

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	XCore
Core Size	32-Bit 24-Core
Speed	4000MIPS
Connectivity	-
Peripherals	-
Number of I/O	176
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xlf224-512-fb374-i40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 6.2

- Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 6.5
- xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 6.6
- ▶ **Ports** The I/O pins are connected to the processing cores by Hardware Response ports. The port logic can drive its pins high and low, or it can sample the value on its pins optionally waiting for a particular condition. Section 6.3
- Clock blocks xCORE devices include a set of programmable clock blocks that can be used to govern the rate at which ports execute. Section 6.4
- Memory Each xCORE Tile integrates a bank of SRAM for instructions and data, and a block of one-time programmable (OTP) memory that can be configured for system wide security features. Section 9
- PLL The PLL is used to create a high-speed processor clock given a low speed external oscillator. Section 7
- ▶ Flash The device has a built-in 2MBflash. Section 8
- ▶ JTAG The JTAG module can be used for loading programs, boundary scan testing, in-circuit source-level debugging and programming the OTP memory. Section 10

1.1 Software

Devices are programmed using C, C++ or xC (C with multicore extensions). XMOS provides tested and proven software libraries, which allow you to quickly add interface and processor functionality such as USB, Ethernet, PWM, graphics driver, and audio EQ to your applications.

1.2 xTIMEcomposer Studio

The xTIMEcomposer Studio development environment provides all the tools you need to write and debug your programs, profile your application, and write images into flash memory or OTP memory on the device. Because xCORE devices operate deterministically, they can be simulated like hardware within xTIMEcomposer: uniquely in the embedded world, xTIMEcomposer Studio therefore includes a static timing analyzer, cycle-accurate simulator, and high-speed in-circuit instrumentation.

xTIMEcomposer can be driven from either a graphical development environment, or the command line. The tools are supported on Windows, Linux and MacOS X

Signal	Function					Туре	Properties
X1D17	X ₀ L3 ⁰	4D ¹	8B ³	16A ¹¹		1/0	IO, PD
X1D18	X ₀ L3 ⁰ _{out}	4D ²	8B ⁴	16A ¹²		I/O	IO, PD
X1D19	X ₀ L3 ¹ _{out}	4D ³	8B ⁵	16A ¹³		1/0	IO, PD
X1D20	0 - 001	4C ²	8B ⁶	16A ¹⁴	32A ³⁰	1/0	IO, PD
X1D21		4C ³	8B ⁷	16A ¹⁵		I/O	IO, PD
X1D22	X ₀ L3 ⁴ _{out} 10		-		-	I/O	IO, PD
X1D23	1+	0				I/O	IO, PD
X1D24	110)				/ I/O	IO, PD
X1D25	1))				1/0	IO, PD
X1D26		4E ⁰	8C ⁰	16B ⁰		I/O	IOT, PD
X1D27		4E ¹	8C ¹	16B ¹		I/O	IOT, PD
X1D28		4F ⁰	8C ²	16B ²		1/0	IOT, PD
X1D29		4F ¹	8C ³	16B ³		I/0	IOT, PD
X1D30		4F ²	8C ⁴	16B ⁴		I/0	IOT, PD
X1D31		4F ³	8C ⁵	16B ⁵		I/0	IOT, PD
X1D32		4E ²	8C ⁶	16B ⁶		I/O	IOT, PD
X1D33		4E ³	8C ⁷	16B ⁷		I/0	IOT, PD
X1D34	X ₀ L0 ² 1K	0				I/0	IO, PD
X1D35	X ₀ L0 ³ _{out} 1L	0				I/0	IO, PD
X1D36	X ₀ L0 ⁴ _{out} 1N	10	8D ⁰	16B ⁸		I/0	IO, PD
X1D37	X ₀ L3 ⁴ 1N	I0	8D1	16B ⁹		I/0	IO, PD
X1D38	X ₀ L3 ³ 10) ⁰	8D ²	16B ¹⁰		I/O	IO, PD
X1D39	X ₀ L3 ² 1P	0	8D ³	16B ¹¹		I/O	IO, PD
X1D40			8D ⁴	16B ¹²		I/O	IOT, PD
X1D41			8D ⁵	16B ¹³		I/O	IOT, PD
X1D42			8D ⁶	16B ¹⁴		I/0	IOT, PD
X1D43			8D ⁷	16B ¹⁵		I/O	IOT, PD
X1D49	X ₀ L1 ⁴ _{in}				32A ⁰	I/O	IO, PD
X1D50	X ₀ L1 ³ in				32A ¹	I/O	IO, PD
X1D51	X ₀ L1 ² _{in}				32A ²	I/O	IO, PD
X1D52	X ₀ L1 ¹				32A ³	I/O	IO, PD
X1D53	X ₀ L1 ⁰				32A ⁴	I/O	IO, PD
X1D54	X ₀ L1 ⁰ _{out}				32A ⁵	I/O	IO, PD
X1D55	X ₀ L1 ¹ _{out}				32A ⁶	I/O	IO, PD
X1D56	X ₀ L1 ² _{out}				32A ⁷	I/O	IO, PD
X1D57	X ₀ L1 ³ _{out}				32A ⁸	I/O	IO, PD
X1D58	X ₀ L1 ⁴ _{out}				32A ⁹	I/O	IO, PD
X1D61	X ₀ L2 ⁴ _{in}				32A ¹⁰	I/O	IO, PD
X1D62	$X_0L2_{in}^3$				32A ¹¹	I/O	IO, PD
X1D63	X ₀ L2 ²				32A ¹²	I/O	IO, PD
X1D64	X ₀ L2 ¹ _{in}				32A ¹³	I/O	IO, PD
X1D65	X ₀ L2 ⁰				32A ¹⁴	I/O	IO, PD
X1D66	X ₀ L2 ⁰ _{out}				32A ¹⁵	I/O	IO, PD

