NXP USA Inc. - FS32K144HFT0VLHT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	58
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144hft0vlht

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
 - Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.
- Safety and Security
 - Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - 128-bit Unique Identification (ID) number
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - System Memory Protection Unit (System MPU)
 - Cyclic Redundancy Check (CRC) module
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
- Timing and control
 - Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- Package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

3 Ordering information

3.1 Selecting orderable part number

Not all part number combinations are available. See the attachment *S32K1xx_Orderable_Part_Number_List.xlsx* attached with the Datasheet for a list of standard orderable part numbers.

General

- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 8. T_J (Junction temperature)=135 °C. Assumes T_A=125 °C for RUN mode
 - T_J (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode
 - Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements

NOTE

Device functionality is guaranteed up to the LVR assert level, however electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics would be degraded when voltage drops below 2.7 V

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V_{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V _{DDA}	Analog supply voltage	2.7	5.5	V	4
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	4
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	6
I _{INJPAD_DC_OP} ⁷	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

Table 2. Voltage and current operating requirements 1

- Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

General

			VLPS (μΑ) ²	V	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		l@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³	
Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	Peripherals enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
		Max	1637	1694	3.1	3.21	NA	12.7	13.7	25	32.9	30.7	38.8	36	43.8	N	A	450
S32K144	25	Тур	29.8	42	1.48	1.50	2.91	7	7.7	19.7	26.9	25.1	33.3	30.2	39.6	43.3	55.6	378
	85	Тур	150	159	1.72	1.85	3.08	7.2	8.1	20.4	27.1	26.1	33.5	30.5	40	43.9	56.1	381
		Max	359	384	2.60	2.65	NA	9.2	9.9	23.2	29.6	29.3	36.2	34.8	42.1	46.3	59.7	435
	105	Тур	256	273	1.80	2.10	3.23	7.8	8.5	20.6	27.4	26.6	33.8	31.2	40.5	44.8	57.1	390
		Max	850	900	2.65	2.70	NA	10.3	11.1	23.9	30.6	30.3	37.3	35.6	43.5	47.9	61.3	445
	125	Тур	NA	NA	NA	NA	3.65	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA
		Max	1960	1998	3.18	3.25	NA	12.9	13.8	26.9	33.6	35	40.3	38.7	46.8	N	A	484
S32K146	25	Тур	37	47	1.57	1.61	3.3	8	9.2	23.4	31.4	30.5	40.2	36.2	47.6	52	68.3	452
	85	Тур	207	209	1.79	1.83	3.54	8.9	10.1	24.4	32.4	31.5	41.3	37.2	48.7	53.3	69.8	465
		Max	974	981	3.32	3.38	NA	12.7	13.9	29.3	37.9	36.7	47	42.4	54.4	60.3	78	530
	105	Тур	419	422	1.99	2.04	3.78	9.8	11	25.3	33.4	32.5	42.2	38.1	49.6	54.4	70.8	477
		Max	2004	2017	4.06	4.13	NA	17.1	18.3	34.1	42.6	41.3	51.4	46.9	58.8	65.7	82.8	587
	125	Тур	NA	NA	NA	NA	4.44	NA	NA	NA	NA	NA	NA	NA	NA	N	A	NA
		Max	3358	3380	5.28	5.38	NA	22.6	23.7	40.2	48.8	47.3	57.4	52.8	64.8	N	A	660
S32K148 ⁸	25	Тур	38	54	2.17	2.20	3.45	8.5	9.6	27.6	34.9	35.5	45.3	42.1	57.7	60.3	83.3	526
	85	Тур	336	357	2.30	2.35	3.74	10.1	11.1	29.1	37.0	36.8	46.6	43.4	59.9	62.9	88.7	543

Table continues on the next page...

