E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	89
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k142mnt0vllr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Block diagram

Following figures show superset high level architecture block diagrams of S32K14x series and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

Figure 1. High-level architecture diagram for the S32K14x family

3 Ordering information

3.1 Selecting orderable part number

Not all part number combinations are available. See the attachment *S32K1xx_Orderable_Part_Number_List.xlsx* attached with the Datasheet for a list of standard orderable part numbers.

*Note: VSSA and VSS are shorted at package level

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V_{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis	—	45		mV	1
V _{LVR_LP}	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	—	50		mV	1

Table continues on the next page ...

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

			VLPS (μΑ) ²	VI	_PR (m/	A)	STOP1 (mA)	STOP2 (mA)	RUN MHz	l@48 (mA)	RUN@ (n	64 MHz 1A)	RUN@ (n	80 MHz nA)	HSRUI MHz (N@112 mA) ³	
Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	Peripherals enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
		Max	1660	1736	3.48	3.55	NA	14.5	15.6	34.8	43.6	41.9	53.9	48.7	65.1	70.4	96.1	609
	105	Тур	560	577	2.49	2.54	4.03	10.9	11.9	29.8	37.8	37.6	47.5	45.2	61.5	63.8	89.1	565
		Max	2945	2970	4.40	4.47	NA	18.0	19.0	38.4	46.8	44.9	55.3	51.6	66.8	73.6	97.4	645
	125	Тур	NA	NA	NA	NA	4.85	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA
		Max	3990	4166	6.00	6.08	NA	23.4	24.5	44.3	52.5	50.9	61.3	57.5	71.6	Ν	A	719

- Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes
 V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for
 all unused input pins.
- 2. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 3. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.
- 4. Values mentioned for S32K14x devices are measured at RUN@80 MHz with peripherals disabled and values mentioned for S32K11x devices are measured at RUN@48 MHz with peripherals disabled.
- 5. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.
- 6. Data collected using RAM
- 7. Numbers on limited samples size and data collected with Flash
- 8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are inactive.

The following table shows the power consumption targets for S32K148 in various mode of operations measure at 3.3 V.

Chip/Device	Ambient		RUN@80	MHz (mA)	HSRUN@112 MHz (mA) ¹			
	Temperature (°C)		Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI	Peripherals enabled + QSPI	Peripherals enabled + ENET + SAI		
S32K148	25	Тур	67.3	79.1	89.8	105.5		
	85	Тур	67.4	79.2	95.6	105.9		
		Max	82.5	88.2	109.7	117.4		
	105	Тур	68.0	79.8	96.6	106.7		
		Max	80.3	89.1	109.0	119.0		
	125	Max	83.5	94.7	N	IA		

Table 9.Power consumption at 3.3 V

1. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model				2
	All pins except the corner pins	- 500	500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

I/O parameters

- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the *Reference Manual*.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input $V = V_{DD}$

5.4 DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	—	_	V	
Ioh _{GPIO}	I/O current source capability measured	5	—	—	mA	
loh _{GPIO-HD_DSE_0}	when pad V _{oh} = (V _{DD} - 0.8 V)					
Iol _{GPIO}	I/O current sink capability measured	5	—	_	mA	
Iol _{GPIO-HD_DSE_0}	when pad V _{ol} = 0.8 V					
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	20	_	_	mA	3
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 V$	20	_	-	mA	3
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	14.0	_	-	mA	4
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	14.5	_	-	mA	4
loh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh} = V_{DD} - 0.8 V$	21	_	-	mA	4
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	20.5	_	-	mA	4
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full te	mperature r	ange at V _{DE}	₀ = 5.5 V	L	5
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μA	1
R _{PU}	Internal pullup resistors	20		50	kΩ	6
R _{PD}	Internal pulldown resistors	20		50	kΩ	7

Table 12. DC electrical specifications at 5.0 V Range

1. For reset pads, same V_{ih} levels are applicable

2. For reset pads, same V_{il} levels are applicable

- 3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.
- 4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

- 5. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to *SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx* attached with the *Reference Manual*.
- 6. Measured at input $V = V_{SS}$
- 7. Measured at input $V = V_{DD}$

Symbol	DSE	Rise ti	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25
		3.0	7.1	2.6	7.5	50
		12.0	27.0	10.3	26.8	200
	1	0.4	1.3	0.38	1.3	25
		1.5	3.8	1.4	3.9	50
		7.4	14.9	7.0	15.3	200

5.5 AC electrical specifications at 3.3 V range

 Table 13. AC electrical specifications at 3.3 V Range

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Symbol	DSE	Rise time (nS) ¹		Fall time (nS) ¹		Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50

Table 14. AC electrical specifications at 5 V Range

Table continues on the next page...