(continued)

XS2-LF24A-512-FB374

X009389,

9

(continued)

Signal	Function					Type	Properties
X1D67	X ₀ L2 ¹ _{out}				32A ¹⁶	I/0	IO, PD
X1D68	$X_0L2_{out}^2$				32A ¹⁷	I/0	IO, PD
X1D69	$X_0L2_{out}^3$				32A ¹⁸	I/0	IO, PD
X1D70	X ₀ L2 ⁴ _{out}				32A ¹⁹	I/O	IO, PD
X2D00	1A	0				I/0	IO, PD
X2D02		4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/0	IO, PD
X2D03		4A ¹	8A ¹	16A ¹	32A ²¹	I/0	IO, PD
X2D04		4B ⁰	8A ²	16A ²	32A ²²	I/0	IO, PD
X2D05		4B ¹	8A ³	16A ³	32A ²³	I/O	IO, PD
X2D06		4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IO, PD
X2D07		4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IO, PD
X2D08		4A ²	8A ⁶	16A ⁶	32A ²⁶	I/O	IO, PD
X2D09		4A ³	8A ⁷	16A ⁷	32A ²⁷	I/O	IO, PD
X2D11	1D	0				I/O	IO, PD
X2D12	16	C				I/O	IO, PD
X2D13	1F					I/O	IO, PD
X2D14		4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/0	IO, PD
X2D15		4C ¹	8B1	16A ⁹	32A ²⁹	I/O	IO, PD
X2D16	X ₂ L4 ⁴	4D ⁰	8B ²	16A ¹⁰		I/O	IO, PD
X2D17	X ₂ L4 ³ _{in}	4D ¹	8B ³	16A ¹¹		I/0	IO, PD
X2D18	X ₂ L4 ² _{in}	4D ²	8B ⁴	16A ¹²		I/0	IO, PD
X2D19	X ₂ L4 ¹	4D ³	8B ⁵	16A ¹³		I/0	IO, PD
X2D20		4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/0	IO, PD
X2D21		4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IO, PD
X2D22	1G	0				I/O	IO, PD
X2D23	1H	0				I/0	IO, PD
X2D24	X ₂ L7 ⁰ 11 ⁰					I/0	IO, PD
X2D25	X ₂ L7 ⁰ 1J ⁰)				I/0	IO, PD
X2D26	X ₂ L7 ³ _{out}	4E ⁰	8C ⁰	16B ⁰		I/O	IO, PD
X2D27	X ₂ L7 ⁴ _{out}	4E ¹	8C ¹	16B ¹		I/0	IO, PD
X2D28		4F ⁰	8C ²	16B ²		I/0	IO, PD
X2D29		4F ¹	8C ³	16B ³		I/O	IO, PD
X2D30		4F ²	8C ⁴	16B ⁴		I/O	IO, PD
X2D31		4F ³	8C ⁵	16B ⁵		I/O	IO, PD
X2D32		4E ²	8C ⁶	16B ⁶		I/O	IO, PD
X2D33		4E ³	8C ⁷	16B ⁷		I/O	IO, PD
X2D34	X ₂ L7 ¹ 1K	0				I/O	IO, PD
X2D35	X ₂ L7 ² _{out} 1L)				I/O	IO, PD
X2D36	1M	0	8D ⁰	16B ⁸		I/O	IO, PD
X2D49	X ₂ L5 ⁴				32A ⁰	I/O	IO, PD
X2D50	X ₂ L5 ³ _{in}				32A ¹	I/O	IO, PD
X2D51	X ₂ L5 ² _{in}				32A ²	I/O	IO, PD
X2D52	X ₂ L5 ¹				32A ³	I/O	IO, PD
						1	(continued)

A clock block can use a 1-bit port as its clock source allowing external application clocks to be used to drive the input and output interfaces. xCORE-200 clock blocks optionally divide the clock input from a 1-bit port.

