Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | D-4-U- | | |----------------------------|---| | Details | | | Product Status | Obsolete | | Core Processor | R8C | | Core Size | 16-Bit | | Speed | 16MHz | | Connectivity | SIO, UART/USART | | Peripherals | LED, WDT | | Number of I/O | 22 | | Program Memory Size | 12KB (12K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 768 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-LQFP | | Supplier Device Package | 32-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21103dfp-u0 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### Notice - 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. - Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. - 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. - 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. - 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. - 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. - 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support. - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. - 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. - 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. - 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. - (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. - (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. # R8C/10 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER REJ03B0035-0160 Rev.1.60 Jan 27, 2006 ## 1. Overview This MCU is built using the high-performance silicon gate CMOS process using a R8C/Tiny Series CPU core and is packaged in a 32-pin plastic molded LQFP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, it is capable of executing instructions at high speed. ### 1.1 Applications Electric household appliance, office equipment, housing equipment (sensor, security), general industrial equipment, audio, etc. ### 1.2 Performance Overview Table 1.1. lists the performance outline of this MCU. **Table 1.1 Performance outline** | | Item | Performance | | | | |-----------------|-------------------------------------|---|--|--|--| | CPU | Number of basic instructions | 89 instructions | | | | | | Minimum instruction execution time | 62.5 ns (f(XIN) = 16 MHz, VCC = 3.0 to 5.5 V) | | | | | | | 100 ns (f(XIN) = 10 MHz, Vcc = 2.7 to 5.5 V) | | | | | | Operating mode | Single-chip | | | | | | Address space | 1M bytes | | | | | | Memory capacity | See Table 1.2 "Product List" | | | | | Peripheral | Port | Input/Output: 22 (including LED drive port), Input: 2 | | | | | function | LED drive port | I/O port: 8 | | | | | | Timer | Timer X: 8 bits x 1 channel, Timer Y: 8 bits x 1 channel, | | | | | | | Timer Z: 8 bits x 1 channel | | | | | | | (Each timer equipped with 8-bit prescaler) | | | | | | | Timer C: 16 bits x 1 channel | | | | | | | (Input capture circuit) | | | | | | Serial interface | •1 channel | | | | | | | Clock synchronous, UART | | | | | | | •1 channel | | | | | | | UART | | | | | | A/D converter | 10-bit A/D converter: 1 circuit, 8 channels | | | | | | Watchdog timer | 15 bits x 1 (with prescaler) | | | | | | Interrupt | Internal: 9 factors, External: 5 factors, | | | | | | | Software: 4 factors, Priority level: 7 levels | | | | | | Clock generation circuit | 2 circuits | | | | | | | •Main clock generation circuit (Equipped with a built-in | | | | | | | feedback resistor) | | | | | | | On-chip oscillator | | | | | | Oscillation stop detection function | Main clock oscillation stop detection function | | | | | Electrical | Supply voltage | VCC = 3.0 to 5.5 V (f(XIN) = 16 MHz) | | | | | characteristics | | VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz) | | | | | | Power consumption | Typ. 8mA ($VCC = 5.0 \text{ V}$, ($f(XIN) = 16MHz$) | | | | | | | Typ. 5mA ($VCC = 3.0 \text{ V}$, ($f(XIN) = 10MHz$) | | | | | | | Typ. 35μA (Vcc = 3.0 V, Wait mode, Peripheral clock off) | | | | | | | Typ. 0.7μA (Vcc = 3.0 V, Stop mode) | | | | | Flash memory | Program/erase supply voltage | VCC = 2.7 to 5.5 V | | | | | | Program/erase endurance | 100 times | | | | | Operating amb | pient temperature | -20 to 85 °C | | | | | | | -40 to 85 °C (D-version) | | | | | Package | | 32-pin plastic mold LQFP | | | | #### 1.4 Product Information Table 1.2 lists the product inforamation. **Table 1.2 Product Information** As of January 2006 | Type No. | ROM capacity | RAM capacity | Package type | Remarks | |-------------|--------------|--------------|--------------|----------------------| | R5F21102FP | 8K bytes | 512 bytes | PLQP0032GB-A | Flash memory version | | R5F21103FP | 12K bytes | 768 bytes | PLQP0032GB-A | · | | R5F21104FP | 16K bytes | 1K bytes | PLQP0032GB-A | | | R5F21102DFP | 8K bytes | 512 bytes | PLQP0032GB-A | D version | | R5F21103DFP | 12K bytes | 768 bytes | PLQP0032GB-A | | | R5F21104DFP | 16K bytes | 1K bytes | PLQP0032GB-A | | Figure 1.2 Type No., Memory Size, and Package ### 1.5 Pin Assignment Figure 1.3 shows the pin Assignments (top view). Figure 1.3 Pin Assignments (Top View) ### 1.6 Pin Description Table 1.3 shows the pin description Table 1.3 Pin description | Signal name | Pin name | I/O type | Function | |---------------------|------------------------------------|----------|---| | Power supply | Vcc, | Į | Apply 2.7 V to 5.5 V to the Vcc pin. Apply 0 V to the | | input | Vss | | Vss pin. | | IVcc | IVcc | 0 | This pin is to stabilize internal power supply. | | | | | Connect this pin to Vss via a capacitor (0.1 µF). | | | | | Do not connect to Vcc. | | Analog power | AVcc, | I | Power supply input pins for A/D converter. Connect the | | supply input | AVss | | AVcc pin to Vcc. Connect the AVss pin to Vss. Connect a | | | | | capacitor between pins AVcc and AVss. | | Reset input | RESET | 1 | Input "L" on this pin resets the MCU. | | CNVss | CNVss | 1 | Connect this pin to Vss via a resistor. | | MODE | MODE | I | Connect this pin to Vcc via a resistor. | | Main clock input | XIN | 1 | These pins are provided for the main clock generat- | | | | | ing circuit I/O. Connect a ceramic resonator or a crys- | | Main clock output | XOUT | 0 | tal oscillator between the XIN and XOUT pins. To use | | | | | an externally derived clock, input it to the XIN pin and | | | | | leave the Xout pin open. | | INT interrupt input | | 1 | INT interrupt input pins. | | Key input interrupt | | I | Key input interrupt pins. | | Timer X | CNTR ₀ | I/O | Timer X I/O pin | | | CNTR ₀ | 0 | Timer X output pin | | Timer Y | CNTR ₁ | I/O | Timer Y I/O pin | | Timer Z | TZOUT | 0 | Timer Z output pin | | Timer C | TCIN | I | Timer C input pin | | Serial interface | CLK ₀ | I/O | Transfer clock I/O pin. | | | RxD0, RxD1 | I | Serial data input pins. | | | TxD0, TxD10, | 0 | Serial data output pins. | | | TxD11 | | | | Reference voltage | VREF | 1 | Reference voltage input pin for A/D converter. Con- | | input | | | nect the VREF pin to Vcc. | | A/D converter | AN ₀ to AN ₇ | I | Analog input pins for A/D converter | | I/O port | P00 to P07, | I/O | These are 8-bit CMOS I/O ports. Each port has an I/O | | | P10 to P17, | | select direction register, allowing each pin in that port | | | P30 to P33, P37, | | to be directed for input or output individually. | | | P45 | | Any port set to input can select whether to use a pull- | | | | | up resistor or not by program. | | | | | P10 to P17 also function as LED drive ports. | | Input port | P46, P47 | 1 | Port for input-only. | R8C/10 Group 3. Memory ## 3. Memory Figure 3.1 is a memory map of this MCU. This MCU provides 1-Mbyte address space from addresses 0000016 to FFFFF16. The internal ROM