 6.	Comparison of I ² C analog and digital filters	20
Table 7.	STM32F031x4/x6 I ² C implementation	20
Table 8.	STM32F031x4/x6 USART implementation	21
Table 9.	STM32F031x4/x6 SPI/I2S implementation	21
Table 10.	Legend/abbreviations used in the pinout table	26
Table 11.	Pin definitions	26
Table 12.	Alternate functions selected through GPIOA AFR registers for port A	31
Table 13.	Alternate functions selected through GPIOB AFR registers for port B	32
Table 14.	STM32F031x4/x6 peripheral register boundary addresses	34
Table 15.	Voltage characteristics	39
Table 16.	Current characteristics	40
Table 17.	Thermal characteristics	40
Table 18	General operating conditions	41
Table 19	Operating conditions at power-up / power-down	42
Table 20	Embedded reset and power control block characteristics	42
Table 21	Programmable voltage detector characteristics	42
Table 22	Embedded internal reference voltage	43
Table 23	Typical and maximum current consumption from V_{DD} at 3.6 V	44
Table 24	Typical and maximum current consumption from the V_{PPA} supply	
Table 25	Typical and maximum current consumption in Stop and Standby modes	46
Table 26	Typical and maximum current consumption in Gtop and Standby modes $\dots \dots$	
Table 20. Table 27	Typical and maximum current consumption code executing from Elash memory	
	running from HSE 8 MHz crystal	48
Table 28	Switching output I/O current consumption	50
Table 20.	Perinheral current consumption	51
Table 20.	low-power mode wakeup timings	53
Table 30.	High speed external user clock characteristics	
Table 31.	low speed external user clock characteristics	55 5/
Table 32.		
Table 33.	$ISE oscillator characteristics (f_{r=} = 22.762 \text{ kHz})$	
Table 34.	$LSE Oscillator characteristics (ILSE - 32.700 KHz) \dots \dots$	50 E0
Table 35.		
Table 30.		
		60
Table 39.		
Table 40.		01
Table 41.		
Table 42.		
Table 43.		
Table 45.		
Table 46.	I/O static characteristics	64
i able 47.	Output voltage characteristics	67

2 Description

The STM32F031x4/x6 microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 32 Kbytes of Flash memory and 4 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (one I²C, one SPI/ I²S and one USART), one 12-bit ADC,

five 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F031x4/x6 microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F031x4/x6 microcontrollers include devices in six different packages ranging from 20 pins to 48 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F031x4/x6 microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

Perip	heral	STM32	F031Fx	STM32F031Ex	TM32F031Ex STM32F031Gx		STM32F031Kx		STM32F031Cx	
Flash mem	ory (Kbyte)	16	32	32	16	32	16	32	16	32
SRAM	(Kbyte)					4				
Timoro	Advanced control				1	(16-bit)				
Timers	General purpose		4 (16-bit) 1 (32-bit)							
_	SPI [I ² S] ⁽¹⁾					1 [1]				
Comm. interfaces	l ² C		1							
	USART		1							
12-bit (number of	t ADC f channels)	(9 ext	1 (9 ext. + 3 int.) (10 ext. + 3 int.)							
GPIOs		1	5	20 23 25 (on LQFP32) 27 (on UFQFPN32)			3	,9		
Max. CPU	frequency	48 MHz								
Operating voltage		2.0 to 3.6 V								
Operating temperature			Amt	pient operating te Junction tempera	mperatu ature: -40	re: -40°C)°C to 10	to 85°C / 5°C / -40°	-40°C to 10 C to 125°C)5°C	
Pack	ages	TSSO	TSSOP20 WLCSP25 UFQFPN28 LQFP32 L UFQFPN32 LQFP32					LQF	[:] P48	

Table 2. STM32F031x4/x6 family device features and peripheral counts

1. The SPI interface can be used either in SPI mode or in I^2S audio mode.

Tuble	o. Companson of r C analog an			
Aspect	Analog filter	Digital filter		
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks		
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length 		
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.		

