E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	89
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b SAR; D/A1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32k144hnt0cllr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).
 - Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.
- Safety and Security
 - Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - 128-bit Unique Identification (ID) number
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - System Memory Protection Unit (System MPU)
 - Cyclic Redundancy Check (CRC) module
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
- Timing and control
 - Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- Package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

3 Ordering information

3.1 Selecting orderable part number

Not all part number combinations are available. See the attachment *S32K1xx_Orderable_Part_Number_List.xlsx* attached with the Datasheet for a list of standard orderable part numbers.

- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGApackages.

Symbol	Parameter		Value		Unit
		Min.	Тур.	Max.	
T _{A C-Grade Part}	Ambient temperature under bias	-40	—	85 ¹	°C
T _{J C-Grade Part}	Junction temperature under bias	-40	—	105 ¹	°C
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C
T _{J V-Grade Part}	Junction temperature under bias	-40	—	125 ¹	°C
T _{A M-Grade Part}	Ambient temperature under bias	-40	—	125 ²	°C
T _{J M-Grade Part}	Junction temperature under bias	-40	—	135 ²	°C

1. Values mentioned are measured at \leq 112 MHz in HSRUN mode.

2. Values mentioned are measured at \leq 80 MHz in RUN mode.

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} ^{, 4} , ⁵	ADC reference high decoupling capacitance	70	100		nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100		nF

V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.

2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).

3. Minimum recommendation is after considering component aging and tolerance.

4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.

5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.

6. Contact your local Field Applications Engineer for details on best analog routing practices.

7. The filtering used for decoupling the device supplies must comply with the following best practices rules:

• The protection/decoupling capacitors must be on the path of the trace connected to that component.

• No trace exceeding 1 mm from the protection to the trace or to the ground.

• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).

• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

I/O parameters

Symbol	DSE	Rise tii	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
		17.3	54.8	17.6	59.7	200
	1	1.1	4.6	1.1	5.0	25
		2.0	5.7	2.0	5.8	50
		5.4	16.0	5.0	16.0	200
tRF _{GPIO-FAST}	0	0.42	2.2	0.37	2.2	25
		2.0	5.0	1.9	5.2	50
		9.3	18.8	8.5	19.3	200
	1	0.37	0.9	0.35	0.9	25
		1.2	2.7	1.2	2.9	50
		6.0	11.8	6.0	12.3	200

Table 14. AC electrical specifications at 5 V Range (continued)

1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.

2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.7 Standard input pin capacitance

Table 15. Standard input pin capacitance

Symbol	Description	Min.	Max.	Unit
C _{IN_D}	Input capacitance: digital pins	_	7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 16. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit
	High Speed run mode ²			
f _{SYS}	System and core clock	—	112	MHz
f _{BUS}	Bus clock	_	56	MHz
f _{FLASH}	Flash clock	—	28	MHz
	Normal run mode (S32K11x series)		
f _{SYS}	System and core clock	—	48	MHz
f _{BUS}	Bus clock	_	48	MHz

Table continues on the next page...

S32K1xx Data Sheet, Rev. 8, 06/2018

Symbol	Description	Min.	Max.	Unit
f _{FLASH}	Flash clock		24	MHz
	Normal run mode (S32K14x series)	3	1	
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	_	40 ⁴	MHz
f _{FLASH}	Flash clock	_	26.67	MHz
	VLPR mode ⁵			
f _{SYS}	System and core clock		4	MHz
f _{BUS}	Bus clock		4	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{ERCLK}	External reference clock	_	16	MHz

1. Refer to the section Feature comparison for the availability of modes and other specifications.

- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz

5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

Table 25.	NVM reliability	y s	pecifications	(continued))
-----------	-----------------	-----	---------------	-------------	---