18

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

			VLPS (μΑ) ²	V	LPR (m	A)	STOP1 (mA)	STOP2 (mA)		l@48 (mA)		64 MHz nA)		80 MHz nA)		N@112 (mA) ³	
Chip/Device	Ambient Temperature (°C)		Peripherals disabled ⁵	Peripherals enabled	Peripherals disabled ⁶	Peripherals enabled use case 1 ⁶	Peripherals enabled use case 2 ⁷			Peripherals disabled	Peripherals enabled	IDD/MHz (µA/MHz) ⁴						
		Max	1660	1736	3.48	3.55	NA	14.5	15.6	34.8	43.6	41.9	53.9	48.7	65.1	70.4	96.1	609
	105	Тур	560	577	2.49	2.54	4.03	10.9	11.9	29.8	37.8	37.6	47.5	45.2	61.5	63.8	89.1	565
		Max	2945	2970	4.40	4.47	NA	18.0	19.0	38.4	46.8	44.9	55.3	51.6	66.8	73.6	97.4	645
	125	Тур	NA	NA	NA	NA	4.85	NA	NA	NA	NA	NA	NA	NA	NA	N	İA	NA
		Max	3990	4166	6.00	6.08	NA	23.4	24.5	44.3	52.5	50.9	61.3	57.5	71.6	N	IA	719

- Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes
 V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for
 all unused input pins.
- 2. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 3. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.
- 4. Values mentioned for S32K14x devices are measured at RUN@80 MHz with peripherals disabled and values mentioned for S32K11x devices are measured at RUN@48 MHz with peripherals disabled.
- 5. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.
- 6. Data collected using RAM
- 7. Numbers on limited samples size and data collected with Flash
- 8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are inactive.

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 11 and Table 12, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Symbol	Parameter		Value		Unit	Notes	
		Min.	Тур.	Max.			
V _{DD}	I/O Supply Voltage	2.7	3.3	4	V	1	
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2	
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3		$0.3 \times V_{DD}$	V	3	
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	—	V		
loh _{GPIO} loh _{GPIO-HD_DSE_0}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	3.5	—	_	mA		
Iol _{GPIO} -HD_DSE_0	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	3	_		mA		
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	—	_	mA	4	
Iol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	12	_	_	mA	4	
loh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	9.5	_	_	mA	5	
IOI _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V_{ol} = 0.8 V	10	_	—	mA	5	
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{oh}{=}V_{DD}{-}0.8~V$	16	_	—	mA	5	
IOI _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{ol} = 0.8 V	15.5	_	_	mA	5	
IOHT	Output high current total for all ports	_	_	100	mA		
IIN	Input leakage current (per pin) for full tempera	ture range at	V _{DD} = 3.3 V	/	ł	6	
	All pins other than high drive port pins		0.005	0.5	μA		
	High drive port pins ⁷		0.010	0.5	μA]	
R _{PU}	Internal pullup resistors	20		60	kΩ	8	
R _{PD}	Internal pulldown resistors	20		60	kΩ	9	

1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.

- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.

I/O parameters

Symbol	DSE	Rise tii	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
		17.3	54.8	17.6	59.7	200
	1	1.1	4.6	1.1	5.0	25
		2.0	5.7	2.0	5.8	50
		5.4	16.0	5.0	16.0	200
tRF _{GPIO-FAST}	0	0.42	2.2	0.37	2.2	25
		2.0	5.0	1.9	5.2	50
		9.3	18.8	8.5	19.3	200
	1	0.37	0.9	0.35	0.9	25
		1.2	2.7	1.2	2.9	50
		6.0	11.8	6.0	12.3	200

Table 14. AC electrical specifications at 5 V Range (continued)

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.7 Standard input pin capacitance

Table 15. Standard input pin capacitance

Symbol	Description	Min.	Max.	Unit
C _{IN_D}	Input capacitance: digital pins	_	7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 16. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit
	High Speed run mode ²			
f _{SYS}	System and core clock	—	112	MHz
f _{BUS}	Bus clock	_	56	MHz
f _{FLASH}	Flash clock	—	28	MHz
	Normal run mode (S32K11x series)		
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock	_	48	MHz

Table continues on the next page...

