

Welcome to E-XFL.COM

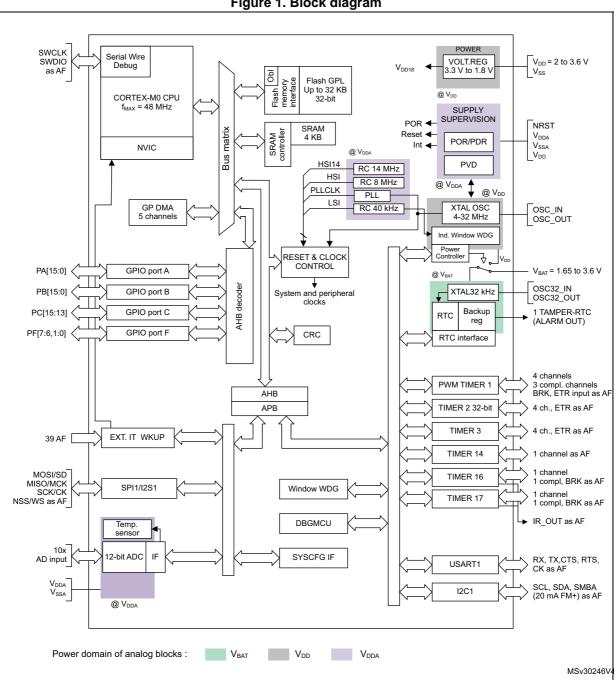
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f031k4u6


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.15	Serial pe	eripheral interface (SPI) / Inter-integrated sound interface (I^2S) .	21
	3.16	Serial w	ire debug port (SW-DP)	22
4	Pinou	its and p	oin description	23
5	Memo	ory map	ping	33
6	Electr	ical cha	aracteristics	36
	6.1	Parame	ter conditions	36
		6.1.1	Minimum and maximum values	. 36
		6.1.2	Typical values	. 36
		6.1.3	Typical curves	. 36
		6.1.4	Loading capacitor	. 36
		6.1.5	Pin input voltage	. 36
		6.1.6	Power supply scheme	. 37
		6.1.7	Current consumption measurement	. 38
	6.2	Absolute	e maximum ratings	39
	6.3	Operatir	ng conditions	41
		6.3.1	General operating conditions	. 41
		6.3.2	Operating conditions at power-up / power-down	. 41
		6.3.3	Embedded reset and power control block characteristics	. 42
		6.3.4	Embedded reference voltage	. 43
		6.3.5	Supply current characteristics	. 43
		6.3.6	Wakeup time from low-power mode	. 53
		6.3.7	External clock source characteristics	. 53
		6.3.8	Internal clock source characteristics	. 57
		6.3.9	PLL characteristics	. 60
		6.3.10	Memory characteristics	. 60
		6.3.11	EMC characteristics	. 61
		6.3.12	Electrical sensitivity characteristics	. 62
		6.3.13	I/O current injection characteristics	. 63
		6.3.14	I/O port characteristics	. 64
		6.3.15	NRST pin characteristics	. 69
		6.3.16	12-bit ADC characteristics	. 70
		6.3.17	Temperature sensor characteristics	. 74
		6.3.18	V _{BAT} monitoring characteristics	. 74
		6.3.19	Timer characteristics	. 74

DocID025743 Rev 5

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 **Power supply schemes**

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 12: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

TIM2, TIM3

STM32F031x4/x6 devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM16 and TIM17

Both timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

They each have a single channel for input capture/output compare, PWM or one-pulse mode output.

TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.11.3 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.11.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

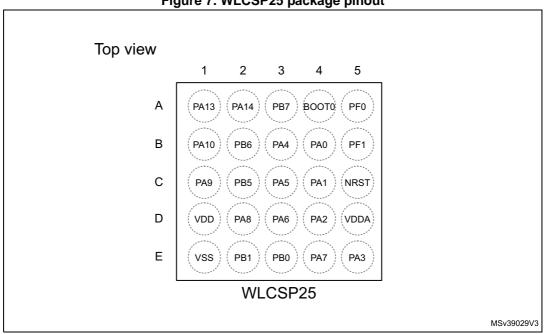
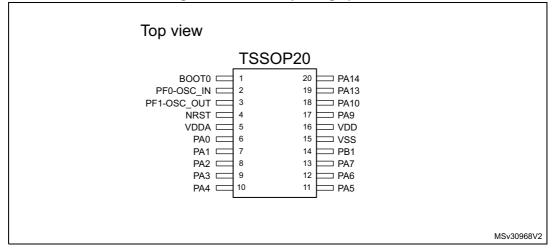



Figure 7. WLCSP25 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

Pin name	AF0	AF1	AF2	AF3
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-
PB2	-	-	-	-
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	-
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	-
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	-
PB8	-	I2C1_SCL	TIM16_CH1	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT
PB10	-	I2C1_SCL	TIM2_CH3	_
PB11	EVENTOUT	I2C1_SDA	TIM2_CH4	-
PB12	SPI1_NSS	EVENTOUT	TIM1_BKIN	-
PB13	SPI1_SCK	-	TIM1_CH1N	-
PB14	SPI1_MISO	-	TIM1_CH2N	-
PB15	SPI1_MOSI	-	TIM1_CH3N	-

32/106

DocID025743 Rev 5

5

STM32F031x4 STM32F031x6

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

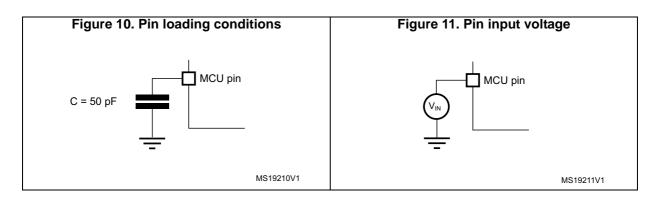
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

DocID025743 Rev 5

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 15: Voltage characteristics*, *Table 16: Current characteristics* and *Table 17: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage	- 0.3	4.0	V
$V_{DDA} - V_{SS}$	External analog supply voltage	- 0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
V _{BAT} –V _{SS}	External backup supply voltage	- 0.3	4.0	V
	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
V _{IN} ⁽²⁾	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
VIN Ý	BOOT0	0	9.0	V
	Input voltage on any other pin	V _{SS} - 0.3	4.0	V
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground		50	mV
V _{ESD(HBM)} Electrostatic discharge voltage (human body model)		see Section 6.3 sensitivity chara		-

Table 15.	Voltage	characteristics ⁽¹⁾
-----------	---------	--------------------------------

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 16: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

				All peripherals enabled				All peripherals disabled				
Symbol	Parameter	Conditions	f _{HCLK}	Tun	N	lax @ T,	A ⁽¹⁾	Тур	N	lax @ T,	A ⁽¹⁾	Unit
				Тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C	
		HSE	48 MHz	10.7	11.7 ⁽²⁾	11.9	12.5 ⁽²⁾	2.4	2.6 ⁽²⁾	2.7	2.9 ⁽²⁾	
		bypass,	32 MHz	7.1	7.8	8.1	8.2	1.6	1.7	1.9	1.9	
		PLL on	24 MHz	5.5	6.3	6.4	6.4	1.3	1.4	1.5	1.5	1
	Supply	HSE bypass, PLL off	8 MHz	1.8	2.0	2.0	2.1	0.4	0.4	0.5	0.5	
I _{DD}	current in Sleep		1 MHz	0.2	0.5	0.5	0.5	0.1	0.1	0.1	0.1	mA
	mode		48 MHz	10.8	11.9	12.1	12.6	2.4	2.7	2.7	2.9	
		HSI clock, PLL on	32 MHz	7.3	8.0	8.4	8.5	1.7	1.9	1.9	2.0	
			24 MHz	5.5	6.2	6.5	6.5	1.3	1.5	1.5	1.6	1
		HSI clock, PLL off	8 MHz	1.9	2.2	2.3	2.4	0.5	0.5	0.5	0.6	