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	When using FlexMemory feature : Fle	xRAM as E	Emulated EEP	ROM		
t _{nvmretee}	Data retention	5	—	_	years	4
n _{nvmwree16}	Write endurance EEPROM backup to FlexRAM ratio = 16 	100 K	_	—	writes	5, 6, 7
n _{nvmwree256}	 EEPROM backup to FlexRAM ratio = 256 	1.6 M	—	—	writes	

- 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.
- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.
- FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

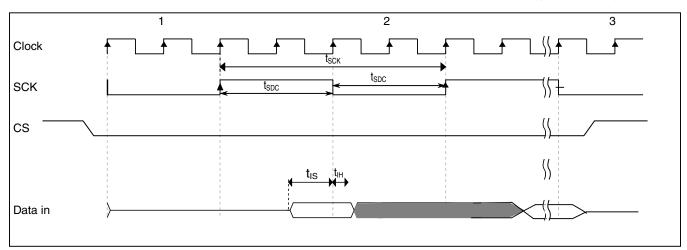


Figure 9. QuadSPI input timing (SDR mode) diagram

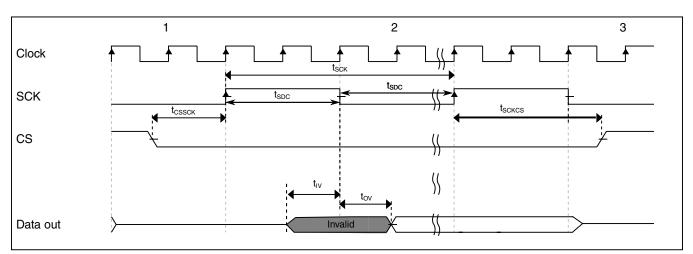
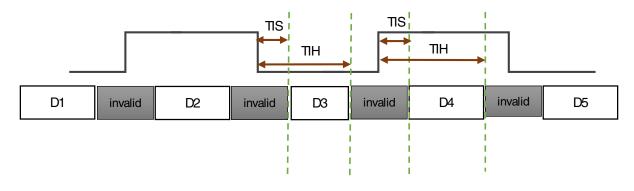



Figure 10. QuadSPI output timing (SDR mode) diagram

TIS-Setup Time TIH-Hold Time

Figure 11. QuadSPI input timing (HyperRAM mode) diagram

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
f ADCK	ADC conversion clock frequency	Normal usage	2	40	50	MHz	3, 4
f _{CONV}	ADC conversion frequency	No ADC hardware averaging. ⁵ Continuous conversions enabled, subsequent conversion time	46.4	928	1160	Ksps	6, 7
		ADC hardware averaging set to 32. ⁵ Continuous conversions enabled, subsequent conversion time	1.45	29	36.25	Ksps	6, 7

Table 27. 12-bit ADC operating conditions (continued)

- 1. Typical values assume $V_{DDA} = 5 V$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS}=20 \Omega$, and $C_{AS}=10 \text{ nF}$ unless otherwise stated. Typical values are for reference only, and are not tested in production.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}. To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 4. ADC conversion will become less reliable above maximum frequency.
- 5. When using ADC hardware averaging, see the *Reference Manual* to determine the most appropriate setting for AVGS.
- 6. Numbers based on the minimum sampling time of 275 ns.
- 7. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function'