In many cases I/O signals are accompanied by strobing signals. The xCORE ports can input and interpret strobe (known as readyIn and readyOut) signals generated by external sources, and ports can generate strobe signals to accompany output data.

On reset, each port is connected to clock block 0, which runs from the xCORE Tile reference clock.

6.5 Channels and Channel Ends

Logical cores communicate using point-to-point connections, formed between two channel ends. A channel-end is a resource on an xCORE tile, that is allocated by the program. Each channel-end has a unique system-wide identifier that comprises a unique number and their tile identifier. Data is transmitted to a channel-end by an output-instruction; and the other side executes an input-instruction. Data can be passed synchronously or asynchronously between the channel ends.

6.6 xCONNECT Switch and Links

XMOS devices provide a scalable architecture, where multiple xCORE devices can be connected together to form one system. Each xCORE device has an xCONNECT interconnect that provides a communication infrastructure for all tasks that run on the various xCORE tiles on the system.

The interconnect relies on a collection of switches and XMOS links. Each xCORE device has an on-chip switch that can set up circuits or route data. The switches are connected by xConnect Links. An XMOS link provides a physical connection between two switches. The switch has a routing algorithm that supports many different topologies, including lines, meshes, trees, and hypercubes.

The links operate in either 2 wires per direction or 5 wires per direction mode, depending on the amount of bandwidth required. Circuit switched, streaming

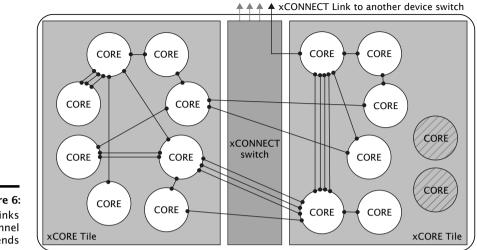


Figure 6: Switch, links and channel ends

and packet switched data can both be supported efficiently. Streams provide the fastest possible data rates between xCORE Tiles (up to 250 MBit/s), but each stream requires a single link to be reserved between switches on two tiles. All packet communications can be multiplexed onto a single link.