is allocated lower addresses beginning with address 0FFFF16. For example, a 16-Kbyte internal ROM is allocated addresses from 0C00016 to 0FFFF16. The fixed interrupt vector table is allocated addresses 0FFDC16 to 0FFFF16. They store the starting address of each interrupt routine. The internal RAM is allocated higher addresses beginning with address 0040016. For example, a 1-Kbyte internal RAM is allocated addresses 0040016 to 007FF16. The internal RAM is used not only for storing data, but for calling subroutines and stacks when interrupt request is acknowledged. Special function registers (SFR) are allocated addresses 0000016 to 002FF16. The peripheral function control registers are located them. All addresses, which have nothing allocated within the SFR, are reserved area and cannot be accessed by users. Figure 3.1 Memory Map ## 4. Special Function Register (SFR) SFR(Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.4 list the SFR information Table 4.1 SFR Information(1)⁽¹⁾ | Address | Register | Symbol | After reset | |--------------------|--|--------------|------------------------| | 000016 | | | | | 000116 | | | | | 000216 | | | | | 000316 | Dragonous models as minton O | DMO | VVVVOVOO | | 000416
000516 | Processor mode register 0 Processor mode register 1 | PM0
PM1 | XXXX0X002
00XXX0X02 | | 000516 | System clock control register 0 | CM0 | 011010002 | | 000716 | System clock control register 1 | CM1 | 001000002 | | 000816 | System clock control register 1 | O.W. I | 001000002 | | 000916 | Address match interrupt enable register | AIER | XXXXXX002 | | 000A16 | Protect register | PRCR | 00XXX0002 | | 000B16 | | | | | 000C16 | Oscillation stop detection register | OCD | 000001002 | | 000D16
000E16 | Watchdog timer reset register Watchdog timer start register | WDTR
WDTS | XX16
XX16 | | 000E16 | Watchdog timer start register Watchdog timer control register | WDC | 000111112 | | 001016 | Address match interrupt register 0 | RMAD0 | 000111112 | | 001116 | Addicas materialitiem upt register o | INIMEDO | 0016 | | 001216 | | | X016 | | 001316 | | | | | 001416 | Address match interrupt register 1 | RMAD1 | 0016 | | 001516 | | | 0016 | | 0016 ₁₆ | | | X016 | | 001716 | | | | | 001916 | | | | | 001A16 | | | | | 001B ₁₆ | | | | | 001C16 | | | | | 001D ₁₆ | | | | | 001E16 | INTO input filter select register | INT0F | XXXXX0002 | | 001F16 | | | | | 002016
002116 | | | | | 002116 | | | | | 002316 | | | | | 002416 | | | | | 002516 | | | | | 002616 | | | | | 002716 | | | | | 002816 | | | | | 002916
002A16 | | | | | 002A16 | | | | | 002C16 | | | | | 002D16 | | | | | 002E16 | | | | | 002F16 | | | | | 003016 | | | | | 003116 | | | | | 003216
003316 | | | | | 003316 | | | | | 003516 | | | | | 003616 | | | | | 003716 | | | | | 003816 | | | | | 003916 | | | | | 003A16 | | | | | 003B16 | | | | | 003C ₁₆ | | | | | 003D16 | | | | | 003E16 | | | | | | | 1 | ļ. | NOTES: 1. Blank spaces are reserved. No access is allowed. X: Undefined Table 4.3 SFR Information(3)(1) | | 1.3 SFR Information(3)(1) | | | |--------------------|---|---------|--------------| | Address | Register | Symbol | After reset | | 008016 | Timer Y, Z mode register | TYZMR | 0016 | | 008116 | Prescaler Y register | PREY | FF16 | | 008216 | Timer Y secondary register | TYSC | FF16 | | 008316 | Timer Y primary register | TYPR | FF16 | | 008416 | Timer Y, Z waveform output control register | PUM | 0016 | | 008516 | Prescaler Z register | PREZ | FF16 | | 008616 | Timer Z secondary register | TZSC | FF16 | | 008716 | Timer Z primary register | TZPR | FF16 | | | Timor 2 primary register | 12110 | 1110 | | 008816 | | | | | 008916 | Time as V. 7 autout as atral register | TV700 | 0040 | | 008A16 | Timer Y, Z output control register | TYZOC | 0016 | | 008B16 | Timer X mode register | TXMR | 0016 | | 008C16 | Prescaler X register | PREX | FF16 | | 008D16 | Timer X register | TX | FF16 | | 008E16 | Count source set register | TCSS | 0016 | | 008F16 | | | | | 009016 | Timer C register | TC | 0016 | | 009116 | 9 | | 0016 | | 009216 | | | | | 009316 | | | | | 009316 | | + | | | 009416 | | | | | | External input anable register | INITENI | 0016 | | 009616 | External input enable register | INTEN | 0016 | | 009716 | Vov input anable register | IZIENI | 0046 | | 009816 | Key input enable register | KIEN | 0016 | | 009916 | | | | | 009A ₁₆ | Timer C control register 0 | TCC0 | 0016 | | 009B ₁₆ | Timer C control register 1 | TCC1 | 0016 | | 009C16 | Capture register | TM0 | 0016 | | 009D16 | | | 0016 | | 009E16 | | | | | 009F16 | | | | | 00A016 | UART0 transmit/receive mode register | U0MR | 0016 | | 00A116 | UART0 bit rate generator | U0BRG | XX16 | | 00A216 | UART0 transmit buffer register | U0TB | XX16 | | 00A316 | OAIX 10 transmit buller register | 0016 | XX16
XX16 | | 00A316 | UART0 transmit/receive control register 0 | U0C0 | 000010002 | | | | | | | 00A516 | UART0 transmit/receive control register 1 | U0C1 | 000000102 | | 00A616 | UART0 receive buffer register | U0RB | XX16 | | 00A716 | | | XX16 | | 00A816 | UART1 transmit/receive mode register | U1MR | 0016 | | 00A916 | UART1 bit rate generator | U1BRG | XX16 | | 00AA16 | UART1 transmit buffer register | U1TB | XX16 | | 00AB16 | Ŭ | | XX16 | | 00AC16 | UART1 transmit/receive control register 0 | U1C0 | 000010002 | | 00AD16 | UART1 transmit/receive control register 1 | U1C1 | 000000102 | | 00AE16 | UART1 receive buffer register | U1RB | XX16 | | 00AF16 | S 1 1000110 Sanot Togistor | 0 110 | XX16
XX16 | | 00B016 | UART transmit/receive control register 2 | UCON | 0016 | | 00B016 | OAKT transmitteceive control legister 2 | OCON | 3010 | | | | | - | | 00B216 | | | | | 00B316 | | | | | 00B416 | | | | | 00B516 | | | | | 00B616 | | | | | 00B716 | | | | | 00B816 | | | | | 00B916 | | | | | 00BA16 | | | | | 00BB16 | | | | | 00BD16 | | | | | | | | | | 00BD16 | | | <u> </u> | | 00BE16 | | | | | 00BF16 | | | | | | | | | NOTES: 1. Blank spaces are reserved. No access is allowed. ### Table 4.4 SFR Information(4)⁽¹⁾ | Address | Register | Symbol | After reset | |--|---|--------------|--------------------------------| | 00C016 | AD register | AD | XXXXXXXX2 | | 00C116 | 7.5 109.000 | '\b | XXXXXXXXXXXX | | 00C216 | | <u> </u> | 70000000 | | 00C316 | | | | | 00C416 | | | 1 | | 00C516 | | | | | 00C616 | | | | | 00C716 | | | | | 00C816 | | | | | 00C916 | | | | | 00CA16 | | | | | 00CB16 | | | | | 00CC16 | | | | | 00CD16 | | | | | 00CE16 | | | | | 00CF16 | | | | | 00D016 | | | | | 00D116 | | | | | 00D216 | | | | | 00D316 | | | | | 00D416 | AD control register 2 | ADCON2 | 0016 | | 00D516 | | | | | 00D616 | AD control register 0 | ADCON0 | 00000XXX2 | | 00D716 | AD control register 1 | ADCON1 | 0016 | | 00D816 | | | | | 00D916 | | | | | 00DA16 | | | | | 00DB16 | | | | | 00DC16 | | | | | 00DD16 | | | | | 00DE16 | | | | | 00DF16 | | | | | 00E016 | Port P0 register | P0 | XX16 | | 00E116 | Port P1 register | P1 | XX16 | | 00E216 | Port P0 direction register | PD0 | 0016 | | 00E316 | Port P1 direction register | PD1 | 0016 | | 00E416 | - | | | | 00E516 | Port P3 register | P3 | XX16 | | 00E616 | | | | | 00E716 | Port P3 direction register | PD3 | 0016 | | 00E816 | Port P4 register | P4 | XX16 | | 00E916 | | | | | 00EA16 | Port P4 direction register | PD4 | 0016 | | 00EB16 | - | | | | 00EC16 | | | | | 00ED16 | | | | | 00EE16 | | | | | 00EF16 | | | | | 00F016 | | | | | 00F116 | | | | | 00F216 | | | | | 00F316 | | | | | 00F416 | | | | | 00F516 | | | | | 00F616 | | | | | 00F716 | | | | | 00F816 | | | | | 00F916 | | 1 | | | 001 316 | | | | | 03FA16 | | | | | | | | | | 03FA ₁₆ | Pull-up control register 0 | PUR0 | 00XX00002 | | 03FA ₁₆