Table 23. Typical and maximum current consumption from V_{DD} at 3.6 V (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

					V _{DDA}	= 2.4 V			V _{DDA}	= 3.6 V	,	
Symbol Parameter	Parameter	Conditions (1)	f _{HCLK}	Turn	М	ax @ T _A	(2)	Turn	М	ax @ T _A	(2)	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSE	48 MHz	150	170 ⁽³⁾	178	182 ⁽³⁾	164	183 ⁽³⁾	195	198 ⁽³⁾	
	Ourselu	bypass,	32 MHz	104	121	126	128	113	129	135	138	
	Supply current in	PLL on	24 MHz	82	96	100	103	88	102	106	108	
	Run or Sleep	HSE bypass, PLL off	8 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	
I _{DDA}	bypass,		1 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	μA
	executing		48 MHz	220	240	248	252	244	263	275	278	
	from Flash memory or	HSI clock, PLL on	32 MHz	174	191	196	198	193	209	215	218	
RAM		24 MHz	152	167	173	174	168	183	190	192		
		HSI clock, PLL off	8 MHz	72	79	82	83	83.5	91	94	95	

Table 24. Typical and maximum current consumption from the $\rm V_{DDA}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent of clock frequencies.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Electrical characteristics

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			4 MHz	0.07	
		V _{DDIOx} = 3.3 V	8 MHz	0.15	
		C =C _{INT}	16 MHz	0.31	
			24 MHz	0.53	
			48 MHz	0.92	
			4 MHz	0.18	
		V _{DDIOx} = 3.3 V	8 MHz	0.37	
		C _{EXT} = 0 pF	16 MHz	0.76	
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39	
			48 MHz	2.188	
			4 MHz	0.32	
		$V_{DDIOx} = 3.3 V$ $C_{EXT} = 10 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.64	
			16 MHz	1.25	
			24 MHz	2.23	mA
I _{SW}	I/O current		48 MHz	4.442	
'SW	consumption		4 MHz	0.49	ША
		$V_{DDIOx} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.94	
			16 MHz	2.38	
			24 MHz	3.99	
			4 MHz	0.64	
		$V_{\text{DDIOx}} = 3.3 \text{ V}$	8 MHz	1.25	
		$C_{EXT} = 33 \text{ pF}$ C = C _{INT} + C _{EXT} + C _S	16 MHz	3.24	
			24 MHz	5.02	
		V _{DDIOx} = 3.3 V	4 MHz	0.81	
		C _{EXT} = 47 pF	8 MHz	1.7	
		$C = C_{INT} + C_{EXT} + C_S$ $C = C_{int}$	16 MHz	3.67	
		V _{DDIOx} = 2.4 V	4 MHz	0.66	
		V _{DDIOx} = 2.4 V C _{EXT} = 47 pF	8 MHz	1.43	
		$C = C_{INT} + C_{EXT} + C_S$	16 MHz	2.45	
		$C = C_{int}$	24 MHz	4.97	

 Table 28. Switching output I/O current consumption

1. C_S = 7 pF (estimated value).

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit			
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle			
	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30				
t _{RET}		1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year			
		10 kcycle ⁽²⁾ at T _A = 55 °C	20				

Table 40. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 41*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP48, T_A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP48, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Table 41. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Ratings Conditions Pac		Packages	Class	Maximum value ⁽¹⁾	Unit			
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to JESD22-A114	All	2	2000	۷			
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	All	C3	250	V			

 Table 43. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 44. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 45.