Information on the supported routing topologies that can be used to connect multiple devices together can be found in the XS1-LF Link Performance and Design Guide, X2999.

7 PLL

The PLL creates a high-speed clock that is used for the switch, tile, and reference clock. The PLL multiplication value is selected through the two MODE pins, and can be changed by software to speed up the tile or use less power. The MODE pins are set as shown in Figure 7:

Figure 7: PLL multiplier values and MODE pins

	Oscillator	MC	DDE	Tile	PLL Ratio	PLL	setting	js
	Frequency	1	0	Frequency		OD	F	R
e 7:	3.25-10 MHz	0	0	130-400 MHz	40	1	159	0
olier	9-25 MHz	1	1	144-400 MHz	16	1	63	0
and	25-50 MHz	1	0	167-400 MHz	8	1	31	0
oins	50-100 MHz	0	1	196-400 MHz	4	1	15	0

-XMOS

XS2-LF24A-512-FB374

12 DC and Switching Characteristics

6	Barran		T)/D	BAAN	UNUTC	NI
Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
VDD	Tile DC supply voltage	0.95	1.00	1.05	V	
VDDIO	I/O supply voltage	2.30	3.30	3.60	V	
VDDIOT_0	I/O supply voltage	2.25	3.30	3.60	V	
VDDIOT_1	I/O supply voltage	2.25	3.30	3.60	V	
USB_VDD	USB tile DC supply voltage	0.95	1.00	1.05	V	
VDD33	Peripheral supply	3.135	3.30	3.465	V	
PLL_AVDD	PLL analog supply	0.95	1.00	1.05	V	
CI	xCORE Tile I/O load capacitance			25	pF	
Та	Ambient operating temperature (Commercial)	0		70	°C	
	Ambient operating temperature (Industrial)	-40		85	°C	
Tj	Junction temperature			125	°C	
Tstg	Storage temperature	-65		150	°C	

12.1 Operating Conditions

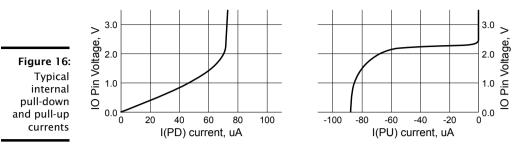
Figure 14: Operating conditions

12.2 DC Characteristics, VDDIO=3V3

Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
V(IH)	Input high voltage	2.00		3.60	V	A
V(IL)	Input low voltage	-0.30		0.70	V	A
V(OH)	Output high voltage	2.20			V	B, C
V(OL)	Output low voltage			0.40	V	B, C
I(PU)	Internal pull-up current (Vin=0V)	-100			μA	D
I(PD)	Internal pull-down current (Vin=3.3V)			100	μA	D
I(LC)	Input leakage current	-10		10	μA	

Figure 15: DC characteristics

A All pins except power supply pins.


B Pins X1D40, X1D41, X1D42, X1D43, X1D26, X1D27, X3D40, X3D41, X3D42, X3D43, X3D26, and X3D27 are nominal 8 mA drivers, the remainder of the general-purpose I/Os are 4 mA.

C Measured with 4 mA drivers sourcing 4 mA, 8 mA drivers sourcing 8 mA.

 $\cdot X MOS$

D Used to guarantee logic state for an I/O when high impedance. The internal pull-ups/pull-downs should not be used to pull external circuitry. In order to pull the pin to the opposite state, a 4K7 resistor is recommended to overome the internal pull current.