00FB ₁₆ | Pull-up control register 0 Pull-up control register 1 | PUR0
PUR1 | 00XX00002
XXXXXX0X2 | | 03FA ₁₆
00FB ₁₆
00FC ₁₆ | | | | | 03FA ₁₆
00FB ₁₆
00FC ₁₆
00FD ₁₆ | Pull-up control register 1 | PUR1 | XXXXXX0X2 | | 03FA16
00FB16
00FC16
00FD16
00FE16 | Pull-up control register 1 | PUR1 | XXXXXX0X2
0016 | | 03FA16
00FB16
00FC16
00FD16
00FE16 | Pull-up control register 1 | PUR1 | XXXXXX0X2
0016 | | 03FA16
00FB16
00FC16
00FD16
00FE16 | Pull-up control register 1 Port P1 drive capacity control register | PUR1 | XXXXXX0X2
0016 | | 03FA16
00FB16
00FC16
00FD16
00FE16
00FF16 | Pull-up control register 1 | PUR1
DRR | XXXXXX0X2
0016 | | 03FA16
00FB16
00FC16
00FD16
00FE16
00FF16 | Pull-up control register 1 Port P1 drive capacity control register Flash memory control register 4 | PUR1
DRR | XXXXXX0X2
0016
010000002 | | 03FA16
00FB16
00FC16
00FD16
00FE16
00FF16
01B316
01B416 | Pull-up control register 1 Port P1 drive capacity control register | PUR1
DRR | XXXXXX0X2
0016 | | 03FA16
00FB16
00FC16
00FD16
00FE16
00FF16
01B316
01B416
01B516 | Pull-up control register 1 Port P1 drive capacity control register Flash memory control register 4 | PUR1
DRR | XXXXXX0X2
0016
010000002 | NOTES: 1. Blank columns, 010016 to 01B216 and 01B816 to 02FF16 are all reserved. No access is allowed. $\boldsymbol{\mathsf{X}}$: Undefined Table 5.3 A/D Conversion Characteristics | Console al | Devenuetes | | Managemin a condition | S | Standard | | | | |------------|--------------------------------|----------------------------|------------------------------|--|----------|--------|------|------| | Symbol | Par | Parameter | | Measuring condition | Min. | Тур. | Max. | Unit | | _ | Resolution | | | Vref =VCC | | _ | 10 | Bit | | - | Absolute | 10 1 | oit mode | øAD=10 MHz, Vref=Vcc=5.0V | _ | _ | ±3 | LSB | | | accuracy | 8 1 | oit mode | øAD=10 MHz, Vref=Vcc=5.0V | _ | _ | ±2 | LSB | | | 10 bit mode
8 bit mode | | øAD=10 MHz, Vref=Vcc=3.3V(3) | _ | | ±5 | LSB | | | | | | oit mode | øAD=10 MHz, Vref=Vcc=3.3V ⁽³⁾ | | | ±2 | LSB | | RLADDER | Ladder resistance | • | | VREF=VCC | 10 | _ | 40 | kΩ | | tconv | Conversion time | Conversion time 10 bit mod | | øAD=10 MHz, Vref=Vcc=5.0V | 3.3 | _ | _ | μs | | | | | 8 bit mode | øAD=10 MHz, Vref=Vcc=5.0V | 2.8 | _ | _ | μs | | VREF | Reference voltage | | , | | _ | Vcc(4) | _ | V | | VIA | Analog input voltage |) | | | 0 | _ | Vref | V | | _ | | | ample & hold | | 0.25 | _ | 10 | MHz | | | clock frequency ⁽²⁾ | With sar | nple & hold | | 1.0 | _ | 10 | MHz | #### NOTES: - 1. Vcc=AVcc=2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. - 2. If fAD exceeds 10 MHz, divide the fAD and hold A/D operating clock frequency (ØAD) 10 MHz or below. - 3. If the AVcc is less than 4.2V, divide the fAD and hold A/D operating clock frequency (ØAD) fAD/2 or below. - Hold Vcc=Vref. Table 5.4 Flash Memory Version Electrical Characteristics | Symbol | Parameter | Measuring condition | | | | | | |-----------|---|------------------------------|------|----------|-----|-------|--| | Cymbol | Parameter | ivieasuring condition | Min. | Тур. | Max | Unit | | | _ | Program/erase endurance | | 100 | _ | _ | times | | | _ | Byte program time | | | 50 | 400 | μs | | | _ | Block erase time | | - | 0.4 | 9 | s | | | td(SR-ES) | Time delay from suspend request until erase suspend | | _ | <u> </u> | 8 | ms | | | _ | Erase Suspend Request Interval | | 10 | _ | _ | ms | | | _ | Program, Erase voltage | | 2.7 | | 5.5 | V | | | _ | Read voltage | | 2.7 | | 5.5 | V | | | - | Program, Erase temperature | | 0 | | 60 | °C | | | _ | Data hold time ⁽²⁾ | Ambient