Figure 8. Oscillator connections scheme

Table 17.	External Syst	em Oscillator	electrical s	specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
g mxosc	Crystal oscillator transconductance					
	SCG_SOSCCFG[RANGE]=2'b10 for 4-8 MHz	2.2	—	13.7	mA/V	
	SCG_SOSCCFG[RANGE]=2'b11 for 8-40 MHz	16	_	47	mA/V	
VIL	Input low voltage — EXTAL pin in external clock mode	V _{SS}	—	1.15	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V	
C ₁	EXTAL load capacitance		—	—		1
C ₂	XTAL load capacitance	_	_	—		1
R _F	Feedback resistor					2
	Low-gain mode (HGO=0)			—	MΩ	

Table continues on the next page...

6.2.3 System Clock Generation (SCG) specifications

6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 19. Fast internal RC Oscillator electrical specifications

Symbol	Parameter ¹			Unit	
		Min.	Тур.	Max.]
F _{FIRC}	FIRC target frequency	—	48	_	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	—	±0.5	±1	%F _{FIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	±0.5	±1.1	%F _{FIRC}
T _{Startup}	Startup time		3.4	5	μs ²
T _{JIT} , 3	Cycle-to-Cycle jitter	—	300	500	ps
T _{JIT} ³	Long term jitter over 1000 cycles		0.04	0.1	%F _{FIRC}

1. With FIRC regulator enable

2. Startup time is defined as the time between clock enablement and clock availability for system use.

3. FIRC as system clock

NOTE

Fast internal RC Oscillator is compliant with CAN and LIN standards.

6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications Table 20. Slow internal RC oscillator (SIRC) electrical specifications

Symbol	Parameter	Value			Unit
		Min.	Тур.	Max.	1
F _{SIRC}	SIRC target frequency	—	8	—	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	—	±3	%F _{SIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	—	—	±3.3	%F _{SIRC}
T _{Startup}	Startup time		9	12.5	μs ¹

1. Startup time is defined as the time between clock enablement and clock availability for system use.

Symbol	Description ¹		S32K142 S3		S3	32K144 S		S32K146		S32K148		
			Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit	Notes
	setting (32-bit write complete, ready for next 32-bit write)	Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550	200	550	200	550		
t _{quickwr} Clnup	Quick Write Cleanup execution time		—	(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0		(# of Quick Writes) * 2.0	ms	7

Table 23. Flash command timing specifications for S32K14x (continued)

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

Table 24. Flash command timing specifications for S32K11x

Symbol	Description ¹		S32K116		Sa	32K118		_
			Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block execution	32 KB flash	—	0.36	-	0.36	ms	
	time	64 KB flash	—	—	—	—		
		128 KB flash	—	1.2	—	—		
		256 KB flash	—	_	—	2		
		512 KB flash	—	—	—	—		
t _{rd1sec} F	Read 1 Section	2 KB flash	—	75	—	75	μs	
	execution time	4 KB flash	—	100	—	100		
t _{pgmchk}	Program Check execution time	—	_	100	_	100	μs	
t _{pgm8}	Program Phrase execution time	—	90	225	90	225	μs	
t _{ersblk}	Erase Flash Block	32 KB flash	15	300	15	300	ms	2
	execution time	64 KB flash	—	—	—	—		
		128 KB flash	120	1100	—	—		
		256 KB flash	—	_	250	2125		
		512 KB flash	_	_	_	_]	

Table continues on the next page ...