	Table 18.	External S	ystem Osc	illator frequ	lency spec	ifications				Clock
Symbol	Description	м	in.	Ту	/p.	Ma	ax.	Unit	Notes	ck inte
		S32K14x S32K11x S32K		S32K14x	S32K11x	S32K14x	S32K11x	1		_
f _{osc_hi}	Oscillator crystal or resonator frequency	2	4		_		40			face mo
f _{ec_extal}	Input clock frequency (external clock mode)	_	-		_		48	MHz	1	odules
t _{dc_extal}	Input clock duty cycle (external clock mode)	4	8	50		52		%	1	
t _{cst}	Crystal Start-up Time									
	8 MHz low-gain mode (HGO=0)	-	-		5	-	_	ms	2	
	8 MHz high-gain mode (HGO=1)	-	—		5	-	_			
	40 MHz low-gain mode (HGO=0)	-	_	2	2	—		1		
	40 MHz high-gain mode (HGO=1)	-	_	2	2	—				

Table 18. External System Oscillator frequency specifications

Frequencies below 40 MHz can be used for degraded duty cycle upto 40-60% Proper PC board layout procedures must be followed to achieve specifications. 1.

2.

6.2.3 System Clock Generation (SCG) specifications

6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 19. Fast internal RC Oscillator electrical specifications

Symbol	Parameter ¹		Value		Unit
		Min.	Тур.	Max.	
F _{FIRC}	FIRC target frequency	—	48		MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	—	±0.5	±1	%F _{FIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	—	±0.5	±1.1	%F _{FIRC}
T _{Startup}	Startup time		3.4	5	μs²
T _{JIT} , 3	Cycle-to-Cycle jitter	—	300	500	ps
T _{JIT} ³	Long term jitter over 1000 cycles	—	0.04	0.1	%F _{FIRC}

1. With FIRC regulator enable

2. Startup time is defined as the time between clock enablement and clock availability for system use.

3. FIRC as system clock

NOTE

Fast internal RC Oscillator is compliant with CAN and LIN standards.

6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications Table 20. Slow internal RC oscillator (SIRC) electrical specifications

Symbol	Parameter			Unit	
		Min.	Тур.	Max.	1
F _{SIRC}	SIRC target frequency	_	8	—	MHz
ΔF	Frequency deviation across process, voltage, and temperature $< 105^{\circ}C$	—	—	±3	%F _{SIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	_	±3.3	%F _{SIRC}
T _{Startup}	Startup time	_	9	12.5	μs ¹

1. Startup time is defined as the time between clock enablement and clock availability for system use.

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 21. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
T _{startup}	Startup Time	_	_	20	μs

6.2.5 SPLL electrical specifications

Table 22. SPLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8	—	16	MHz
F _{SPLL_Input} ²	PLL Input Frequency	8	—	40	MHz
F _{VCO_CLK}	VCO output frequency	180	—	320	MHz
F _{SPLL_CLK}	PLL output frequency	90	—	160	MHz
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³	•	·		
	at F _{VCO_CLK} 180 MHz	_	120	—	ps
	at F _{VCO_CLK} 320 MHz	_	75	—	ps
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (RMS) ³				
	at F _{VCO_CLK} 180 MHz	_	1350	—	ps
	at F _{VCO_CLK} 320 MHz	_	600	—	ps
D _{UNL}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%
T _{SPLL_LOCK}	Lock detector detection time ⁴	—	_	150 × 10 ⁻⁶ + 1075(1/F _{SPLL_REF})	S

1. F_{SPLL_REF} is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.

 F_{SPLL_Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary

4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3 Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