temperature=55 °C | 20 | | | year | | - 1. Vcc1=AVcc=2.7 to 5.5V at Topr = 0 to 60 °C, unless otherwise specified. - 2. The data hold time includes time that the power supply is off or the clock is not supplied. **Table 5.5 Power Circuit Timing Characteristics** | Symbol | Parameter | Measuring condition | | Llmit | | | |---------|--|---------------------|------|-------|------|------| | Cymbol | T didinotoi | Wisdodining Schamon | Min. | Тур. | Max. | Unit | | td(P-R) | Time for internal power supply stabilization during powering-on ⁽²⁾ | | 1 | _ | 2000 | μs | | td(R-S) | STOP release time ⁽³⁾ | | _ | _ | 150 | μs | - 1. The measuring condition is Vcc=AVcc=2.7 to 5.5 V and Topr=25 °C. 2. This shows the waiting time until the internal power supply generating circuit is stabilized during powering-on. 3. This shows the time until BCLK starts from the interrupt acknowledgement to cancel stop mode. Figure 5.1 Port P0 to P4 measurement circuit Figure 5.2 Time delay from Suspend Request until Erase Suspend Table 5.6 Electrical Characteristics (1) [Vcc=5V] | Symbol | Parameter | | Measuring condition | | Standard | | | |---------|------------------------------|---|----------------------------------|---------|----------|------|------| | | | | weasuring condition | Min. | Typ. | Max. | Unit | | | "H" output voltage | Except Xout | IOH=-5mA | Vcc-2.0 | | Vcc | V | | Vон | | · | Іон=-200μА | Vcc-0.3 | | Vcc | V | | | | Хоит | Drive capacity HIGH IOH=-1 mA | Vcc-2.0 | | Vcc | V | | | | | Drive capacity LOW IOH=-500µA | Vcc-2.0 | | Vcc | V | | | "L" output voltage | Except P10 to P17, Xout | IoL= 5 mA | | | 2.0 | V | | Vol | | | IoL= 200 μA | | | 0.45 | V | | | | P10 to P17 | Drive capacity HIGH IoL= 15 mA | | | 2.0 | V | | | | | Drive capacity LOW IoL= 5 mA | | | 2.0 | V | | | | | Drive capacity LOW IoL= 200 μA | | | 0.45 | V | | | | Xout | Drive capacity HIGH IOL= 1 mA | | | 2.0 | V | | | | | Drive capacity LOW IoL=500µA | | | 2.0 | V | | VT+-VT- | Hysteresis | INTo, INT1, INT2, INT3, KI0, KI1,
KI2, KI3, CNTR0, CNTR1, TCIN,
RxD0, RxD1, P45 | | 0.2 | | 1.0 | V | | | | RESET | | 0.2 | | 2.2 | V | | lін | "H" input current | | Vi=5V | | | 5.0 | μA | | lıL | "L" input current | | VI=0V | | | -5.0 | μA | | RPULLUP | Pull-up resistance | | Vi=0V | 30 | 50 | 167 | kΩ | | RfXIN | Feedback resistance | XIN | | | 1.0 | | MΩ | | fring | On-chip oscillator frequency | | | 40 | 125 | 250 | kHz | | VRAM | RAM retention voltage | | At stop mode | 2.0 | | | V | ^{1.} Referenced to Vcc=AVcc=4.2 to 5.5V at Topr = -20 to 85 $^{\circ}$ C / -40 to 85 $^{\circ}$ C, f(XIN)=20MHz unless otherwise specified. **Table 5.7 Electrical Characteristics (2)** [Vcc=5V] | Symbol | Parameter | | Measuring condition | | Standard | | | Unit | |--|-----------|-------------------------|--|---|----------|------|------|------| | Cy | | | | | Min. | Тур. | Max. | Unit | | | | | High-speed mode | XIN=16 MHz (square wave)
On-chip oscillator on=125 kHz
No division | _ | 8 | 14 | mA | | | | | XIN=10 MHz (square wave)
On-chip oscillator on=125 kHz
No division | _ | 5 | _ | mA | | | Icc Power supply current (Vcc=3.3 to 5.5V) In single-chip mode, the output | | Medium-speed mode | XIN=16 MHz (square wave)
On-chip oscillator on=125 kHz
Division by 8 | _ | 3 | _ | mA | | | | | | XIN=10 MHz (square wave)
On-chip oscillator on=125 kHz
Division by 8 | _ | 2 | _ | mA | | | | | On-chip oscillator mode | Main clock off
On-chip oscillator on=125 kHz
Division by 8 | _ | 470 | 900 | μА | | | | | | Wait mode | Main clock off On-chip oscillator on=125 kHz When a WAIT instruction is executed ⁽¹⁾ Peripheral clock operation | _ | 40 | 80 | μА | | | | | Wait mode | Main clock off
On-chip oscillator on=125 kHz
When a WAIT instruction is executed ⁽¹⁾
Peripheral clock off | _ | 38 | 76 | μA | | | | | Stop mode | Main clock off, Topr = 25 °C
On-chip oscillator off
CM10="1"