12.3 ESD Stress Voltage

Figure 17 ESD stress voltage

17:	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
ess	HBM	Human body model	-2.00		2.00	KV	
age	CDM	Charged Device Model	-500		500	V	

12.4 Reset Timing

	Symbol	Parameters	MIN	TYP	MAX	UNITS	Notes
Figure 18:	T(RST)	Reset pulse width	5			μs	
Reset timing	T(INIT)	Initialization time			150	μs	А
	A Chouse the	time taken to start beating ofter DCT N b		أمنعام			

A Shows the time taken to start booting after RST_N has gone high.

12.5 Power Consumption

	Symbol	Parameter	MIN	ТҮР	MAX	UNITS	Notes
	I(DDCQ)	Quiescent VDD current		45		mA	A, B, C
Figure 19:	PD	Tile power dissipation		325		µW/MIPS	A, D, E, F
xCORE Tile	IDD	Active VDD current		1140	1400	mA	A, G
currents	I(ADDPLL)	PLL_AVDD current		5	7	mA	Н

A Use for budgetary purposes only.

B Assumes typical tile and I/O voltages with no switching activity.

- C Includes PLL current.
- D Assumes typical tile and I/O voltages with nominal switching activity.
- E Assumes 1 MHz = 1 MIPS.
- F PD(TYP) value is the usage power consumption under typical operating conditions.
- G Measurement conditions: VDD = 1.0 V, VDDIO = 3.3 V, 25 °C, 500 MHz, average device resource usage.
- H PLL_AVDD = 1.0 V

The tile power consumption of the device is highly application dependent and should be used for budgetary purposes only.

The asynchronous nature of links means that the relative phasing of CLK clocks is not important in a multi-clock system, providing each meets the required stability criteria.

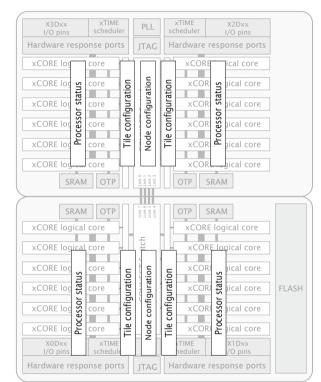
Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
f(TCK_D)	TCK frequency (debug)			18	MHz	
f(TCK_B)	TCK frequency (boundary scan)			10	MHz	
T(SETUP)	TDO to TCK setup time	5			ns	А
T(HOLD)	TDO to TCK hold time	5			ns	А
T(DELAY)	TCK to output delay			15	ns	В

12.9 JTAG Timing

Figure 23: JTAG timing

A Timing applies to TMS and TDI inputs.

B Timing applies to TDO output from negative edge of TCK.


All JTAG operations are synchronous to TCK apart from the global asynchronous reset TRST_N.

Appendices

A Configuration of the XLF224-512-FB374

The device is configured through banks of registers, as shown in Figure 26.

Figure 26: Registers

The following communication sequences specify how to access those registers. Any messages transmitted contain the most significant 24 bits of the channel-end to which a response is to be sent. This comprises the node-identifier and the channel number within the node. if no response is required on a write operation, supply 24-bits with the last 8-bits set, which suppresses the reply message. Any multi-byte data is sent most significant byte first.

A.1 Accessing a processor status register

The processor status registers are accessed directly from the processor instruction set. The instructions GETPS and SETPS read and write a word. The register number should be translated into a processor-status resource identifier by shifting the register number left 8 places, and ORing it with 0x0B. Alternatively, the functions getps(reg) and setps(reg,value) can be used from XC.

B Processor Status Configuration

The processor status control registers can be accessed directly by the processor using processor status reads and writes (use getps(reg) and setps(reg,value) for reads and writes).