Symbol	Descriptio	on ¹	S3	2K116	S	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{ersscr}	Erase Flash Sector execution time		12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1 KB flash)	_	5	—	5	-	ms	
t _{rd1all}	Read 1s All Block execution time		_	1.7	_	2.8	ms	
t _{rdonce}	Read Once execution time		_	30	—	30	μs	
t _{pgmonce}	Program Once execution time		90	—	90	_	μs	
t _{ersall}	Erase All Blocks execution time		150	1500	230	2500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	35	—	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	_	150	1500	230	2500	ms	2
t _{pgmpart}	Program Partition for EEPROM execution time	32 KB EEPROM backup	71	—	71	-	ms	3
		64 KB EEPROM backup	—	—	—	-		
t _{setram}	Set FlexRAM Function execution time	Control Code 0xFF	0.08	—	0.08	-	ms	3
		32 KB EEPROM backup	0.8	1.2	0.8	1.2		
		48 KB EEPROM backup	—	—	—	-		
		64 KB EEPROM backup	—	—	—	—		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3 [,] 4
		48 KB EEPROM backup	—	—	—	_		
		64 KB EEPROM backup	—	_	—	—		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	μs	3 [,] 4
		48 KB EEPROM backup	—	—	-	-		
		64 KB EEPROM backup	-	_	-	-		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	μs	

 Table 24. Flash command timing specifications for S32K11x (continued)

Table continues on the next page...

Symbol	Descripti	Description ¹			s	32K118		
			Тур	Max	Тур	Max	Unit	Notes
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	μs	3 [,] 4
		48 KB EEPROM backup	—	—	—	—		
		64 KB EEPROM backup	—	—	—	—		
t _{quickwr} 32-ł	32-bit Quick Write	1st 32-bit write	200	550	200	550	μs	4.5.6
	execution time: Time from CCIF clearing (start the write) until CCIF setting (32-bit write complete, ready for next 32-bit write)	2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550	-	
		Last (Nth) 32-bit write (time for write only, not cleanup)	200	550	200	550		
t _{quickwrClnup}	Quick Write Cleanup execution time	—		(# of Quick Writes) * 2.0	—	(# of Quick Writes) * 2.0	ms	7

Table 24. Flash command timing specifications for S32K11x (continued)

- 1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the times shown.
- 5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 25. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes			
	When using as Program and Data Flash								
t _{nvmretp1k}	Data retention after up to 1 K cycles	20		_	years	1			
n _{nvmcycp}	Cycling endurance	1 K	—	_	cycles	2, 3			

Table continues on the next page...

NXP
Semiconductors

S32K1xx Data Sheet, Rev. 8, 06/2018

FLASH PORT	Sym	Unit						FLA	SH A							FLA	SH B	
					RL	JN ¹					HSR	UN ¹			RUN/HSRUN ²			
QuadSPI Mode					SI	DR					SDR			SI	DR	DE)R ³	
					nternal Internal DQS ampling			Internal Internal I Sampling			al DQS			Internal Sampling		External DQS		
	N1			AD oback	Internal N1 Loopback		PAD Internal Loopback Loopback			N1		External DQS						
			Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max
						•	Regis	ster Sett	ings		•	•					•	•
MCR[DDR_EN]		-	()	(C	(C	()	0)	()	()	-	1
MCR[DQS_EN]		-	()	-	1	-	1	()	1		-	1	()	-	1
MCR[SCLKCFG[0]]		-	-	-	-	1	(C		-	1		()		-		-
MCR[SCLKCFG[1]]		-	-	-	-	1		0		-	1		0		-		-	
MCR[SCLKCFG[2]]		-	-	-				-	-		-		-		0			
MCR[SCLKCFG[3]]		-	-	-		-		-	-	-	-			-	-	-	(C
MCR[SCLKCFG[5]]		-	()	(C	(C	()	0)	()	()	-	1
SMPR[FSPHS]		-	()	-	1	(C	()	1		()	()	()
SMPR[FSDLY]		-	()	()	(C	()	0)	()	()	()
SOCCR			-	-	(C	2	3		-	0)	3	0		-		-
[SOCCFG[7:0]]																		
SOCCR[SOCCFG[15:8]]		-	-			-		-	-		-			-	-		3	0
FLSHCR[TDH]		-	0x	00	0x	00	0x	:00	0x	00	0x(00	0x	00	0x	00	0x	01
							Timing	g Param	eters									
SCK Clock Frequency	f _{SCK}	MHz	-	38	-	64	-	48	-	40	-	80	-	50	-	20	-	20 ⁴
SCK Clock Period	t _{SCK}	ns	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	1/fSCK	-	50.0	-	50.0 ⁴	-

Table continues on the next page...