Table 6. Comparison of I²C analog and digital filters

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripheral can be served by the DMA controller.

I ² C features ⁽¹⁾	I2C1
7-bit addressing mode	Х
10-bit addressing mode	Х
Standard mode (up to 100 kbit/s)	Х
Fast mode (up to 400 kbit/s)	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х
Independent clock	Х
SMBus	Х
Wakeup from STOP	Х

Table 7. STM32F031x4/x6 I²C implementation

1. X = supported.

3.14 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds one universal synchronous/asynchronous receiver/transmitter (USART1) which communicates at speeds of up to 6 Mbit/s.

It provides hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interface can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1
Hardware flow control for modem	Х
Continuous communication using DMA	Х
Multiprocessor communication	Х
Synchronous mode	Х
Smartcard mode	Х
Single-wire half-duplex communication	Х
IrDA SIR ENDEC block	Х
LIN mode	Х
Dual clock domain and wakeup from Stop mode	Х
Receiver timeout interrupt	Х
Modbus communication	Х
Auto baud rate detection	Х
Driver Enable	Х

1. X = supported.

3.15 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

The SPI is able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

One standard I²S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency.

Table 9. STM32F031x4/x6 SPI/I ² S implementati	on

SPI features ⁽¹⁾	SPI
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
I ² S mode	Х
TI mode	Х

1. X = supported.

3.16 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

Pinouts and pin description

Figure 5. UFQFPN32 package pinout

	F	Pin ni	umbe	r						Pin functions		
LQFP48	LQFP32	UFQFPN32	UFQFPN28	WLCSP25	TSSOP20	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
41	28	28	26	C2	-	PB5 I/O FT - I2C1_SMBA, TIM16_BKIN, TIM3_CH2		-				
42	29	29	27	B2	-	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N	-	
43	30	30	28	A3	-	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM17_CH1N	-	
44	31	31	1	A4	1	BOOT0	I	В	-	Boot memory	/ selection	
45	-	32	-	-	-	PB8	I/O	FTf	(4)	I2C1_SCL, TIM16_CH1	-	
46	-	-	-	-	-	PB9	I/O	FTf	-	I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT	-	
47	32	0	-	E1	-	VSS	S	-	-	Grou	nd	
48	1	1	-	-	-	VDD	S	-	-	Digital power supply		

 Table 11. Pin definitions (continued)

 PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF

The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.

3. VSSA pin is not in package pinout. VSSA pad of the die is connected to VSS pin.

4. On the LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware).

5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

6. On the WLCSP25 package, PB3, PB4 and PA15 must be set to defined levels by software, as their corresponding pads on the silicon die are left unconnected. Apply same recommendations as for unconnected pins.

S
_
<u> </u>
ធ
¥
0
ω
-
×
4
S
_
-
<u> </u>
ω
Ň
÷.

2
ω
-
×
6

Table 12. Alternate functions selected through GPIOA_AFR registers for port A										
Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7		
PA0	-	USART1_CTS	TIM2_CH1_ ETR	-	-	-	-	-		
PA1	EVENTOUT	USART1_RTS	TIM2_CH2	-	-	-	-	-		
PA2	-	USART1_TX	TIM2_CH3	-	-	-	-	-		
PA3	-	USART1_RX	TIM2_CH4	-	-	-	-	-		
PA4	SPI1_NSS, I2S1_WS	USART1_CK	-	-	TIM14_CH1	-	-	-		
PA5	SPI1_SCK, I2S1_CK	-	TIM2_CH1_ ETR	-	-	-	-	-		
PA6	SPI1_MISO, I2S1_MCK	TIM3_CH1	TIM1_BKIN	-	-	TIM16_CH1	EVENTOUT	-		
PA7	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	EVENTOUT	-		
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	-	-	-	-		
PA9	-	USART1_TX	TIM1_CH2	-	I2C1_SCL	-	-	-		
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	-	I2C1_SDA	-	-	-		
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	-	-	-	-	-		
PA12	EVENTOUT	USART1_RTS	TIM1_ETR	-	-	-	-	-		
PA13	SWDIO	IR_OUT	-	-	-	-	-	-		
PA14	SWCLK	USART1_TX	-	-	-	-	-	-		
PA15	SPI1_NSS, I2S1_WS	USART1_RX	TIM2_CH1_ ETR	EVENTOUT	-	-	-	-		