Number	Perm	Description
0x00	RW	RAM base address
0x01	RW	Vector base address
0x02	RW	xCORE Tile control
0x03	RO	xCORE Tile boot status
0x05	RW	Security configuration
0x06	RW	Ring Oscillator Control
0x07	RO	Ring Oscillator Value
0x08	RO	Ring Oscillator Value
0x09	RO	Ring Oscillator Value
0x0A	RO	Ring Oscillator Value
0x0C	RO	RAM size
0x10	DRW	Debug SSR
0x11	DRW	Debug SPC
0x12	DRW	Debug SSP
0x13	DRW	DGETREG operand 1
0x14	DRW	DGETREG operand 2
0x15	DRW	Debug interrupt type
0x16	DRW	Debug interrupt data
0x18	DRW	Debug core control
0x20 0x27	DRW	Debug scratch
0x30 0x33	DRW	Instruction breakpoint address
0x40 0x43	DRW	Instruction breakpoint control
0x50 0x53	DRW	Data watchpoint address 1
0x60 0x63	DRW	Data watchpoint address 2
0x70 0x73	DRW	Data breakpoint control register
0x80 0x83	DRW	Resources breakpoint mask
0x90 0x93	DRW	Resources breakpoint value
0x9C 0x9F	DRW	Resources breakpoint control register

-XMOS°

Figure 27:

Summary

0x41: PC of logical core 1

Bits	Perm	Init	Description
31:0	CRO		Value.

C.11 PC of logical core 2: 0x42

Value of the PC of logical core 2.

0x42: PC of logical core 2

Bits	Perm	Init	Description
31:0	CRO		Value.

C.12 PC of logical core 3: 0x43

Value of the PC of logical core 3.

0x43:				
PC of logical	Bits	Perm	Init	Description
core 3	31:0	CRO		Value.

C.13 PC of logical core 4: 0x44

Value of the PC of logical core 4.

0x44 PC of logical core 4

0x44: logical	Bits	Perm	Init	Description
core 4	31:0	CRO		Value.

C.14 PC of logical core 5: 0x45

Value of the PC of logical core 5.

0x45: PC of logical core 5

Bits	Perm	Init	Description
31:0	CRO		Value.

0x62: SR of logical core 2

Bits	Perm	Init	Description
31:0	CRO		Value.

C.20 SR of logical core 3: 0x63

Value of the SR of logical core 3

0x63: SR of logical core 3

Bits	Perm	Init	Description
31:0	CRO		Value.

C.21 SR of logical core 4: 0x64

Value of the SR of logical core 4

0x64:				
SR of logical	Bits	Perm	Init	Description
core 4	31:0	CRO		Value.

C.22 SR of logical core 5: 0x65

Value of the SR of logical core 5

0x65 SR of logical core 5

x65: gical	Bits	Perm	Init	Description
ore 5	31:0	CRO		Value.

C.23 SR of logical core 6: 0x66

Value of the SR of logical core 6

0x66: SR of logical core 6

Bits	Perm	Init	Description	
31:0	CRO		Value.	

C.24 SR of logical core 7: 0x67

Value of the SR of logical core 7

0x67:				
SR of logical	Bits	Perm	Init	Description
core 7	31:0	CRO		Value.

	Bits	Perm	Init	Description
	31:28	RW	0	The direction for packets whose dimension is F.
	27:24	RW	0	The direction for packets whose dimension is E.
	23:20	RW	0	The direction for packets whose dimension is D.
	19:16	RW	0	The direction for packets whose dimension is C.
0x0D: ections	15:12	RW	0	The direction for packets whose dimension is B.
	11:8	RW	0	The direction for packets whose dimension is A.
	7:4	RW	0	The direction for packets whose dimension is 9.
8-15	3:0	RW	0	The direction for packets whose dimension is 8.

D.12 DEBUG_N configuration, tile 0: 0x10

Configures the behavior of the DEBUG_N pin.

0x1 DEBUG_N con figuratio tile

Directions 8-15

	Bits	Perm	Init	Description
10: on-	31:2	RO	-	Reserved
on,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.
0	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.

D.13 DEBUG_N configuration, tile 1: 0x11

Configures the behavior of the DEBUG_N pin.

0x1 DEBUG_N co figuratio tile

	Bits	Perm	Init	Description	
1: on-	31:2	RO	-	Reserved	
on,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.	
1	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.	