Memory and memory interfaces

39

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
f _{ADCK}	ADC conversion clock frequency	Normal usage	2	40	50	MHz	3, 4
f _{CONV}	ADC conversion frequency	No ADC hardware averaging. ⁵ Continuous conversions enabled, subsequent conversion time	46.4	928	1160	Ksps	6, 7
		ADC hardware averaging set to 32. ⁵ Continuous conversions enabled, subsequent conversion time	1.45	29	36.25	Ksps	6, 7

Table 27. 12-bit ADC operating conditions (continued)

- 1. Typical values assume $V_{DDA} = 5 V$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS}=20 \Omega$, and $C_{AS}=10 \text{ nF}$ unless otherwise stated. Typical values are for reference only, and are not tested in production.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}. To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 4. ADC conversion will become less reliable above maximum frequency.
- 5. When using ADC hardware averaging, see the *Reference Manual* to determine the most appropriate setting for AVGS.
- 6. Numbers based on the minimum sampling time of 275 ns.
- 7. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function'

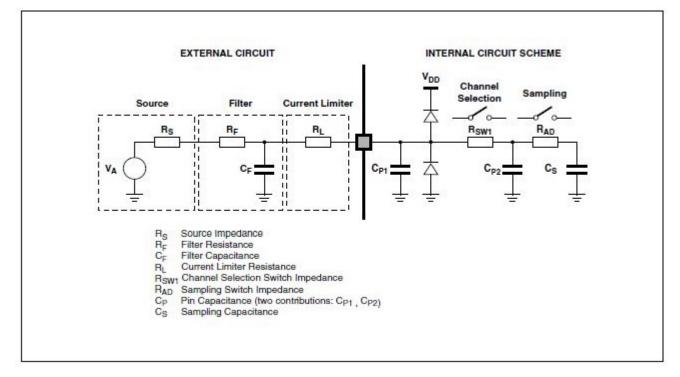


Figure 13. ADC input impedance equivalency diagram

6.4.1.2 12-bit ADC electrical characteristics

NOTE

- ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.
- On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V _{DDA}	Supply voltage		2.7		3	V	
I _{DDA_ADC}	Supply current per ADC		_	0.6	_	mA	3
SMPLTS	Sample Time		275	_	Refer to the <i>Reference</i> <i>Manual</i>	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		—	±1.0	—	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±2.0	—	LSB ⁵	6, 7, 8, 9

Table 28. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume V_{DDA} = 3 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω , and C_{AS}=10 nF.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

Symbol	Description	Min.	Тур.	Max.	Unit
	Analog comparator hysteresis, Hyst2, Low-speed mode				
	-40 - 125 °C	_	23	80	
V _{HYST3} Analog comparator hysteresis, Hyst3, High-spee mode					mV
	-40 - 125 °C	_	46	200	
	Analog comparator hysteresis, Hyst3, Low-speed mode				
	-40 - 125 °C	_	32	120	
I _{DAC8b}	8-bit DAC current adder (enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL ⁵	8-bit DAC integral non-linearity	-0.75	—	0.75	LSB ⁶
DNL	8-bit DAC differential non-linearity	-0.5	_	0.5	LSB ⁶
t _{DDAC}	Initialization and switching settling time	_	—	30	μs

Table 31. Comparator with 8-bit DAC electrical specifications (continued)

1. Difference at input > 200mV

2. Applied \pm (100 mV + V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.

3. Applied ± (30 mV + 2 × $V_{HYST0/1/2/3}$ + max. of V_{AIO}) around switch point.

4. Applied \pm (100 mV + V_{HYST0/1/2/3}).

5. Calculation method used: Linear Regression Least Square Method

6. 1 LSB = $V_{reference}/256$

NOTE

For comparator IN signals adjacent to V_{DD}/V_{SS} or XTAL/ EXTAL or switching pins cross coupling may happen and hence hysteresis settings can be used to obtain the desired comparator performance. Additionally, an external capacitor (1nF) should be used to filter noise on input signal. Also, source drive should not be weak (Signal with < 50 K pull up/down is recommended).