DocID025743 Rev 5

31/106

S

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
	0x4800 0C00 - 0x4800 13FF	2KB	Reserved
AHB2	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
	0x4002 2000 - 0x4002 23FF	1 KB	Flash memory interface
ALDI	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1KB	TIM17
	0x4001 4400 - 0x4001 47FF	1KB	TIM16
	0x4001 3C00 - 0x4001 43FF	2KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1KB	USART1
APB	0x4001 3400 - 0x4001 37FF	1KB	Reserved
	0x4001 3000 - 0x4001 33FF	1KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1KB	Reserved
	0x4001 2400 - 0x4001 27FF	1KB	ADC
	0x4001 0800 - 0x4001 23FF	7KB	Reserved
	0x4001 0400 - 0x4001 07FF	1KB	EXTI
	0x4001 0000 - 0x4001 03FF	1KB	SYSCFG
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

Bus	Boundary address	Size	Peripheral
	0x4000 7400 - 0x4000 7FFF	3KB	Reserved
	0x4000 7000 - 0x4000 73FF	1KB	PWR
	0x4000 5800 - 0x4000 6FFF	6KB	Reserved
	0x4000 5400 - 0x4000 57FF	1KB	I2C1
	0x4000 3400 - 0x4000 53FF	8KB	Reserved
	0x4000 3000 - 0x4000 33FF	1KB	IWDG
APB	0x4000 2C00 - 0x4000 2FFF	1KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1KB	RTC
	0x4000 2400 - 0x4000 27FF	1KB	Reserved
	0x4000 2000 - 0x4000 23FF	1KB	TIM14
	0x4000 0800 - 0x4000 1FFF	6KB	Reserved
	0x4000 0400 - 0x4000 07FF	1KB	TIM3
	0x4000 0000 - 0x4000 03FF	1KB	TIM2

Table 14. STM32F031x4/x6 peripheral register boundary addresses (continued)

6.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

Sum	Para-	$Typ @V_{DD} (V_{DD} = V_{DDA}) Max^{(1)}$)						
bol	bol meter		Conditions		2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 ℃	T _A = 85 °C	T _A = 105 °C	Unit
Supply current	Reg mo OF	gulator in run de, all oscillators F	15	15.1	15.3	15.5	15.7	16	18 ⁽²⁾	38	55 ⁽²⁾		
I _{DD}	in Stop mode	Reg pov osc	gulator in low- wer mode, all cillators OFF	3.2	3.3	3.4	3.5	3.7	4	5.5 ⁽²⁾	22	41 ⁽²⁾	
	Supply current	LSI ON	I ON and IWDG	0.8	1.0	1.1	1.2	1.4	1.5	-	-	-	
	in Standby mode	LSI OFF and IWDG OFF		0.7	0.8	0.9	1.0	1.1	1.3	2 ⁽²⁾	2.5	3 ⁽²⁾	
	Supply current in Stop mode Supply current in Standby mode	N	Regulator in run mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	
		onitoring (Regulator in low- power mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	μA
		^{DDA} mo	LSI ON and IWDG ON	2.3	2.5	2.7	2.9	3.1	3.3	-	-	-	
		/	LSI OFF and IWDG OFF	1.8	1.9	2	2.2	2.3	2.5	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	
'DDA	Supply current	FF	Regulator in run mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-	
	in Stop mode	onitoring C	Regulator in low- power mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-	
	Supply current	DDA MG	LSI ON and IWDG ON	1.5	1.6	1.7	1.8	1.9	2.0	-	-	-	
	in Standby mode	>	LSI OFF and IWDG OFF	1	1.0	1.1	1.1	1.2	1.2	-	-	-	