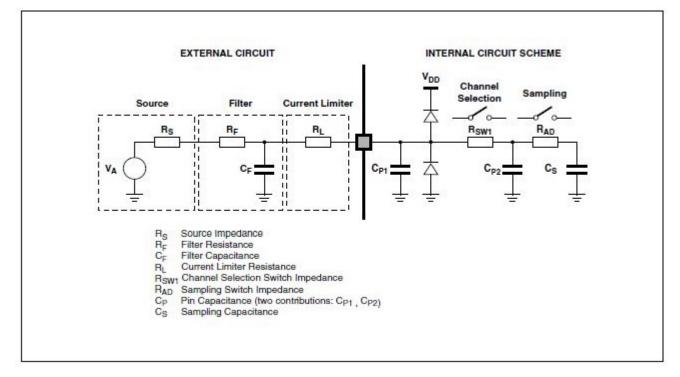


Figure 13. ADC input impedance equivalency diagram

Symbol	Description	Min.	Тур.	Max.	Unit
	Analog comparator hysteresis, Hyst2, Low-speed mode				
	-40 - 125 °C	_	23	80	
V _{HYST3}	Analog comparator hysteresis, Hyst3, High-speed mode				mV
	-40 - 125 °C	_	46	200	
	Analog comparator hysteresis, Hyst3, Low-speed mode				
	-40 - 125 °C	_	32	120	
I _{DAC8b}	8-bit DAC current adder (enabled)				
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μA
INL ⁵	8-bit DAC integral non-linearity	-0.75	—	0.75	LSB ⁶
DNL	8-bit DAC differential non-linearity	-0.5	_	0.5	LSB ⁶
t _{DDAC}	Initialization and switching settling time	_	—	30	μs

Table 31. Comparator with 8-bit DAC electrical specifications (continued)

1. Difference at input > 200mV

2. Applied \pm (100 mV + V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.

3. Applied ± (30 mV + 2 × $V_{HYST0/1/2/3}$ + max. of V_{AIO}) around switch point.

4. Applied \pm (100 mV + V_{HYST0/1/2/3}).

5. Calculation method used: Linear Regression Least Square Method

6. 1 LSB = $V_{reference}/256$

NOTE

For comparator IN signals adjacent to V_{DD}/V_{SS} or XTAL/ EXTAL or switching pins cross coupling may happen and hence hysteresis settings can be used to obtain the desired comparator performance. Additionally, an external capacitor (1nF) should be used to filter noise on input signal. Also, source drive should not be weak (Signal with < 50 K pull up/down is recommended).

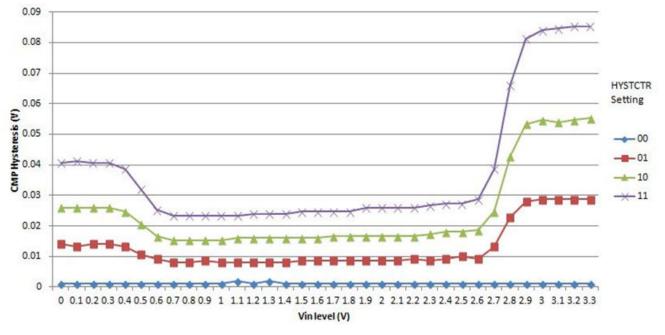


Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)

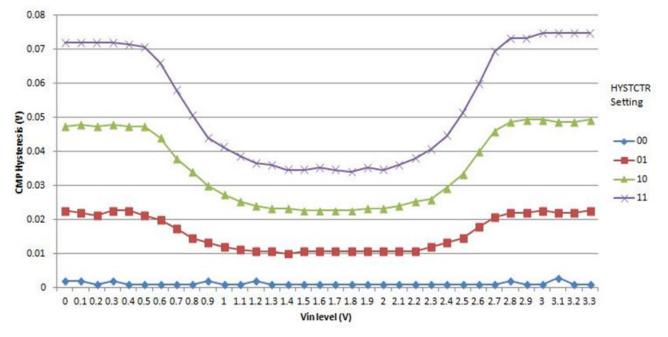


Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)