Communication modules

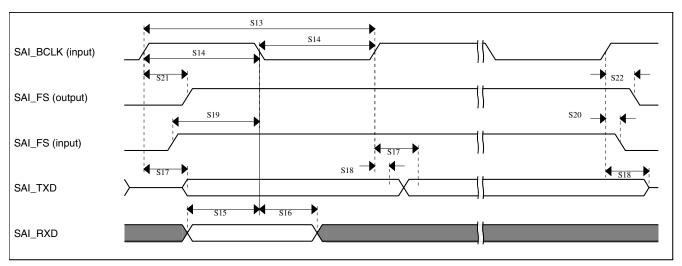


Figure 23. SAI Timing — Slave modes

6.5.6 Ethernet AC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

The following table describes the MII electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
_	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK period
MII2	RXCLK pulse width low	35%	65%	RXCLK period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5	—	ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5	—	ns
_	TXCLK frequency	—	25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK period
MII6	TXCLK pulse width low	35%	65%	TXCLK period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	—	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid	—	25	ns

Table 35. MII signal switching specifications

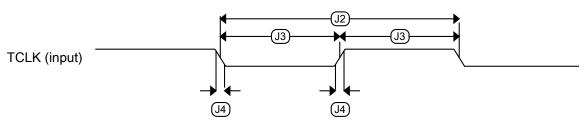


Figure 32. Test clock input timing

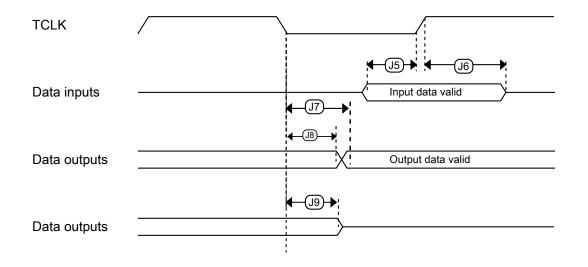


Figure 33. Boundary scan (JTAG) timing

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from this equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

Table 43. Revision History	y (continued)
----------------------------	---------------

Rev. No.	Date	Substantial Changes
		 Fixed the typo in R_{SW1} In LPSPI electrical specifications : Updated t_{Lead} and t_{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics : Updated the name of table: Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package Deleted specs for R_{BJC} for 32 QFN package Added 'R_{BJCBottom}'
8	18 June 2018	 In attachement 'S32K1xx Power_Modes _Configuration': Updated VLPR peripherals disabled and Peripherals Enabled use case #1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for flash. Removed S32K116 from Notes In figure: S32K1xx product series comparison : Added note 'Availability of peripherals depends on the pin availability' Updated 'Ambient Operation Temperature' row Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148 In Ordering information : Updated figure for 'Y: Optional feature' Updated footnote 3 In Power and ground pins : In figure 'Power diagram', updtaed V_{Flash} frequency to 3.3 V In Power mode transition operating behaviors : Updated footnote for 'VLPS Mode: All clock sources disabled' In Power consumption : Added IDDs for S32K116 Added footnote 'Data collected using RAM' to VLPR 'Peripherals enabled use case 1' Updated VLPR 'Peripherals enabled' to 'Peripherals enabled use case 1' Updated VLPS Peripherals enabled at 25 °C/Typicals for S32K142 and S32K144 to 40 µA and 42 µA respectively Added table 'VLPS additional use-case power consumption at typical conditions' In DC electrical specifications at 3.3 V Range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.0 V Range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions Added specs for GPIO-FAST pad In AC electrical specifications at 5.V range : Updated naming conventions