Peripheral clock off | _ | 0.8 | 3.0 | μA | NOTES: 1. Timer Y is operated with timer mode. 2. Referenced to Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=20MHz unless otherwise specified. ### Timing requirements (Unless otherwise noted: Vcc = 5V, Vss = 0V at Topr = 25 °C) [Vcc=5V] #### Table 5.8 XIN input | Symbol | Parameter | Standard | | Unit | |----------|----------------------------|----------|------|------| | | | Min. | Max. | | | tc(XIN) | XIN input cycle time | 62.5 | _ | ns | | twh(XIN) | XIN input HIGH pulse width | | _ | ns | | twL(XIN) | XIN input LOW pulse width | 30 | _ | ns | #### Table 5.9 CNTR0 input, CNTR1 input, INT2 input | Symbol | Parameter | | Standard | | |------------|------------------------------|--|----------|----| | | | | Max. | | | tC(CNTR0) | CNTR0 input cycle time | | _ | ns | | tWH(CNTR0) | CNTR0 input HIGH pulse width | | _ | ns | | tWL(CNTR0) | CNTR0 input LOW pulse width | | _ | ns | #### Table 5.10 TCIN input, INT3 input | Symbol | Parameter Standard | | dard | Unit | |-----------|-----------------------------|--------------------|------|------| | | | Min. | Max. | | | tC(TCIN) | TCIN input cycle time | 400 ⁽¹⁾ | _ | ns | | tWH(TCIN) | TCIN input HIGH pulse width | 200 ⁽²⁾ | _ | ns | | tWL(TCIN) | TCIN input LOW pulse width | 200 ⁽²⁾ | _ | ns | #### NOTES: - 1. When using the Timer C capture function, adjust the cycle time above (1/ Timer C count source frequency x 3). - 2. When using the Timer C capture function, adjust the pulse width above (1/Timer C count source frequency x 1.5). #### Table 5.11 Serial Interface | Symbol | Parameter | | Standard | | |----------|-----------------------------------|-----|----------|----| | | | | Max. | | | tc(ck) | CLKi input cycle time | 200 | _ | ns | | tw(ckH) | CLKi input HIGH pulse width 100 - | | _ | ns | | tw(ckl) | CLKi input LOW pulse width | | _ | ns | | td(C-Q) | TxDi output delay time | _ | 80 | ns | | th(C-Q) | TxDi hold time | | _ | ns | | tsu(D-C) | RxDi input setup time | | _ | ns | | th(C-D) | RxDi input hold time | | _ | ns | #### Table 5.12 External interrupt INTO input | Symbol | Parameter | Standard | | Unit | |---------|-----------------------------|--------------------|------|------| | | | Min. | Max. | | | tw(INH) | INTO input HIGH pulse width | 250 ⁽¹⁾ | _ | ns | | tw(INL) | INTO input LOW pulse width | 250 ⁽²⁾ | _ | ns | - 1. When selecting the digital filter by the $\overline{\text{INT0}}$ input filter select bit, use the $\overline{\text{INT0}}$ input HIGH pulse width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard. - 2. When selecting the digital filter by the $\overline{\text{INT0}}$ input filter select bit, use the $\overline{\text{INT0}}$ input LOW pusle width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard. Figure 5.3 Vcc=5V timing diagram Table 5.14 Electrical Characteristics (4) [Vcc=3V] | Symbol | Parameter | Measuring condition | | Standard | | | Unit | |--------|---|-------------------------|---|----------|------|------|------| | Cymbol | . arameter | | | Min. | Тур. | Max. | Unit | | | | High-speed mode | XIN=16 MHz (square wave)
On-chip oscillator on=125 kHz
No division | _ | 7 | 12 | mA | | | | | XIN=10 MHz (square wave)
On-chip oscillator on=125 kHz
No division | _ | 5 | | mA | | | Power supply current | Medium-speed mode | XIN=16 MHz (square wave)
On-chip oscillator on=125 kHz
Division by 8 | _ | 2.5 | _ | mA | | Icc | (Vcc1=2.7 to 3.3V) In single-chip mode, the output pins are open and other pins are Vss | | XIN=10 MHz (square wave)
On-chip oscillator on=125 kHz
Division by 8 | _ | 1.6 | | mA | | | | On-chip oscillator mode | Main clock off
On-chip oscillator on=125 kHz
Division by 8 | _ | 420 | 800 | μА | | | | Wait mode | Main clock off
On-chip oscillator on=125 kHz
When a WAIT instruction is executed ⁽¹⁾
Peripheral clock operation | _ | 37 | 74 | μА | | | | Wait mode | Main clock off