Symbol	Description	on ¹	S32	K116	Sa	2K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{ersscr}	Erase Flash Sector execution time		12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1 KB flash)		5	_	5	_	ms	
t _{rd1all}	Read 1s All Block execution time		—	1.7	—	2.8	ms	
t _{rdonce}	Read Once execution time		-	30	_	30	μs	
t _{pgmonce}	Program Once execution time		90	_	90	-	μs	
t _{ersall}	Erase All Blocks execution time		150	1500	230	2500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	_	35	_	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	—	150	1500	230	2500	ms	2
t _{pgmpart}	Program Partition for EEPROM execution time	32 KB EEPROM backup	71	_	71	-	ms	3
		64 KB EEPROM backup	_	_	—	-	-	
t _{setram}	Set FlexRAM Function execution time	Control Code 0xFF	0.08	-	0.08	-	ms	3
		32 KB EEPROM backup	0.8	1.2	0.8	1.2	_	
		48 KB EEPROM backup	_	_	_	-	_	
		64 KB EEPROM backup	_	_	_	_		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3 [,] 4
		48 KB EEPROM backup	-	-	—	-		
		64 KB EEPROM backup	_	_	_	-		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3,4
		48 KB EEPROM backup	_	-	-	-	-	
		64 KB EEPROM backup	-	_	—	-		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	—	360	2000	360	2000	μs	

 Table 24. Flash command timing specifications for S32K11x (continued)

Table continues on the next page...

Symbol	Description	on ¹	S32	K116	S3	2K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3,4
		48 KB EEPROM backup	_	_	_	—		
		64 KB EEPROM backup	-	-	_	_		
t _{quickwr}	32-bit Quick Write execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write complete, ready for next 32-bit write)	1st 32-bit write	200	550	200	550	μs	4,5,6
		2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550		
		Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
t _{quickwrClnup}	Quick Write Cleanup execution time		_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

Table 24. Flash command timing specifications for S32K11x (continued)

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
When using as Program and Data Flash					-	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	—	—	years	1
n _{nvmcycp}	Cycling endurance	1 K		_	cycles	2, 3

Table continues on the next page...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		3	—	5.5	V	
I _{DDA_ADC}	Supply current per ADC		—	1	—	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		—	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		—	±0.7	—	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity			±1.0	—	LSB ⁵	6, 7, 8, 9

Table 29. 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS})

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS}=20 \Omega$, and $C_{AS}=10 \text{ nF}$ unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

- Due to triple bonding in lower pin packages like 32-QFN, 48-LQFP, and 64-LQFP degradation might be seen in ADC parameters.
- When using high speed interfaces such as the QuadSPI, SAI0, SAI1 or ENET there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose
PTE8	CMP0_IN3
PTC3	ADC0_SE11/CMP0_IN4
PTC2	ADC0_SE10/CMP0_IN5
PTD7	CMP0_IN6
PTD6	CMP0_IN7
PTD28	ADC1_SE22
PTD27	ADC1_SE21

Communication modules

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 19. LPSPI master mode timing (CPHA = 1)

Communication modules

Figure 23. SAI Timing — Slave modes

6.5.6 Ethernet AC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

The following table describes the MII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK period
MII2	RXCLK pulse width low	35%	65%	RXCLK period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	_	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	_	ns
—	TXCLK frequency	_	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK period
MII6	TXCLK pulse width low	35%	65%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2		ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	_	25	ns

Table 35. MII signal switching specifications

	Symbol	Description	RUN Mode			HSRUI	N Mode	VLPR Mode	Unit
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast p	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
ads	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow p	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

Table 39. Trace specifications (continued)

6.6.3 JTAG electrical specifications

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
32-pin QFN	SOT617-3 ¹
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100-pin MAPBGA	98ASA00802D
144-pin LQFP	98ASS23177W
176-pin LQFP	98ASS23479W