ADC electrical specifications

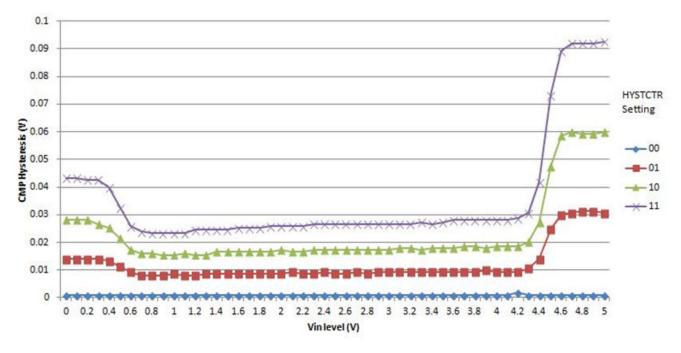


Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

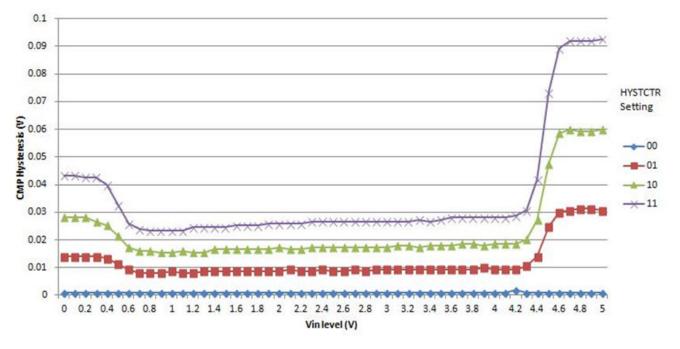


Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

Communication modules

Table 32. LPSPI electrical specifications1 (continued)

Num	Symbol	Description	Conditions		Run	Mode ²			HSRU	N Mode ²			VLPR	Mode		Un	
					5.0 V IO		3.3	3.3 V IO		5.0 V IO		V IO	5.0 V IO	V IO	IO 3.3 V IO	V IO	1
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1	
4	t _{Lag} 9	Enable lag	Slave	-	-	-	-	-	-	-	-	-	-	-	-	ns	
		time (After SPSCK delay)	Master		-		-		-		-		-		-		
		of corradiay)	Master Loopback ⁵	52		- 25		- 25		- 25		- 50		- 50			
			Master Loopback(slow) ⁶	(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} -		(SCKPCS+1)*t _{periph} - 25		(SCKPCS+1)*t _{periph} - 50		(SCKPCS+1)*t _{periph} -50			
5	twspsck ¹⁰	K ¹⁰ Clock(SPSCK) high or low time (SPSCK duty cycle)	Slave	t _{sPSCK} /2-3	tspsck/2+3	2-3											ns
			Master				5+3	2-3 5+3	£+3	2+3 2-3	1 5+3	2-2	5+5	ц 2-2	5+2		
			Master Loopback ⁵			tspsck/2-3	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-3	tspsck/2+3	tspsck/2-5	tspsck/2+5	tspsck/2-5	tsPSCK/2+5		
			Master Loopback(slow) ⁶	H	<u>ب</u>	+	μ,	+	÷.	-	÷.	+	ů.	-	<u>ب</u>		
6	t _{SU}	Data setup	Slave	3	-	5	-	3	-	5	-	18	-	18	-	ns	
		time(inputs)	Master	29	-	38	-	26	-	37 ¹¹ 32 ¹²	-	72	-	78	-	_	
			Master Loopback ⁵	7	-	8	-	5	-	7	-	20	-	20	-	-	
			Master Loopback(slow) ⁶	8	-	10	-	7	-	9	-	20	-	20	-		
7		Data hold	Slave	3	-	3	-	3	-	3	-	14	-	14	-	ns	
		time(inputs)	Master	0	-	0	-	0	-	0	-	0	-	0	-		
			Master Loopback ⁵	3	-	3	-	2	-	3	-	11	-	11	-		
			Master Loopback(slow) ⁶	3	-	3	-	3	-	3	-	12	-	12	-		

Table continues on the next page...

52

S32K1xx Data Sheet, Rev. 8, 06/2018

6.5.4 FlexCAN electical specifications

For supported baud rate, see section 'Protocol timing' of the Reference Manual.