On-chip oscillator on=125 kHz
When a WAIT instruction is executed ⁽¹⁾
Peripheral clock off | _ | 35 | 70 | μА | | | | Stop mode | Main clock off, Topr = 25 °C
On-chip oscillator off
CM10="1"
Peripheral clock off | _ | 0.7 | 3.0 | μА | NOTES: 1. Timer Y is operated with timer mode. 2. Referenced to Vcc=AVcc=2.7 to 3.3V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN)=10MHz unless otherwise specified. ### Timing requirements (Unless otherwise noted: Vcc = 3V, Vss = 0V at Topr = 25 °C) [Vcc=3V] Table 5.15 XIN input | Symbol | Parameter | Standard | | Unit | | |----------|----------------------------|-----------|------|-------|--| | Syllibol | Parameter | Stariuaru | | Ullit | | | | | Min. | Max. | | | | tc(XIN) | XIN input cycle time | 100 | _ | ns | | | twh(XIN) | XIN input HIGH pulse width | 40 | _ | ns | | | twL(XIN) | XIN input LOW pulse width | 40 | _ | ns | | #### Table 5.16 CNTR0 input, CNTR1 input, INT2 input | Symbol | Parameter | Standard | | Unit | |------------|------------------------------|----------|------|------| | | | Min. | Max. | | | tC(CNTR0) | CNTR0 input cycle time | | _ | ns | | tWH(CNTR0) | CNTR0 input HIGH pulse width | 120 | _ | ns | | tWL(CNTR0) | CNTR0 input LOW pulse width | 120 | _ | ns | #### Table 5.17 TCIN input, INT3 input | Symbol | Parameter | | Standard | | |-----------|-----------------------------|--|----------|----| | | | | Max. | | | tc(TCIN) | TCIN input cycle time | | - | ns | | tWH(TCIN) | TCIN input HIGH pulse width | | - | ns | | tWL(TCIN) | TCIN input LOW pulse width | | - | ns | #### NOTES: - 1. When using the Timer C capture function, adjust the cycle time above (1/ Timer C count source frequency x 3). - 2. When using the Timer C capture function, adjust the pulse width above (1/ Timer C count source frequency x 1.5). #### **Table 5.18 Serial Interface** | Symbol | Parameter | | Standard | | |----------|-----------------------------------|------|----------|----| | | | Min. | Max. | | | tc(ck) | CLKi input cycle time | 300 | _ | ns | | tw(ckh) | CLKi input HIGH pulse width 150 – | | _ | ns | | tw(CKL) | CLKi input LOW pulse width | 150 | _ | ns | | td(C-Q) | TxDi output delay time | _ | 160 | ns | | th(C-Q) | TxDi hold time 0 - | | _ | ns | | tsu(D-C) | RxDi input setup time 55 - | | _ | ns | | th(C-D) | RxDi input hold time 90 - | | _ | ns | #### Table 5.19 External interrupt INTO input | Symbol | Parameter | Standard | | Unit | |---------|-----------------------------|----------|------|------| | | | Min. | Max. | | | tw(INH) | INTO input HIGH pulse width | | ı | ns | | tW(INL) | INTO input LOW pulse width | | ı | ns | - 1. When selecting the digital filter by the $\overline{\text{INT0}}$ input filter select bit, use the $\overline{\text{INT0}}$ input HIGH pulse width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard. - 2. When selecting the digital filter by the $\overline{\text{INT0}}$ input filter select bit, use the $\overline{\text{INT0}}$ input LOW pusle width to the greater value, either (1/ digital filter clock frequency x 3) or the minimum value of standard. R8C/10 Group Package Dimensions ### **Package Dimensions** #### Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to - However the state of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resoluting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. **RENESAS SALES OFFICES** http://www.renesas.com Refer to "http://www.renesas.com/en/network" for the latest and detailed information. **Renesas Technology America, Inc.** 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 205, AZIA Center, No.133 Yincheng Rd (n), Pudong District, Shanghai 200120, China Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 **Renesas Technology Taiwan Co., Ltd.**10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510