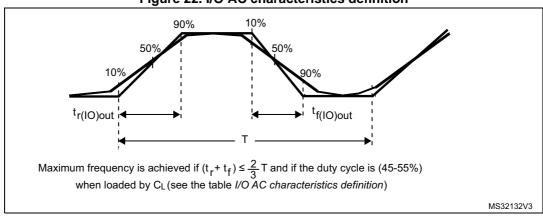
Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 22* and *Table 48*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Мах	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
x0	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125	113	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
01	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	25	ns	
	t _{r(IO)out}	Output rise time		-	25		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	MHz	
	f _{max(IO)} out	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	20		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5		
11	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5	ns	
	t _{r(IO)out}	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
configuration	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	12		
(4)	t _{r(IO)out}	Output rise time		-	34	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

Table 48	. I/O AC	characteristics ⁽¹⁾⁽²⁾	ļ
----------	----------	-----------------------------------	---


1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 22*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

Figure 22. I/O AC characteristics definition

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 18: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	v
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V	NRST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ns
V _{NF(NRST)}		$2.0 < V_{DD} < 3.6$	500 ⁽³⁾	-	-	115

 Table 49. NRST pin characteristics

1. Data based on design simulation only. Not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 58. I ² C analog filter characteris	stics ⁽¹⁾	
--	----------------------	--

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

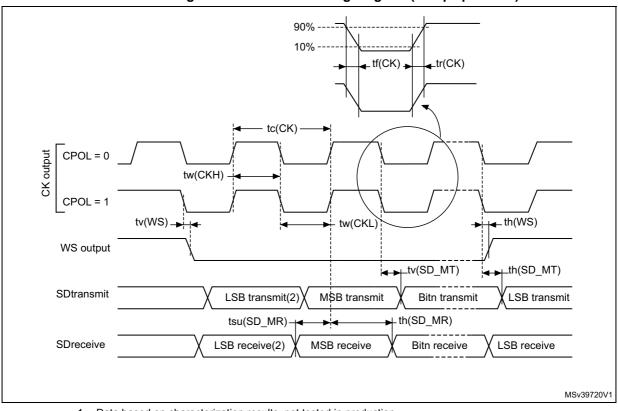
.

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 59* for SPI or in *Table 60* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 18: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	SPI clock frequency	SBI cleak frequency		18	MHz
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	-	18	IVITIZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-	
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1	
t _{su(MI)}	Data input setup time	Master mode	4	-	
t _{su(SI)}	Data input setup time	Slave mode	5	-	
t _{h(MI)}	Data input hold time	Master mode	4	-	
t _{h(SI)}	Data input hold time	Slave mode	5	-	ns
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk	
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18	
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6	
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-	
t _{h(MO)}		Master mode (after enable edge)	2	-	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%

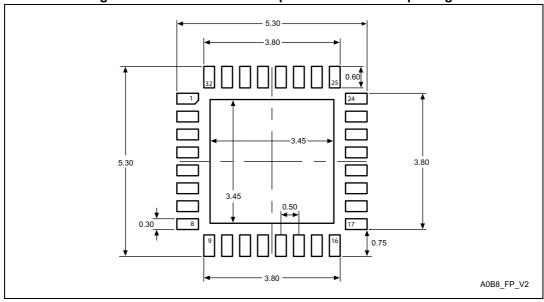

Table 5	59. SPI	characteristics(1)
---------	---------	------------------	----

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 30. I²S master timing diagram (Philips protocol)

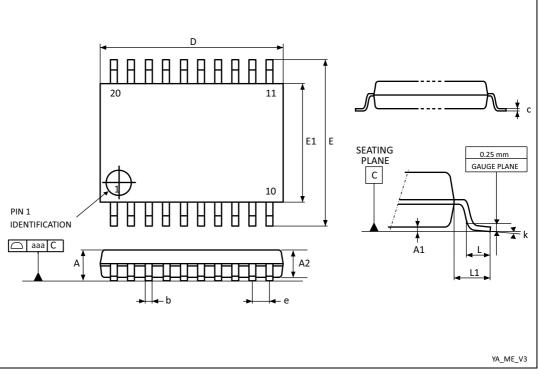

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

	millimeters			meenamea	inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.180	0.230	0.280	0.0071	0.0091	0.0110
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417
E	4.900	5.000	5.100	0.1929	0.1969	0.2008
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