Table 25.	. Typical and	maximum	current consum	ption in Sto	p and Standb	y modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

	Parameter		Typical ı	run mode	Typical S	leep mode	unit	
Symbol		fhclk	Peripheral s enabled	Peripheral s disabled	Peripheral s enabled	Peripheral s disabled	-	
		48MHz	20.2	12.3	11.1	2.9		
		36 MHz	15.3	9.5	8.4	2.4		
		32 MHz	13.6	8.6	7.5	2.2		
		24 MHz	10.5	6.7	5.9	1.8		
I	Current	16 MHz	7.2	4.7	4.1	1.4	m۸	
'DD	supply	8 MHz	3.8	2.7	2.3	0.9	mA	
		4 MHz	2.4	1.8	1.7	0.9		
		2 MHz	1.6	1.3	1.2	0.8		
		1 MHz	1.2	1.1	1.0	0.8		
		500 kHz	1.0	1.0	0.9	0.8		
		48MHz		15	55			
		36 MHz		11	17			
		32 MHz		1()5			
		24 MHz		8	3			
I	Current	16 MHz		6	0		цΑ	
'DDA	supply	8 MHz		2	.2		uA	
		4 MHz		2	.2			
		2 MHz		2	.2			
		1 MHz		2	.2			
		500 kHz		2	.2			

Table 27. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 46: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

DocID025743 Rev 5

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 30* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*..

Symbol	Parameter	Conditions	Typ @Vdd = Vdda					Max	Unit
		Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	IVIAX	Unit
twustop	Wakeup from Stop mode	Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5	
		Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9	
t _{wustandby}	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μο
t _{WUSLEEP}	Wakeup from Sleep mode	-		4 S)	/SCLK cy	cles		-	

 Table 30. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 14: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	115

Table 31. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Мах	Unit
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz
V_{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V_{LSEL}	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	nc
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	115

Table 32. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

DocID025743 Rev 5

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year
		10 kcycle ⁽²⁾ at T _A = 55 °C	20	

 Table 40. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 41*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP48, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP48, T_A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Table 41. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 22* and *Table 48*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
x0	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125	115	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
01	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	25	ns	
	t _{r(IO)out}	Output rise time		-	25		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50		
	f _{max(IO)} out	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30	MHz	
			C_L = 50 pF, V_{DDIOX} < 2.7 V	-	20		
		Output fall time	C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5		
11	t _{f(IO)out}		$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOX} < 2.7 V	-	12		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	- 115	
	t _{r(IO)out}	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOX} < 2.7 V	-	12		
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
configuration	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	12	200	
(+)	t _{r(IO)out}	Output rise time		-	34	115	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

Table 48	. I/O AC	characteristics ⁽	1)(2)
----------	----------	------------------------------	-------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 22*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit		
/4	0	0.1	409.6			
/8	1	0.2	819.2			
/16	2	0.4	1638.4			
/32	3	0.8	3276.8	ms		
/64	4	1.6	6553.6			
/128	5	3.2	13107.2			
/256	6 or 7	6.4	26214.4			

Table 56. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	ms
2	1	0.1706	10.9226	
4	2	0.3413	21.8453	
8	3	0.6826	43.6906	

Table 57. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.20 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 39. UFQFPN32 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F031x4/x6 at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 80$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax = 20} × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax =} 175 ₊ 272 = 447 mW

Using the values obtained in *Table 68* T_{Jmax} is calculated as follows:

For LQFP48, 55 °C/W

T_{Jmax} = 80 °C + (55°C/W × 447 mW) = 80 °C + 24.585 °C = 104.585 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see *Table 18: General operating conditions*.

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

Note:

With this given $P_{Dmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7)$

6 or 7). Suffix 6: $T_{Amax} = T_{Jmax} - (55^{\circ}C/W \times 447 \text{ mW}) = 105-24.585 = 80.415^{\circ}C$

Suffix 7: $T_{Amax} = T_{Jmax} - (55^{\circ}C/W \times 447 \text{ mW}) = 125-24.585 = 100.415 \text{ }^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