D.14 Debug source: 0x1F

Contains the source of the most recent debug event.

 $\cdot X MOS$

Bits	Perm	Init	Description	
31:5	RO	-	Reserved	
4	RW		If set, external pin, is the source of last GlobalDebug event.	
3:2	RO	-	Reserved	
1	RW		If set, XCore1 is the source of last GlobalDebug event.	
0	RW		If set, XCore0 is the source of last GlobalDebug event.	

0x1F: Debug source

D.15 Link status, direction, and network: 0x20 .. 0x28

These registers contain status information for low level debugging (read-only), the network number that each link belongs to, and the direction that each link is part of. The registers control links 0..7.

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.	
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.	
15:12	RO	-	Reserved	
11:8	RW	0	The direction that this link operates in.	
7:6	RO	-	Reserved	
5:4	RW	0	Determines the network to which this link belongs, reset as 0.	
3	RO	-	Reserved	
2	RO		1 when the current packet is considered junk and will be thrown away.	
1	RO		1 when the dest side of the link is in use.	
0	RO		1 when the source side of the link is in use.	

0x20 .. 0x28: Link status, direction, and network

D.16 PLink status and network: 0x40 .. 0x47

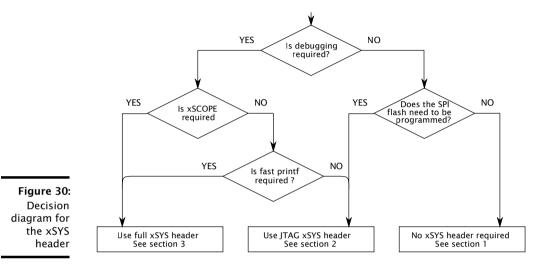
These registers contain status information and the network number that each processor-link belongs to.

-XMOS-

Bits	Perm	Init	Description	
31:26	RO	-	Reserved	
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.	
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.	
15:6	RO	-	Reserved	
5:4	RW	0	Determines the network to which this link belongs, reset as 0.	
3	RO	-	Reserved	
2	RO		1 when the current packet is considered junk and will be thrown away.	
1	RO		1 when the dest side of the link is in use.	
0	RO		1 when the source side of the link is in use.	

0x40 .. 0x47: PLink status and network

D.17 Link configuration and initialization: 0x80 .. 0x88


These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

Bits	Perm	Init	Description
31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
29:28	RO	-	Reserved
27	RO		Rx buffer overflow or illegal token encoding received.
26 RO 0 This end of the xlink ha		0	This end of the xlink has issued credit to allow the remote end to transmit
25	RO	0	This end of the xlink has credit to allow it to transmit.
		Clear this end of the xlink's credit and issue a HELLO token.	
			Reset the receiver. The next symbol that is detected will be the first symbol in a token.
22	RO	-	Reserved
21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
10:0 RW 0 Specify min. number of idle system clocks between two uous transmit tokens -1.		Specify min. number of idle system clocks between two contin- uous transmit tokens -1.	

0x80 .. 0x88: Link configuration and initialization

E JTAG, xSCOPE and Debugging

If you intend to design a board that can be used with the XMOS toolchain and xTAG debugger, you will need an xSYS header on your board. Figure 30 shows a decision diagram which explains what type of xSYS connectivity you need. The three subsections below explain the options in detail.

E.1 No xSYS header

The use of an xSYS header is optional, and may not be required for volume production designs. However, the XMOS toolchain expects the xSYS header; if you do not have an xSYS header then you must provide your own method for writing to flash/OTP and for debugging.

E.2 JTAG-only xSYS header

The xSYS header connects to an xTAG debugger, which has a 20-pin 0.1" female IDC header. The design will hence need a male IDC header. We advise to use a boxed header to guard against incorrect plug-ins. If you use a 90 degree angled header, make sure that pins 2, 4, 6, ..., 20 are along the edge of the PCB.