6.5.5 SAI electrical specifications

The following table describes the SAI electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Symbol	Description	Min.	Max.	Unit
_	Operating voltage	2.97	3.6	V
S1	SAI_MCLK cycle time	40	_	ns
S2	SAI_MCLK pulse width high/low	45%	55%	MCLK period
S3	SAI_BCLK cycle time	80	_	ns
S4	SAI_BCLK pulse width high/low	45%	55%	BCLK period
S5	SAI_RXD input setup before SAI_BCLK	28	_	ns
S6	SAI_RXD input hold after SAI_BCLK	0	_	ns
S7	SAI_BCLK to SAI_TXD output valid	—	8	ns
S8	SAI_BCLK to SAI_TXD output invalid	-2	_	ns
S9	SAI_FS input setup before SAI_BCLK	28	_	ns
S10	SAI_FS input hold after SAI_BCLK	0	_	ns
S11	SAI_BCLK to SAI_FS output valid	_	8	ns
S12	SAI_BCLK to SAI_FS output invalid	-2	—	ns

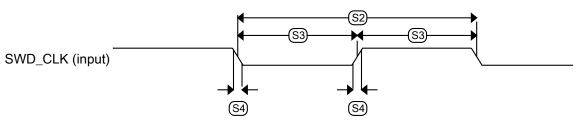


Figure 29. Serial wire clock input timing

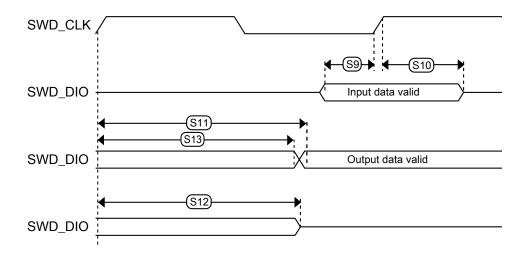


Figure 30. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the Trace electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

	Symbol Description		R	UN Mode)	HSRUI	N Mode	VLPR Mode	Unit
—	Fsys	System frequency	80	48	40	112	80	4	MHz

Table 39.	Trace	specifications
-----------	-------	----------------

Table continues on the next page...

	-									
Rating	Conditions	Symbol	Package	Values						
				S32K116	S32K118	S32K142	S32K144	S32K146	S32K148	
			144	NA	NA	NA	NA	37	31	[
			176	NA	NA	NA	NA	NA	30	ĺ
Thermal resistance, Junction to Ambient	Four layer	R _{θJMA}	32	26	NA	NA	NA	NA	NA	ĺ
(@200 ft/min) ^{1, 3}	board (2s2p)		48	48	41	NA	NA	NA	NA	ĺ
			64	NA	37	36	36	35	NA	ĺ
			100	NA	NA	34	34	33	NA	ĺ
			144	NA	NA	NA	NA	36	30	ĺ
			176	NA	NA	NA	NA	NA	29	ĺ
Thermal resistance, Junction to Board ⁴	_	R _{êJB}	32	11	NA	NA	NA	NA	NA	ĺ
			48	33	24	NA	NA	NA	NA	ĺ
			64	NA	26	25	25	23	NA	ĺ
			100	NA	NA	25	25	24	NA	ĺ
			144	NA	NA	NA	NA	30	24	ĺ
			176	NA	NA	NA	NA	NA	24	ĺ
Thermal resistance, Junction to Case ⁵	—	R _{θJC}	32	NA	NA	NA	NA	NA	NA	ĺ
			48	23	19	NA	NA	NA	NA	ĺ
			64	NA	14	13	12	11	NA	ĺ
			100	NA	NA	13	12	11	NA	ĺ
			144	NA	NA	NA	NA	12	9	ĺ
			176	NA	NA	NA	NA	NA	9	
Thermal resistance, Junction to Case	_	R _{0JCBottom}	32	1			NA			
(Bottom) ⁶			48			N	A			
			64							1

Table 41. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package (continued)

Table continues on the next page...