1. 5x5 mm package

	. .	
Hev. No.	Date	Substantial Changes
		 Updated values for V_{REFH} and V_{REFL} to add refernce to the section "voltage and current operating requirments" for Min and Max values Updated footnote to Typ. Removed footnote from RAS Analog source resistance Updated figure: ADC input impedance equivalency diagram In table: 12-bit ADC characteristics (2.7 V to 3 V) (V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed rows for V_{TEMP_S} and V_{TEMP25} Updated footnote to Typ. In table: 12-bit ADC characteristics (3 V to 5.5 V)(V_{REFH} = V_{DDA}, V_{REFL} = V_{SS}) Removed number for TUE Updated footnote to Typ. In table: Comparator with 8-bit DAC electrical specifications Updated Typ. of I_{DDLS} Supply current, Low-speed mode Updated Typ. of I_{DLSB} Propagation delay, Low-speed mode Updated Typ. of I_{DLSB} Propagation delay, High-speed mode Updated footnote Updated Typ. I I_{DLSB} Propagation delay, High-speed mode Updated footnote Updated footnote Updated section LPSPI electrical specifications Added row for t_{DDAC} Initialization and switching settling time Updated section: Clockout frequency Added section: Clockout frequency Added section: Trace electrical specifications Updated table: Table 41 : Updated numbers for S32K142 and S32K148 Updated Document number for 32-pin QFN in topic Obtaining package dimensions
3	14 March 2017	 In Table 2 Updated min. value of V_{DD_OFF} Added parameter I_{INJSUM_AF} Updated Power mode transition operating behaviors Updated Power consumption Updated footnote to T_{SPLL_LOCK} in SPLL electrical specifications In 12-bit ADC electrical characteristics Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC}, TUE, DNL, and INL Added min. value to SMPLTS Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} Removed footnote 'All the parameters in this table ' Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) Added typ. value to I_{DDA_ADC} In Flash timing specifications — commands updated Max. value of t_{vfykey} to 33 µs
4	02 June 2017	 In section: Block diagram, added block diagram for S32K11x series. Updated figure: S32K1xx product series comparison. In section: Selecting orderable part number, added reference to attachement S32K_Part_Numbers.xlsx. In section: Ordering information Updated figure: Ordering information. In Table 1,

Table 43. Revision History (continued)

Table continues on the next page...

Rev. No.	Date	Substantial Changes
		 Updated note 'All the limits defined' Updated parameter 'I_{INJPAD_DC_ABS},' 'VIN_DC', I_{INJSUM_DC_ABS}. In Table 2, Updated parameter I_{INJPAD_DC_OP} and I_{INJSUM_DC_OP}. In Table 5, updated TBDs for V_{LVR_HYST}, V_{LVD_HYST}, and v_{LVW_HYST} In Power mode transition operating behaviors, Added VLPR → VLPS Added VLPS → VLPR Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup, and STOP2 → Asynchronous DMA Wakeup In Table 7, updated the specifications for S32K144. Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx. In Table 15, removed C_{IN_A}. In Table 17, Updated specificatins for g_{mXOSC}. Removed I_{DDSIRC} In Table 19, Added parameter ΔF125. Removed I_{DDFIRC} In Table 21, removed I_{LPO} Updated TBDs for I_{DDA_ADC} and TUE in Table 28 Updated TBDs for I_{DDA_ADC} and TUE in Table 29 In section: QuadSPI AC specifications, updated TBDs for I_{DDA_ADC} and TUE in Table 27. In section: CMP with 8-bit DAC electrical specifications, added note 'For comparator I'A spinals adjacent'
5	06 Dec 2017	 Removed S32K148 from 'Caution' Updated figure: S32K1xx product series comparison for 'EEPROM emulated by FlexRAM' of S32K148 (Added content to footnote) Added support for LIN protocol version 2.2 A In Absolute maximum ratings : Added note 'Unless otherwise ' Added parameter 'Added note 'T_{ramp_MCU}' Updated footnote for 'T_{ramp}' In Voltage and current operating requirements : Added footnote 'V_{DD} and V_{DDA} must be shorted ' against parameter 'V_{DD}- V_{DDA}' Updated footnote 'V_{DD} and V_{DDA} must be shorted' In Power and ground pins Added diagrams for 32-QFN and 48-LQFP and footnote below the diagrams. Updated footnote 'V_{DD} and V_{DDA} must be shorted'

Table 43. Revision History (continued)

Table continues on the next page ...

Rev. No.

Date

		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : Minor editorial update: Fixed the placement of SRAM, under 'Flash memory controller' block Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Ordering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated note 3 In Figure: S32K1xx product series comparison : Editorial updates Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information : Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption : Updated specs for S32K146 Removed section 'Modes configuration', and moved its content under

Table 43. Revision History (continued)

Substantial Changes

Table continues on the next page...

the fisrt paragraph.

In 12-bit ADC operating conditions :