Connect pins 4, 8, 12, 16, 20 of the xSYS header to ground, and then connect:

- ▶ TDI to pin 5 of the xSYS header
- TMS to pin 7 of the xSYS header
- TCK to pin 9 of the xSYS header
- DEBUG_N to pin 11 of the xSYS header

XS2-LF24A-512-FB374

TDO to pin 13 of the xSYS header

The RST_N net should be open-drain, active-low, and have a pull-up to VDDIO.

E.3 Full xSYS header

For a full xSYS header you will need to connect the pins as discussed in Section E.2, and then connect a 2-wire xCONNECT Link to the xSYS header. The links can be found in the Signal description table (Section 4): they are labelled XL0, XL1, etc in the function column. The 2-wire link comprises two inputs and outputs, labelled ${}^{1}_{out}$, ${}^{0}_{out}$, ${}^{0}_{in}$, and ${}^{1}_{in}$. For example, if you choose to use XL0 for xSCOPE I/O, you need to connect up XL0 ${}^{1}_{out}$, XL0 ${}^{0}_{out}$, XL0 ${}^{1}_{in}$, XL0 ${}^{1}_{in}$ as follows:

- XL0¹_{out} (X0D43) to pin 6 of the xSYS header with a 33R series resistor close to the device.
- XL0⁰_{out} (X0D42) to pin 10 of the xSYS header with a 33R series resistor close to the device.
- ▶ XL0⁰_{in} (X0D41) to pin 14 of the xSYS header.
- > XLO_{in}^{1} (X0D40) to pin 18 of the xSYS header.

F Schematics Design Check List

✓ This section is a checklist for use by schematics designers using the XLF224-512-FB374. Each of the following sections contains items to check for each design.

F.1 Power supplies

- □ VDDIO and OTP_VCC supply is within specification before the VDD (core) supply is turned on. Specifically, the VDDIO and OTP_VCC supply is within specification before VDD (core) reaches 0.4V (Section 11).
- The VDD (core) supply ramps monotonically (rises constantly) from 0V to its final value (0.95V 1.05V) within 10ms (Section 11).
- The VDD (core) supply is capable of supplying 1400 mA (Section 11 and Figure 15).
- PLL_AVDD is filtered with a low pass filter, for example an RC filter, see Section 11

F.2 Power supply decoupling

- The design has multiple decoupling capacitors per supply, for example at least four0402 or 0603 size surface mount capacitors of 100nF in value, per supply (Section 11).
- A bulk decoupling capacitor of at least 10uF is placed on each supply (Section 11).

F.3 Power on reset

The RST_N and TRST_N pins are asserted (low) during or after power up. The device is not used until these resets have taken place.

F.4 Clock

- The CLK input pin is supplied with a clock with monotonic rising edges and low jitter.
- Pins MODE0 and MODE1 are set to the correct value for the chosen oscillator frequency. The MODE settings are shown in the Oscillator section, Section 7. If you have a choice between two values, choose the value with the highest multiplier ratio since that will boot faster.

H Associated Design Documentation

Document Title	Information	Document Number
Estimating Power Consumption For XS1-LF Devices	Power consumption	X4271
Programming XC on XMOS Devices	Timers, ports, clocks, cores and channels	X9577
xTIMEcomposer User Guide	Compilers, assembler and linker/mapper	X3766
	Timing analyzer, xScope, debugger	
	Flash and OTP programming utilities	

I Related Documentation

Document Title	Information	Document Number
The XMOS XS1 Architecture	ISA manual	X7879
XS1 Port I/O Timing	Port timings	X5821
xCONNECT Architecture	Link, switch and system information	X4249
XS1-LF Link Performance and Design Guidelines	Link timings	X2999
XS1-LF Clock Frequency Control	Advanced clock control	X1433
XS1-L Active Power Conservation	Low-power mode during idle	X7411

-XMOS[®]-