100 144 176

70

S32K1xx Data Sheet,

Rev. 8, 06/2018

Table 42. Thermal characteristics for the 100 MAPBGA package

Rating	Conditions Symbol			Unit		
			S32K146	S32K144	S32K148	1
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Single layer board (1s)	R_{\thetaJA}	57.2	61.0	52.5	°C/W
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2, 3}	Four layer board (2s2p)	R_{\thetaJA}	32.1	35.6	27.5	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) 1, 2, 3	Single layer board (1s)	R _{0JMA}	44.1	46.6	39.0	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Two layer board (2s2p)	$R_{\theta JMA}$	27.2	30.9	22.8	°C/W
Thermal resistance, Junction to Board ⁴	—	R _{θJB}	15.3	18.9	11.2	°C/W
Thermal resistance, Junction to Case ⁵	—	R _{θJC}	10.2	14.2	7.5	°C/W
Thermal resistance, Junction to Package Top outside center ⁶	—	Ψյт	0.2	0.4	0.2	°C/W
Thermal resistance, Junction to Package Bottom outside center ⁷	—	Ψјв	12.2	15.9	18.3	°C/W

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

3. Per JEDEC JESD51-6 with the board horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

S32K1xx Data

۱ Sheet,

Rev.

<u>,</u>

06/2018

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from this equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

Rev. No.

Date

		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU}, ans t_V in HSRUN Mode Added footnote to 't_{WSPSCK}' Updated Thermal characteristics for S32K11x
6	31 Jan 2018	 Changed the representation of ARM trademark throughout. Removed S32K142 from 'Caution' In 'Key features', added the following note under 'Power management', 'Memory and memory interfaces', and 'Reliability, safety and security': No write or erase access to In High-level architecture diagram for the S32K14x family, added the following footnote: No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : No write or erase access to In High-level architecture diagram for the S32K11x family : Ninor editorial update: Fixed the placement of SRAM, under 'Flash memory controller' block Updated figure: S32K1xx product series comparison : Updated footnote 1, and added against 'HSRUN' in addition to 'HW security module (CSEc)' and 'EEPROM emulated by FlexRAM'. Updated 'System RAM (including FlexRAM and MTB)' row for S32K144, S32K146, and S32K148. Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS each)'. Updated Ordering information Updated Flash timing specifications — commands for S32K148, S32K142, S32K146, S32K116, and S32K118.
7	19 April 2018	 Changed Caution to Notes Updated the wordings of Notes and removed S32K146 Added 'Following two are the available' In 'Key features': Editorial updates Updated the note under Power management, Memory and memory interfaces, and Safety and security. Updated FlexIO under Communications interfaces Added ENET and SAI under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' In High-level architecture diagram for the S32K14x family : Minor editorial updates Updated note 3 In High-level architecture diagram for the S32K11x family : Minor editorial updates Updated Frequency for S32K14x Updated Frequency for S32K14x Updated footnote 4 Added footnote 5 In Ordering information : Renamed section, updated the starting paragraph Updated the figure In Voltage and current operating requirements, updated the note In Power consumption : Updated specs for S32K146 Removed section 'Modes configuration', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements', amd moved its content under the figure and current operating requirements' and moved its content under the figure and current oper

Table 43. Revision History (continued)

Substantial Changes

Table continues on the next page...

the fisrt paragraph.

In 12-bit ADC operating conditions :

Rev. No.	Date	Substantial Changes
		 Updated specs for T_{JIT} Cycle-to-Cycle jitter to 300 ps
		 In QuadSPI AC specifications :
		 Updated specs for T_{iv} Data Output In-Valid Time
		In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid
		area
		 In CMP with 8-bit DAC electrical specifications :
		 Removed '(VAIO)' from decription of V_{HYST0}
		In LPSPI electrical specifications :
		 Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI slave mode timing (CPHA = 1)'

Table 43. Revision History