Table 63. UFQFPN32 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 38. Recommended footprint for UFQFPN32 package


1. Dimensions are expressed in millimeters.

7.6 TSSOP20 package information

TSSOP20 is a 20-lead thin shrink small-outline, 6.5 x 4.4 mm, 0.65 mm pitch, package.

1. Drawing is not to scale.

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	-	-	1.200	-	-	0.0472	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413	
b	0.190	-	0.300	0.0075	-	0.0118	
с	0.090	-	0.200	0.0035	-	0.0079	
D ⁽²⁾	6.400	6.500	6.600	0.2520	0.2559	0.2598	
E	6.200	6.400	6.600	0.2441	0.2520	0.2598	
E1 ⁽³⁾	4.300	4.400	4.500	0.1693	0.1732	0.1772	
е	-	0.650	-	-	0.0256	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 18: General operating conditions*.

The maximum chip-junction temperature, T_{J} max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}}\max=\Sigma\;(\mathsf{V}_{\mathsf{OL}}\times\mathsf{I}_{\mathsf{OL}})+\Sigma\;((\mathsf{V}_{\mathsf{DDIOx}}-\mathsf{V}_{\mathsf{OH}})\times\mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
	Thermal resistance junction-ambient UFQFPN32 - 5 × 5 mm	38	
0	Thermal resistance junction-ambient LQFP32 - 7 × 7 mm	56	°C/W
Θ_{JA}	Thermal resistance junction-ambient UFQFPN28 - 4 × 4 mm	118	0/00
	Thermal resistance junction-ambient WLCSP25 - 2.13 x 2.07 mm	74	
	Thermal resistance junction-ambient TSSOP20 - 6.5 x 4.4 mm	110	

Table 68. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

Date	Revision	Changes
28-Aug-2015	3 (continued)	 Added WLCSP25 package, updates in the following: Table 1: Device summary, Section 2: Description, Table 2: STM32F031x4/x6 family device features and peripheral counts, Section 4: Pinouts and pin description: addition of Figure 7: WLCSP25 25-ball package ballout (bump side) and update of Table 11: Pin definitions, Table 18: General operating conditions, Section 7: Package information with the addition of Section 7.5: WLCSP25 package information, Table 68: Package thermal characteristics.
16-Dec-2015	4	Cover page: - number of timers added in the title - Table 1: Device summary - STM32F031x4 added Section 2: Description: - Figure 1: Block diagram updated Section 3: Functional overview: - Figure 2: Clock tree updated - Section 3.5.4: Low-power modes - added explicit inf. on peripherals configurable to operate with HSI - Section 3.10.2: Internal voltage reference (V _{REFINT}) - removed information on comparators - Section 3.10.2: Internal voltage reference (V _{REFINT}) - removed information on comparators - Section 3.11.2: General-purpose timers (TIM2, 3, 14, 16, 17) - number of gen-purpose timers corrected - Section Table 7.: STM32F031x4/x6 I ² C implementation - added 20mA output drive current Section 4: Pinouts and pin description: - Package pinout figures updated (look and feel) - Figure 7: WLCSP25 package pinout - now presented in top view - Table 11: Pin definitions - notes 3 and 6 added Section 5: Memory mapping: - added information on memory mapping difference of STM32F031x4 from STM32F031x6 Section 6: Electrical characteristics: - Table 22: Embedded internal reference voltage: removed -40°-to-85° condition and associated note for V _{REFINT} - Table 25 and Table 26 values rounded to 1 decimal - Table 46: I/O static characteristics - updated some parameter values, test conditions and added footnotes ⁽³⁾ and ⁽⁴⁾

